

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.20, No.3, March 2009, pp.682−691 http://www.jos.org.cn
doi: 10.3724/SP.J.1001.2009.00556 Tel/Fax: +86-10-62562563
© by Institute of Software, the Chinese Academy of Sciences. All rights reserved.

一种基于分组密码的 hash 函数
∗

林 品 1,2+, 吴文玲 2, 武传坤 2

1(中国科学院 软件研究所 信息安全国家重点实验室,北京 100190)
2(中国科学院 研究生院,北京 100049)

Hash Functions Based on Block Ciphers

LIN Pin1,2+, WU Wen-Ling 2, WU Chuan-Kun2

1(State Key Laboratory of Information Security, Institute of Software, The Chinese Academy of Sciences, Beijing 100190, China)
2(Graduate University, The Chinese Academy of Sciences, Beijing 100049, China)

+ Corresponding author: E-mail: ping_linux@163.com

Lin P, Wu WL, Wu CK. Hash functions based on block ciphers. Journal of Software, 2009,20(3):682−691.
http://www.jos.org.cn/1000-9825/556.htm

Abstract: In this paper, a hash function with lower rate but higher efficiency is proposed and it can be built on
insecure compression functions. The security of this scheme is proved under black-box model and some
compression function based on block ciphers are given to build this scheme. It is also shown that key schedule is a
more important factor affecting the efficiency of a block-cipher-based hash function than rate. The new scheme
only needs 2 keys and the key schedule of it can be pre-computed. It means the new scheme need not re-schedule
the keys at every step during the iterations and its efficiency is improved.
Key words: block cipher, hash function, collision attack, pre-image attack, second pre-image attack

摘 要: 提出了一个基于分组密码的 hash 函数体制,它的 rate 小于 1 但却具有更高的效率,同时,这个 hash 函

数可以使用不安全的压缩函数进行构造,降低了对压缩函数安全性的要求.首先,在黑盒子模型下对这个新的体

制的安全性进行了证明,然后给出了能够用于构造该体制的使用分组密码构造的压缩函数,最后通过实验对比

发现,新 hash 函数的速度比 rate 为 1 的 hash 函数快得多.实验结果表明,除了 rate 以外,密钥编排也是影响基于

分组密码 hash 函数效率的重要因素,甚至比 rate 影响更大.该体制只有两个密钥,不需要进行大量的密钥扩展运

算,大大提高了基于分组密码 hash 函数的效率,而且该体制可以使用现有的分组密码来构造.
关键词: 分组密码;hash 函数;碰撞攻击;前像攻击;第二前像攻击
中图法分类号: TP309 文献标识码: A

∗ Supported by the National Natural Science Foundation of China under Grant No.90604036 (国家自然科学基金); the National Basic

Research Program of China under Grant No.2004CB318004 (国家重点基础研究发展计划(973)); the National High-Tech Research and

Development Plan of China under Grant No.2007AA01Z470 (国家高技术研究发展计划(863))
Received 2007-09-06; Accepted 2008-02-27

林品 等:一种基于分组密码的 hash 函数 683

1 Introduction

Hash function is a mapping from an input with arbitrary length to an output with fixed length which can be
shown as follows.

*:{0,1} {0,1}nH →
In 1989, Merkle and Damgård independently discussed a method to construct a hash function using a compression
function with fixed input length[1,2]. This method is called MD method or iterated method and can be described as
follows.

0

1(,),1
()

i i i

l

h IV
h f h m i l

H M h
−

=
= ≤ ≤

=

here f is the compression function, IV is the fixed initial value of the hash function, 1 2 1, ,... lh h h − are called chain
values, lh is the output, 1 2, ,... lM m m m= is the input message which is padded and divided into l blocks. One of

the padding rules is to append 1 to the message and then append enough 0s to make the padded length a multiple of
|mi| and finally store the length of the original message into the last block i.e. |ml|. This rule is called
MD-Strengthening. Lai pointed out that if a hash function is not padded with MD-Strengthening, then there is an
effective attack to find its collisions[3]. Most hash functions used in practice are based on this method, such as
MD4[4], MD5[5], SHA-0[6], SHA-1[7] etc. These hash functions are called dedicated-designed hash functions because
the compression functions of these hash functions are specially designed. These hash functions are very fast but the
compression functions need to be carefully designed and the security cannot be proved in some model. Substituted
the compression functions with block ciphers, some hash functions based on block ciphers are proposed, such as
MDC-2[8], PGV schemes[9]. In this way, a specially designed compression function is not necessary. Because the
block ciphers are not designed specially for hash functions, the efficiency of these hash functions is lower than
those dedicated- designed ones. So it is important to design a secure hash function based on block ciphers and
endeavor to improve its efficiency.

