主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
杨利平,龚卫国,辜小花,李伟红,杜 兴.完备鉴别保局投影人脸识别算法.软件学报,2010,21(6):1277-1286
完备鉴别保局投影人脸识别算法
Complete Discriminant Locality Preserving Projections for Face Recognition
投稿时间:2008-04-21  修订日期:2008-10-27
DOI:
中文关键词:  保局投影  完备鉴别保局投影  奇异值分解  子空间方法  人脸识别
英文关键词:LPP (locality preserving projections)  CDLPP (complete discriminant locality preserving projections)  SVD (singular value decomposition)  subspace method  face recognition
基金项目:Supported by the National High-Tech Research and Development Plan of China under Grant No.2007AA01Z423 (国家高技术研究发展计划(863)); the Defense Basic Research Project of the ‘Eleventh Five-Year-Plan’ of China under Grant No.C10020060355 (国防“十一五”基础研究项目); the Key Project of the Ministry of Education of China under Grant No.02057 (国家教育部科学技术研究重点项目); the Natural Science Foundation Key Project of CQ CSTC of China under Grant Nos.CSTC2005BA2002, CSTC2007AC2018 (重庆市自然科学基金重点项目); the Natural Science Foundation Project of CQ CSTC of China under Grant No.CSTC2008BB2199 (重庆市自然科学基金)
作者单位
杨利平 重庆大学 光电技术及系统教育部重点实验室,重庆 400044 
龚卫国  
辜小花  
李伟红  
杜 兴  
摘要点击次数: 4872
全文下载次数: 4847
中文摘要:
      为了充分利用保局总体散布主元空间内的鉴别信息进行人脸识别,提出了一种完备鉴别保局投影(complete discriminant locality preserving projections,简称CDLPP)人脸识别算法.鉴于Fisher鉴别分析和保局投影已经被广泛的应用于人脸识别,完备鉴别保局投影(locality preserving projections,简称LPP)算法将这两者结合起来,分析了保局类内散布、类间散布和总体散布的主元空间和零空间内包含的鉴别信息.该算法采用奇异值分解(singular value decomposition,简称SVD),去除了不含任何鉴别信息的保局总体散布的零空间;分别在保局类内散布的主元空间和零空间提取规则鉴别特征和不规则鉴别特征;用串联的方式在特征层融合规则鉴别特征和不规则鉴别特征形成完备的鉴别特征进行人脸识别.在ORL库、FERET子库和PIE子库上的大量识别实验充分表明了完备鉴别保局投影算法的性能优于线性鉴别分析、保局投影和鉴别保局投影等现有的子空间人脸识别算法,验证了算法的有 效性.
英文摘要:
      To efficiently utilize the discriminant information in the range space of locality preserving total scatter, this paper proposes a complete discriminant locality preserving projections (CDLPP) algorithm for face recognition. Since Fisher discriminant analysis and locality preserving projections (LPP) have been widely used in face recognition, CDLPP algorithm integrates them together and analyzes the discriminant information contained in the principal spaces and null spaces of locality preserving within-class scatter, locality preserving between-class scatter and locality preserving total scatter. First, CDLPP algorithm removes the null space of locality preserving total scatter, in which no discriminant information is contained, using singular value decomposition (SVD). Then, regular discriminant features and irregular discriminant features of CDLPP are extracted severally in the null space and principal space of the locality preserving within-class scatter. Finally, both regular discriminant features and irregular discriminant features are concatenated to be used for face recognition. Extensive experiments on ORL face database, FERET subset and PIE subset illustrate that the performances of CDLPP outperform those of current subspace face recognition algorithms, such as LDA, LPP and discriminant LPP, which proves the effectiveness of the proposed algorithm.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利