主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第5期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
陈诗国,张道强.半监督降维方法的实验比较.软件学报,2011,22(1):28-43
半监督降维方法的实验比较
Experimental Comparisons of Semi-Supervised Dimensional Reduction Methods
投稿时间:2009-12-18  修订日期:2010-07-28
DOI:10.3724/SP.J.1001.2011.03928
中文关键词:  半监督降维  降维  半监督学习  类别标号  成对约束
英文关键词:semi-supervised dimensionality reduction  dimensionality reduction  semi-supervised learning  classlabel  pairwise constraint
基金项目:国家自然科学基金(60875030); 模式识别国家重点实验室开放课题(20090044)
作者单位E-mail
陈诗国 南京航空航天大学 计算机科学与工程系,江苏 南京 210016  
张道强 南京航空航天大学 计算机科学与工程系,江苏 南京 210016 dqzhang@nuaa.edu.cn 
摘要点击次数: 6565
全文下载次数: 10096
中文摘要:
      半监督学习是近年来机器学习领域中的研究热点之一,已从最初的半监督分类和半监督聚类拓展到半监督回归和半监督降维等领域.目前,有关半监督分类、聚类和回归等方面的工作已经有了很好的综述,如Zhu 的半监督学习文献综述.降维一直是机器学习和模式识别等相关领域的重要研究课题,近年来出现了很多将半监督思想用于降维,即半监督降维方面的工作.有鉴于此,试图对目前已有的一些半监督降维方法进行综述,然后在大量的标准数据集上对这些方法的性能进行实验比较,并据此得出了一些经验性的启示.
英文摘要:
      Semi-Supervised learning is one of the hottest research topics in the technological community, which has been developed from the original semi-supervised classification and semi-supervised clustering to the semi-supervised regression and semi-supervised dimensionality reduction, etc. At present, there have been several excellent surveys on semi-supervised classification: Semi-Supervised clustering and semi-supervised regression, e.g. Zhu’s semi-supervised learning literature survey. Dimensionality reduction is one of the key issues in machine learning, pattern recognition, and other related fields. Recently, a lot of research has been done to integrate the idea of semi-supervised learning into dimensionality reduction, i.e. semi-supervised dimensionality reduction. In this paper, the current semi-supervised dimensionality reduction methods are reviewed, and their performances are evaluated through extensive experiments on a large number of benchmark datasets, from which some empirical insights can be obtained.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 
主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利