In 1993, Preneel etc. considered all 64 hash functions based on block ciphers called PGV schemes[9]. The
compression functions can be described as follows.

1(,) ()i i af h m E b C− = ⊕
here 1 1, , { , , }i i i ia b c h m h m− −∈ ⊕ and h0 is a fixed constant. Reference [9] gives attacks on these schemes but does

not give a formal proof. In 2002, Black proved the security of these schemes in the black-box model and divided
these schemes into three groups[10]. Besides the security, the efficiency is another property of block-cipher-based
hash functions. To describe the efficiency of hash functions based on block ciphers, rate is introduced which means
the number of blocks dealt with after running the block cipher one time. But rate is not the only factor that
influences the efficiency of block-cipher-based hash functions; another factor is the key schedule. In many block
ciphers, key schedule is slower than encryption and decryption. It should be noted that the rate of PGV schemes is 1
and all secure schemes need re-schedule keys at every step. When hash functions based on block ciphers were
initially proposed, the output length of block ciphers is 64 bit. With the development of information technology, it
has become insecure. So some double-block-length hash functions based on block ciphers have been proposed to
improve the security, such as Parallel-DM[11], PBGV[12], LOKI[13]. But unfortunately Knudsen etc. proved that all
these schemes whose rate is 1 are not secure[14]. The rate of the secure schemes is less than 1. Some rate-1/2
schemes are proved to be secure[15], but their efficiency is very low. To preserve security and improve efficiency

simultaneously, Nandi etc. proposed a 2
3

rate − scheme[16] and proved it is secure. But Knudsen proved it is as

684 Journal of Software 软件学报 Vol.20, No.3, March 2009

secure as the secure single-block-length schemes[17]. Now the rate of secure hash double-block-length function is
1/2 or 1/4 (MDC-4). It is obvious that the double-block-length hash functions are not efficient. The emergence of
AES has modified this landscape, so single-block-length hash functions may satisfy the security requirement. As
mentioned above, the block-cipher-based hash functions need re-schedule the key at every step and key schedule is
slower than encryption. So an efficient method to construct a block-cipher-based hash function is needed. A fixed
key seems a good idea, and some schemes with a fixed key have been proposed such as Tweakable Chain Hash
(TCH)[18]. This kind of hash functions is called highly efficient block-cipher-based hash functions. However, Black
proved that all block-cipher-based rate-1 hash functions are not secure if they do not rekey the block cipher[19].
Black pointed out that TCH could not be correctly instantiated by this efficient means.

In this paper, we propose a new way to construct a single-block-length hash function based on block ciphers.
All secure schemes mentioned above need a secure compression function to ensure the security of the hash
functions. Unlike these schemes, the compression function used in the new scheme in this paper can be insecure but
the hash function constructed with it is secure. Usually one judges by rate whether a block-cipher- based hash
function is efficient. Larger the rate is and higher the efficiency. We analyze the factors that affect the efficiency of
block-cipher-based hash functions and we find that besides rate, key schedule is another very important factor. A
hash function with smaller rate may be more efficient than the ones with larger rate.

2 Definition and Preliminaries

 BLOCK CIPHERS. A block cipher is a map :{0,1} {0,1} {0,1}k n nE × → where k is the key length in bits and n

is the block length in bits. For each {0,1} , (,)k
KK E E K∈ = • is a permutation on {0,1}n. E−1 is its inverse. 1()KE y−

returns a string x such that EK (x) = y. Let Block(k, n) denote all block ciphers :{0,1} {0,1} {0,1}k n nE × → . In this
paper, block ciphers selected from Block(k, n) are used to construct a hash function.

