主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第5期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
覃雄派,王会举,杜小勇,王珊.大数据分析——RDBMS 与MapReduce 的竞争与共生.软件学报,2012,23(1):32-45
大数据分析——RDBMS 与MapReduce 的竞争与共生
Big Data Analysis—Competition and Symbiosis of RDBMS and MapReduce
投稿时间:2011-04-04  修订日期:2011-07-21
DOI:10.3724/SP.J.1001.2012.04091
中文关键词:  大数据  深度分析  关系数据管理技术  MapReduce
英文关键词:big data  deep analysis  relational data management technique  MapReduce
基金项目:国家自然科学基金(61070054, 60873017, 61170013); 核高基重大科技专项(2010ZX01042-001-002, 2010ZX 01042-002-002-03); 中央高校基本科研业务费专项资金(10XNI018)
作者单位E-mail
覃雄派 教育部数据工程与知识工程重点实验室(中国人民大学),北京 100872
中国人民大学 信息学院,北京 100872 
qxp199@sina.com 
王会举 教育部数据工程与知识工程重点实验室(中国人民大学),北京 100872
中国人民大学 信息学院,北京 100872 
 
杜小勇 教育部数据工程与知识工程重点实验室(中国人民大学),北京 100872
中国人民大学 信息学院,北京 100872 
 
王珊 教育部数据工程与知识工程重点实验室(中国人民大学),北京 100872
中国人民大学 信息学院,北京 100872 
 
摘要点击次数: 11132
全文下载次数: 19144
中文摘要:
      在科学研究、计算机仿真、互联网应用、电子商务等诸多应用领域,数据量正在以极快的速度增长,为了分析和利用这些庞大的数据资源,必须依赖有效的数据分析技术.传统的关系数据管理技术(并行数据库)经过了将近40 年的发展,在扩展性方面遇到了巨大的障碍,无法胜任大数据分析的任务;而以MapReduce 为代表的非关系数据管理和分析技术异军突起,以其良好的扩展性、容错性和大规模并行处理的优势,从互联网信息搜索领域开始,进而在数据分析的诸多领域和关系数据管理技术展开了竞争.关系数据管理技术阵营在丧失搜索这个阵地之后,开始考虑自身的局限性,不断借鉴MapReduce 的优秀思想改造自身,而以MapReduce 为代表的非关系数据管理技术阵营,从关系数据管理技术所积累的宝贵财富中挖掘可以借鉴的技术和方法,不断解决其性能问题.面向大数据的深度分析需求,新的架构模式正在涌现.关系数据管理技术和非关系数据管理技术在不断的竞争中互相取长补短,在新的大数据分析生态系统内找到自己的位置.
英文摘要:
      In many areas such as science, simulation, Internet, and e-commerce, the volume of data to be analyzed grows rapidly. Parallel techniques which could be expanded cost-effectively should be invented to deal with the big data. Relational data management technique has gone through a history of nearly 40 years. Now it encounters the tough obstacle of scalability, which relational techniques can not handle large data easily. In the mean time, none relational techniques, such as MapReduce as a typical representation, emerge as a new force, and expand their application from Web search to territories that used to be occupied by relational database systems. They confront relational technique with high availability, high scalability and massive parallel processing capability. Relational technique community, after losing the big deal of Web search, begins to learn from MapReduce. MapReduce also borrows valuable ideas from relational technique community to improve performance. Relational technique and MapReduce compete with each other, and learn from each other; new data analysis platform and new data analysis eco-system are emerging. Finally the two camps of techniques will find their right places in the new eco-system of big data analysis.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 
主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利