主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
邹兆年,李建中,高宏,张硕.从不确定图中挖掘频繁子图模式.软件学报,2009,20(11):2965-2976
从不确定图中挖掘频繁子图模式
Mining Frequent Subgraph Patterns from Uncertain Graphs
投稿时间:2008-05-29  修订日期:2008-10-09
DOI:
中文关键词:  不确定图  图挖掘  频繁子图模式
英文关键词:uncertain graph  graph mining  frequent subgraph pattern
基金项目:Supported by the National Natural Science Foundation of China under Grant Nos.60533110, 60773063 (国家自然科学基金) the National Basic Research Program of China under Grant No.2006CB303005 (国家重点基础研究发展计划(973)); the Program for New Century Excellent Talents in University of China under Grant No.NCET-05-0333 (新世纪优秀人才支持计划)
作者单位
邹兆年 哈尔滨工业大学 计算机科学与技术学院,黑龙江 哈尔滨 150001 
李建中  
高宏  
张硕  
摘要点击次数: 12480
全文下载次数: 6987
中文摘要:
      研究不确定图数据的挖掘,主要解决不确定图数据的频繁子图模式挖掘问题.介绍了一种数据模型来表示图的不确定性,以及一种期望支持度来评价子图模式的重要性.利用期望支持度的Apriori性质,给出了一种基于深度优先搜索策略的挖掘算法.该算法使用高效的期望支持度计算方法和搜索空间裁剪技术,使得计算子图模式的期望支持度所需的子图同构测试的数量从指数级降低到线性级.实验结果表明,该算法比简单的深度优先搜索算法快3~5个数量级,有很高的效率和可扩展性.
英文摘要:
      This paper studies uncertain graph data mining and especially investigates the problem of mining frequent subgraph patterns from uncertain graph data. A data model is introduced for representing uncertainties in graphs, and an expected support is employed to evaluate the significance of subgraph patterns. By using the apriori property of expected support, a depth-first search-based mining algorithm is proposed with an efficient method for computing expected supports and a technique for pruning search space, which reduces the number of subgraph isomorphism testings needed by computing expected support from the exponential scale to the linear scale. Experimental results show that the proposed algorithm is 3 to 5 orders of magnitude faster than a na?ve depth-first search algorithm, and is efficient and scalable.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利