BLACK-BOX MODEL. This model is the one dating back to Shannon[20]. Black etc. used it to prove the
security of all PGV schemes. This model regards the block cipher as a black box, the adversary do not know any
details about the block cipher and is only given access to oracle E−1 and E. Here E is a block cipher mentioned
above and E −1 is its inverse. This model means given a fixed key {0,1} , (,)k

KK E E K∈ = • is a permutation on
{0,1}n and the adversary queries the oracles E −1 and E. If the query is (K, x), E returns y such that EK (x) = y. The
latter on input (K, y) returns x such that EK (x) = y.

SECURE HASH FUNCTIONS. In Ref.[14], Knudsen proposes seven attacks to analyze the security of hash
functions. In fact, only three of these attacks are effective for hash functions, collision attack, pre-image attack and
second pre-image attack. A secure hash function must be collision attack resistant, pre-image attack resistant and
second pre-image attack resistant. Actually if a hash function is collision attack resistant, it is also second pre-image
resistant[21]. Therefore, only collision attack and pre-image attack are considered in this paper.

Definition 1 (collision attack). Given a hash function H and its initial value (IV) h0, find M and M′ where M ≠
M′ such that 0 0(,) (,)H h M H h M ′= .

Definition 2 (pre-image attack). Given a hash function H and its initial value (IV) h0 and a randomly selected
value σ, find M such that 0(,)H h M σ= .

Definition 3 (second pre-image attack). Given a hash function H and its initial value (IV) h0 and M, find M′ ≠
M such that 0 0(,) (,)H h M H h M ′= .

Assuming the output length of a hash function is n bit, then the complexity of finding a collision and a
pre-image of a secure hash function should be O(2n/2) oracles and O(2n) oracles respectively i.e. the hash function is
collision attack resistant and pre-image attack resistant. We use the collision attack advantage and pre-image attack

林品 等:一种基于分组密码的 hash 函数 685

advantage defined in Ref.[10] to formally describe the security of a hash function or a compression function.
$x S←⎯⎯ denotes the experiment of choosing a random element x from a set S.
Definition 4 (collision resistance of a hash function). Let H be a hash function constructed with a block

cipher E, A be an adversary. Then the advantage of A in finding a collision in H is
1$,() Pr[(,); , : () ()]H E E E E

collAdv A E Block k n M M A M M and H M H M
−

′ ′ ′= ←⎯⎯ ←⎯⎯ ≠ =

Let q denote the amount of the most queries that A has made, we write () max(())coll coll
H HAdv q Adv A= . Similarly we

define the inversion advantage to describe the inversion resistance, i.e., pre-image resistance of a hash function.
 Definition 5 (inversion resistance of a hash function). Let H be a hash function constructed with a block
cipher E, A be an adversary. Then the advantage of A in finding a pre-image in H is

1$ $,() Pr[(,); {0,1} ; : ()]H n E E E
invAdv A E Block k n M A H Mσ σ

−
= ←⎯⎯ ←⎯⎯ ←⎯⎯ =

The two advantages should be negligible in computation so that to get significant advantages the computation
complexity needed are O(2n/2) oracles and O(2n) oracles respectively. The definition of collision resistance and
pre-image resistance for a compression function has a little difference with the hash function.
 Definition 6 (collision resistance of a compression function). Let f be a block-cipher-based compression
function and A be an adversary. Then the advantage of A to find a collision of f is

$() Pr[(,); ((,),(,)) : ((,) (,) (,) (,)) (,)]f f
collAdv A f Block k n h m h m A h m h m f h m f h m f h m IV′ ′ ′ ′ ′ ′= ←⎯⎯ ←⎯⎯ ≠ ∧ = ∨ =

where m is the message block used by the adversary.
 Definition 7 (inversion resistance of a compression function). Let f be a block-cipher-based compression
function and A be an adversary. Then the advantage of A to invert f is

$ $() Pr[(,); {0,1} ; (,) () : (,)]f n f
invAdv A f Block k n h m A f h mσ σ σ= ←⎯⎯ ←⎯⎯ ←⎯⎯ = .

3 New Scheme and Its Security

3.1 Compression function used in this scheme

The compression function used in this scheme is defined as follows.
()KE a b⊕ ,

here K is the key of a block cipher, 1,i ia h b m−= = , where hi−1 is the chain value and mi is the message block. It is

easy to see that the compression function is not secure. For any pair (hi−1, mi) and
1

(,)
i i

h m
−
′ ′ if

11 i ii ih m h m
−− ′ ′⊕ = ⊕ , then

11() ()
i iK i i KE h m E h m
−− ′ ′⊕ = ⊕ . If this function is used to construct a hash function in the

MD method, the hash function is not collision resistant. This hash function is shown in Fig.1.

M1 M2 Ml

EK EKh0

Fig.1 Single-Block-Length scheme iterated with the compression function

Any pair of messages with two blocks such that 0 1 1 0 2 2|| () , || ()K KM h c E c v M h c E c v′= ⊕ ⊕ = ⊕ ⊕ will be a

collision for this hash function. The output is EK(v). Here c1 and c2 are different values so that M≠M′ and v is any
constant value. It is obvious that this compression cannot be used to construct a secure hash function although it can
be used to construct a secure MAC such as CBC.

3.2 New scheme description and its security analysis

It has been mentioned above that it is impossible to construct a rate-1 highly efficient block-cipher-based hash

686 Journal of Software 软件学报 Vol.20, No.3, March 2009

function. How about rate-1/2? Our scheme is a rate-1/2 hash function iterated with the compression function
mentioned above. It can be shown in Fig.2 as follows. Here h0,1, h0,2 are two different initial values.

1KE and
2KE

denote two different and independent permutations by the definition. hl,1 and hl,2 denote the outputs of the two
branches and g denotes the output transformation. The output of this scheme is ,1 ,2(||)l lg h h . The two branches are

denoted by H1 and H2 respectively.

M1 M2 Ml

M1 M2 Ml

MK1MK1

MK2 MK2

h0,1

h0,2

Hl,1

Hl,2

g

Fig.2 New scheme in this paper

Lemma 1. Let H′ be the hash function shown in the dash box of Fig.2. n is the block length in bit and k is the
key length in bit. Then the advantage of finding a collision for H′ is

(1)()
2

H
coll r

q qAdv q′ +
≤

where (,)r Min k n= and q is the number of queries.

Proof: We define a direct graph
1 11 (,)G GG V D= to save the output of query

1KE or
1

1
KE− where V denotes the

set of vertices and D denotes the set of edges. The vertex set is {0,1} {0,1} {0,1}n n nV = × × . Let ,1 ,1 ,1(, ,)i i ih m y denote

one vertex (i denotes the i-th query and
1,1 ,1 ,1()i K i iy E h m= ⊕). An arc ,1 ,1 ,1 ,1 ,1 ,1(, ,) (, ,) ()i i i j j jh m y h m y i j→ ≠ is in

1GD

if ,1 ,1i jy h= . Initially, each vertex in G1 is uncolored. When adversary A asks query
1KE or

1

1
K

E− , if ,1 0,1ih h= the

vertex ,1 ,1 ,1(, ,)i i ih m y is colored red else colored black. A path P in G1 is colored if all of its vertices are colored.

Two vertices ,1 ,1 ,1(, ,)i i ih m y and ,1 ,1 ,1(, ,)j j jh m y) are colliding vertices if ,1 ,1i jy y= . So there is a collision

of H1 if and only if there are two paths P and P′ whose vertices are colored and they begin with h0,1 and
end with colliding vertices. Let C denote this event. We define another direct graph

2 22 (,)G GG V D= to save the

result of queries of
2KE or 1

2

−
K

E . Its conventions are the same as G1 except that the oracle is
2KE or 1

2

−
K

E and its

vertex is like),,(2,2,2, iii ymh . We color the vertices in G2 with the same message blocks as in G1 when the vertices

in G1 are colored. Let C′ denote the event that there are two colliding paths. So
Pr[]H

collAdv ′ ′= ∧C C

Then we give Pr[C] and Pr[C′]. Let Ci denote that the event C occurs at the i-th query. That is to say that the arcs
queried previously form a colliding path at the i-th query. Ci occurs if and only if there exists an arc

,1 ,1 ,1 ,1 ,1 ,1(, ,) (, ,)p p p i i ih m y h m y→ and yi,1 = y where 1,1 2,1 1,1 0,1{ , ,..., } { }iy y y y h−∈ ∪ and ,1 ,1 ,1(, ,)p p ph m y is the vertex

queried at the p-th (p<i) query. It means that yi,1 has been queried before the i-th query. So

1 ,1 ,1 ,1Pr[] Pr[()] ({0,2,3,..., 1}).i K i i jE h m y j i= ⊕ = ∈ −C

It can be deduced that Pr[Ci]=1 and Pr[C]=1. Because for any 1,1 2,1 1,1 0,1{ , ,..., }iy y y y h−∈ ∪ , a message block mi

can be computed by
1

1
,1()K iE y h− ⊕ . After the vertices queried in the i-th query have been colored in G1, we color the

i-th queried vertices in G2. Let i′C denote the event that C′ occurs. As in G1, i′C occurs if and only if there exists
an arc ,2 ,2 ,2 ,2 ,2 ,2(, ,) (, ,)p p p i i ih m y h m y→ and ,2iy y′= , where 1,2 2,2 1,2 0,2{ , ,..., }iy y y y h−′∈ ∪ and ,2 ,2 ,2(, ,)p p ph m y is

the vertex queried at the p-th (p<i) query. It means that yi,2 has been queried before the i-th query. So

林品 等:一种基于分组密码的 hash 函数 687

2 ,2 ,2 ,2Pr[] Pr[()] ({0,2,3,..., 1})i K i i jE h m y j i′ = ⊕ = ∈ −C .

To get a collision for the hash function, we need Ci and i′C occur simultaneously. So if Ci occurs when y=yj,1,
where j<i, then i′C should satisfy ,2jy y′ = . Let y0,1 denote h0,1 and y0,2 denote h0,2, we have

2 1

2 1

1

,2 ,2 ,2 ,1 ,1 ,1
0

1
1 1

,2 ,2 ,1 ,1
0

1

1
0

Pr[|] Pr[() | ()]

Pr[() ()]

1
2 2

K K

i

i i K i i j K i i j
j

i

j i j i
j

i

r r
j

E h m y E h m y

E y h E y h

r
j

−

=

−
− −

=

−

−
=

′ = ⊕ = ⊕ =

= = = =

≤ ≤
−

∑

∑

∑

C C

here r = Min(k,n). Let q denote the total queries of
1KE or 1

1

−
KE and

2KE or 1
2

−
K

E . Then

0

Pr[] Pr[|] Pr[]
Pr[|]

Pr[|]

H
coll

q

i i
i

Adv ′

=

′ ′= ∧ = ⋅
′≤

′= ∑

C C C C C
C C

C C

 (1)
(1) .
2r r

q q
+

+
= □

H′ is a double-block-length hash function. We use a function g to transform it into a single-block-length scheme.
 Lemma 2. If g is collision resistant, let H denote the whole hash function described in Fig.2. Then the

advantage of finding a collision for H is

(,)H H g
coll coll collAdv Min Adv Adv′= .

Proof: There are two kinds of collisions for H.

1. H′ has a collision. In this case, g must have a collision because the input of g is the same. H H
coll collAdv Adv ′= .

2. The outputs of H′ do not include collisions. In this case, H g
coll collAdv Adv= .

In conclusion, (,)H H g
coll coll collAdv Min Adv Adv′= . □

Lemma 3. If g is pre-image resistant, let H denote the whole hash function described in Fig.3. Then the
advantage of inverting H is

H g
inv invAdv Adv≤ .

Proof: Given an output of H, We firstly need to find the pre-image of g and then find the pre-image of H′. So
if g is pre-image resistant, H is pre-image resistant. □

The following theorem can be concluded from the lemmas mentioned above.
Theorem 1. If g is collision resistant and pre-image resistant, the hash function H described in Fig.2 is a secure

hash function.
Proof: It can be concluded from the lemmas. □
In practice, g can be substituted by a secure compression function, for example, one of the secure PGV

schemes. In this paper, we use
,1 ,2 ,2()

lh l lE h h⊕ to substitute g. At first glance, the new scheme looks similar with

the wide-pipe schemes proposed in Ref.[22] by Lucks etc. Actually Wide-pipe schemes are proposed to resist the
multi-collision attack and the compression functions used in those schemes are secure. But this scheme is not the
case. We concentrate on how to construct a new hash function based on block ciphers and improve its efficiency.

3.3 Efficiency of the new scheme

At the first glance, the efficiency of this scheme is not high, because the rate of this scheme is only l/(2l+1)
which is less than 1/2 where l is the number of message blocks. As we have pointed out not only rate but also key

688 Journal of Software 软件学报 Vol.20, No.3, March 2009

schedule will influence the efficiency of the hash functions based on block ciphers, and the key schedule may be
more important. The new scheme in this paper need not re-schedule the keys at every step. It can highly improve the
efficiency. We compare the efficiency of the scheme in this paper with a PGV scheme.

1
()

ih i iE m m
−

⊕ is picked

from PGV schemes as the compared scheme. To facilitate the comparison, we use AES-128 to implement both of
the block-cipher-based schemes. The operating system is Windows XP SP2, CPU is Intel Celeron 1.7GHz and the
compiler is VC++ 6.0. The result is shown in the table as follows.

Table 1 Time collapsed to process messages with different size
 16 (MB) 32 (MB) 48 (MB) 64 (MB) 80 (MB)

New scheme (s) 0.65 1.332 1.963 2.774 3.605
PGV (s) 1.181 2.454 3.545 4.636 5.708

The number from row 2 to row 3 in Table 1 denotes how much time the hash function cost to process the
messages with different size. From Table 1 we note, with the increasing of message blocks, more and more key
schedules are needed for PGV schemes and the time needed increases faster than our scheme. Our scheme need not
key schedules except at the beginning and the last step. So our scheme is more efficient than the PGV scheme
although its rate is less than that of the PGV scheme.

Figure 3 intuitively describes the efficiency comparison of the two schemes. The thick line denotes the PGV
scheme and the thin line denotes our scheme. Actually when the message is small, PGV scheme is more efficient.
But if the message has more than three blocks, then our scheme is more efficient.

Data (MBlocks) ×106
1 2 3 4 5 6 7

1

0

2

3

4

5

6

7

Ti
m

e
(s

)

New scheme
PGV scheme

Fig.3 New scheme in this paper

It can be concluded from above that key schedule is a more important factor than rate which affects the
efficiency of block-cipher-based hash functions. But block ciphers are not designed for hash functions, they are used
in encryption and MAC where keys are kept secret and need not re-schedule. In the experiment, we find if the rate
of a block-cipher-based hash function is 1 and it needs not re-schedule the keys, it is as efficient as SHA-1, for
example the TCH scheme. Unfortunately, it has been proved not secure. The efficiency of the scheme in Fig.3 can
be improved more higher. For the two branches are parallel, They can be computed simultaneously on the
multi-CPU computer.

A well known method to construct a MAC with hash functions is to include a secret key as part of the input of
a hash function such as (,) (, ||)MAC K M H IV K M= . If the hash function H is based on MD method, there exists
an extension attack to forge a MAC without the secret key. Given (,) (, ||)MAC K M H IV K M= , one can forge

)),||,(()||,(yMKIVHHyMKMAC =

Coron etc. modified MD method to resist this attack. The new scheme in this paper can also resist this attack,
because the chain values of it are double-block-length while its output is single-block-length.

林品 等:一种基于分组密码的 hash 函数 689

3.4 What kind of compression function can be used

The compression function used in the new scheme does not have to be secure. In PGV schemes, there are many
insecure compression functions. Which can be used in the new scheme? Actually the compression function used in
this paper is a special instance of the 36-th scheme in PGV schemes. We give a table to describe which one can be
used in this scheme.

Table 2 Classification table for some PGV schemes
ind j hi = Secure
1 4 Ev (mi) ⊕v N
2 8 Ev (mi) ⊕mi N
3 20 Ev (hi−1) ⊕v N
4 28 Ev (hi−1) ⊕hi−1 N
5 52 Ev (v) ⊕ v N
6 56 Ev (v) ⊕ mi N
7 60 Ev (v) ⊕ h i−1 N
8 12 Ev (mi) ⊕ h i−1 N
9 16 Ev (mi) ⊕ mi ⊕ h i−1 N

10 64 Ev (v) ⊕ mi ⊕ h i−1 N
11 24 Ev (h i−1) ⊕ mi Y
12 32 Ev (h i−1) ⊕ h i−1 ⊕ mi Y
13 36 Ev (h i−1 ⊕ mi) ⊕v Y
14 40 Ev (h i−1 ⊕ mi) ⊕mi Y
15 44 Ev (h i−1 ⊕ mi) ⊕ h i−1 Y
16 48 Ev (h i−1 ⊕ mi) ⊕ h i−1 ⊕ mi Y

Here ind is the index in this paper, j is its corresponding index in Ref.[10], N and Y denote insecure and secure
respectively. For example the 8-th scheme in this table, its output is independent of the sequence of the message
blocks. If a hash function H is construct with this compression function, then

1 2 21 2

1 2

(,(, ,...,)) (,(, ,...,))

() ()... ()
l i i i

v v v l

H IV m m m H IV m m m

E m E m E m IV

=

= ⊕ ⊕

where 1 2{ , ,..., }li i i is a permutation on {1,2,…,l}. If it is used in our scheme, it is easy to find the collisions for the

two branches simultaneously. The 9-th scheme and 10-th scheme are the same as the 8-th. The first 7 schemes do
not include both chain values and message blocks. They are also not secure. Liskov proposed a method to construct
an ideal hash function with the weak compression functions[23]. This can be described as follows.

0 0 3 0 2 0 1

1 1 1 2 1 1 1

(,..., (, (, (,)))...)
(,..., (, (, (,)))...)

l

l l l

Mid f m f m f m f m IV
Out f m f m f m f m IV− −

=

=

f0 and f1 are two weak compression functions. Weak compression function was defined in Ref.[23] as follows.
Definition 8 (Weak compression function). Let there be two oracles f −1 and f *. On querying f −1 on input

(x,z), the oracle returns a random value y such that f(x,y) = z. On querying f * on input (y,z), the oracle return a
random value x such that f(x,y) = z. f is a weak compression function.

The security of the 9-th scheme in this table is stronger than weak compression functions, but if it is used to

construct Liskov’s scheme, it is not secure. Let
0

0
0 1()v i i if E m m h −= ⊕ ⊕ and

1

1
1 1()v i i if E m m h −= ⊕ ⊕ . Let HW

denote the hash function constructed with them in Liskov’s way and 1 2, ,..., lM m m m= . Then there exists

1 2
, ,...,

li i iM m m m′ = such that () ()W WH M H M ′= , where
1 2

(, ,...,)
li i im m m is a permutation on 1 2, ,..., lm m m .

Similarly, for the 8-th scheme, It is the same case. The other schemes marked by ‘N’ in Table 2 are weaker than
weak compression function. So the compression function for Liskov’s scheme should be carefully selected. It does
not indicate that Liskov’s scheme is not good. In fact, Liskov’s scheme gave a good idea to construct a hash
function with an insecure compression function.

690 Journal of Software 软件学报 Vol.20, No.3, March 2009

4 Conclusion

In this paper, we proposed a new hash function based on block ciphers and analyzed its security. In practice,
the scheme in this paper is easily implemented. Firstly one selects a message block as the first key K1, then one uses
a function s to transform the message block to K2 where K1≠K2. Function s is easily implemented, for example s(x)
= x⊕v where v is a non-zero constant. Although the rate of our scheme is not high, the efficiency of it is still higher
than those PGV schemes. From the experiment, we find that key schedule is a more important factor that affects the
efficiency of block-cipher-based hash functions, especially when the message is very large. Unlike the ordinary
iterated hash functions, this hash function is constructed with an insecure compression function. We analyzed the
insecure PGV schemes and divided them into two groups by the security. We found that some of these insecure
compression functions cannot be used to construct our scheme.

References:
[1] Damgård I. A design principle for hash functions. In: Brassard G, ed. CRYPTO 1989. LNCS 435, Heidelberg: Springer-Verlag,

1990. 416−427.

[2] Merkle R. One way hash functions and DES. In: Brassard G, ed. CRYPTO 1989. LNCS 435, Heidelberg: Springer-Verlag, 1990.

428−446.

[3] Lai X, Massey J. Hash functions based on block ciphers. In: Ruppel R, ed. EUROCRYPT 1992. LNCS 658, Heidelberg:

Springer-Verlag, 1993. 55−70.

[4] Rivest R. The MD4 message-digest algorithm. In: Menezes A, Vanstone S, eds. CRYPTO 1990. LNCS 537, Heidelberg:

Springer-Verlag, 1991. 303−311.

[5] Rivest R. The MD5 message-digest algorithm. Internet Activity Board, Internet Privacy Task Force, RFC1321, 1992.

[6] FIPS 180-1. Secure Hash Standard, Federal Information Processing Standard, Publication 180-1. NIST, 1995.

[7] FIPS 180-2. Secure Hash Standard, Federal Information Processing Standard, Publication 180-2. NIST, 2003.

[8] ISO/IEC 10118-2. Hash functions using an n-bit block cipher, ISO/IEC 10118-2. ISO, 2000.

[9] Preneel B, Govaerts R, Vandewalle J. Hash functions based on block ciphers: A synthetic approach. In: Stinson D, ed. CRYPTO

1993. LNCS 773, Heidelberg: Springer-Verlag, 1994. 368−378.

[10] Black J, Rogaway P, Shrimpton T. Black-box analysis of the block-cipher based hash function constructions from PGV. In: Yung

M, ed. CRYPTO 2002., LNCS 2442, Heidelberg: Springer-Verlag, 2002. 320−335.

[11] Hohl W, Lai X, Meier T, Waldvogel C. Security of iterated hash function based on block ciphers. In: Stinson D, ed. CRYPTO 1993.

LNCS 773, Heidelberg: Springer-Verlag, 1993. 379−390.

[12] Preneel B, Bosselaers A, Govaerts R, Vandewalle J, Collision-Free hash functions based on block cipher algorithms. In: Rapsey A,

ed. ICCST 1989. Zurich: IEEE, 1989. 203−210.

[13] Brown L, Pieprzyk J, Seberry J. LOKI⎯A cryptographic primitive for authentication and secrecy applications. In: Seberry J,

Pieprzyk J, eds. AUSCRYPT 1990. LNCS 453, Heidelberg: Springer-Verlag, 1990. 229−236.

[14] Knudsen L, Lai X, Preneel B. Attacks on fast double block length hash functions. Journal of Cryptology, 1998,11(1):59−72.

[15] Hirose S. Provably secure double-block-length hash functions in a black-box model. In: Park C, Chee S, eds. ICISC 2004. LNCS

3506, Heidelberg: Springer-Verlag, 2005. 330−342.

[16] Nandi M, Lee W, Sakurai K, Lee S. Security analysis of a 2/3-rate double length compression function in the black-box model. In:

Gilbert H, Handschuh H, eds. FSE 2005. LNCS 3557, Heidelberg: Springer-Verlag, 2005. 243−254.

[17] Knudsen L, Muller F. Some attacks against a double length hash proposal. In: Roy B, ed. ASIACRYPT 2005 LNCS 3788,

Heidelberg: Springer-Verlag, 2005. 462−473.

[18] Liskov M, Rivest R, Wagner D. Tweakable block ciphers. In: Yung M, ed. CRYPTO 2002. LNCS 2442, Heidelberg:

Springer-Verlag, 2002. 31−46.

林品 等:一种基于分组密码的 hash 函数 691

[19] Black J, Cochran M, Shrimpton T. On the impossibility of highly-efficient block-cipher-based hash functions. In: Cramer R, ed.

EUROCRYPT 2005. LNCS 3494, Heidelberg: Springer-Verlag, 2005. 526−541.

[20] Shannon C. Communication theory of secrecy systems. Bell Systems Technical Journal, 1949,28(4):656−715.

[21] Rogaway P, Shrimpton T. Cryptographic hash-function basics: Definitions, implications, and separations for preimage resistance,

second-preimage resistance, and collision resistance. In: Roy B, Meier W, eds. FSE 2004. LNCS 3017, Heidelberg: Springer-

Verlag, 2004. 371−388.

[22] Lucks S. A Failure-Friendly design principle for hash functions. In: Roy B, ed. ASIACRYPT 2005. LNCS 3788, Heidelberg:

Springer-Verlag, 2005. 474−494.

[23] Liskov M. Constructing an ideal hash function from weak ideal compression functions. In: Biham E, Youssef A, eds. Workshop

Record of SAC 2006. 2006. 331−349.

LIN Pin, a doctor candidate of the
Institute of Software, the Chinese
Academy of Sciences, majoring in hash
functions.

WU Chuan-Kun, a professor and Ph.D. supervisor
at the Institute of Software, the Chinese Academy
of Sciences and a CCF senior member, majoring in
cryptology and information security.

WU Wen-Ling, a professor and Ph.D.
supervisor at the Institute of Software, the
Chinese Academy of Sciences, majoring in
cryptology and information security.

