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Abstract: In this paper, on the basis of fuzzy quotient space theory, cluster analysis methods based on fuzzy
similarity relations and normalized distance are proposed to solve data structure analysis of complex systems. Three
conclusions are given: (1) the strictly clustering analysis theoretical description by introducing hierarchical
structures of fuzzy similarity relation and normalized distance; (2) the effective and rapid clustering algorithms of
their hierarchical structures; (3) a sufficient condition for isomorphic hierarchical structures. These conclusions are
suitable to data structure analysis of all complex systems based on similarity relation.
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1 Introduction

Since the fuzzy set theory was proposed in 1965 by L.A. Zadel, fuzzy techniques or methods have been applied
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to many fields extensively. Of them, fuzzy clustering technique, as a fundamental tool for revealing and analyzing
structures, has been used frequently in actual application. Fuzzy cluster analysis is usually studied based on fuzzy
equivalence relation*!, but, in general, cluster analysis based on fuzzy similarity relation*®! is more popular. This
is because that fuzzy equivalence relation is difficult to verify, and the fuzzy similarity relation is easy to obtain.
Basic fuzzy cluster analysis based on fuzzy similarity relation is based on transitive closure approach®~®!, whose
procedure includes the following three steps.

e Step 1. Based on an actual problem, form a fuzzy similarity relation R;

e Step 2. Using transitive operation, obtain the transitive closure R” of R, i.e. R"=t(R);

e Step 3. Obtain the final clustering result from R".
where R” is a fuzzy equivalence relation. So the key to solve the question is transformed to compute the transitive
closure of R, here it is also a difficult work.

In Refs.[4,5], He, et al. and Fu proposed some fuzzy clustering indirect methods based on fuzzy similarity
relation, but the computational complexity is high. Besides, Hung, et al.[®! and Kamimura, et al.l” proposed
clustering methods based on distance, Tsekouras, et al.’®! also proposed a hierarchical fuzzy clustering approach.

Fuzzy quotient space theory was introduced by fuzzy equivalence relation in Ref.[9], and obtained the
conclusion that any two of the fuzzy equivalence relation, the normalized equicrural distance and the hierarchical
structure on space X are mutually equivalent, and get isomorphism and similarity principle between fuzzy
equivalence relation R; and R,. On one hand, those conclusions explain why similar results can be derived from
various fuzzy equivalence relations on X. On the other hand, normalized equicrural distance and hierarchical
structure, as the important researching methods, is introduced to fuzzy question researches. They are important
because it is easy to accept the membership degree represented by the distance and structure of researching question
when people study actual questions or learn knowledge.

In this paper, on the basis of Ref.[9], we propose cluster analysis theory based on fuzzy quotient spacel°?,
and give direct clustering algorithms based on fuzzy similarity relation derived from normalized metric.

Definition 1.12. Let ReF(XxX), where F(XxX) denote all fuzzy sets on XxX. If R satisfies

(1) vxeX, R(x,x)=1;

(2) vx,yeX, R(x,y)=R(y,x), then R is called a fuzzy similarity relation on X.

If R is a fuzzy similarity relation on X, and satisfies:

(3) Vx,y € X,R(x,y) =sup{min{R(x,z),R(z,y)}}, then R is called a fuzzy equivalence relation on X.

zeX

Definition 1.2 Let R be a fuzzy equivalence relation on X. For any Ae[0,1], space X(4) consists of the
equivalence class of cut relation R, (Note: R, is a crisp equivalence relation) such that V4;,4,€[0,1], 11<4,=>
X(A1)<X(42), so {X(1)|0<A<1} consists of an ordering chain structure. Then {X(4)|0<1<1} is called the hierarchical
structure of R.

Definition 1.3} Let Ry,R, be fuzzy equivalence relations on X, {X1(1)[0<A<1} and {X,(u)|0<u<1} are
hierarchical structure of Ry and R, respectively. If there exists a one-to-one mapping f:[0,1]—[0,1], and f(x) is a
strictly monotonic increasing function such that 4=f(1). Then R; and R; is called isomorphism.

Lemma 1.1, Let R be a fuzzy similarity relation on X, where X is a finite set, then

(1) ReR%

@R = JR";

(3) t(R) is fuzzy equivalence relation on X.
Lemma 1.2P. The following three statements are equivalent, i.e.:
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(1) Given a fuzzy equivalence relation on X;

(2) Given a normalized equicrural distance on some quotient space of X;

(3) Given a hierarchical structure on X.

Lemma 1.3®! (Isomorphism Discrimination Theorem). The following three statements are equivalent, i.e.

(1) Fuzzy equivalence relation R; and R; is called isomorphic;

(2) Let Ry and R, be fuzzy equivalence relation on X. Vx,y,u,veX,

Ri(X,y)<R1(u,v)Ra(X,y)<Rz(u,v) and Ry(X,y)=R1(u,v)>R2(X,y)=R2(u,v);

(3) There exists a one-to-one mapping f:[0,1]—[0,1], and F(x) is a strictly monotonic increasing function such

that Vx,yeX, Ra(x,y)=F(R1(X,y)).

2 The Structure Representation of Fuzzy Clustering

In this section, we perform the research from fuzzy similarity relation on X, where X is a finite set.
Definition 2.1. Let R be a fuzzy similarity relation on X. For any 4<[0,1], R, denotes the cut relation of R.
D, ={(X, Y) | IX =X, %Xy, Xy = V.2 (%, X%,1) €RI=12,..., m=-1}.

Then Dy is called the deriving relation from the base R, on X.

Proposition 2.1. The relation D, in Definition 2.1 is a crisp equivalence relation on X.

Theorem 2.1. Assume R is a fuzzy similarity relation on X, Ry is a fuzzy similarity relation produced by the
transitive closure of R, i.e. Ri=t(R), its corresponding hierarchical structure is {X;(1)|0<A<1}. {X,(1)|0<A<1}
denotes the quotient space of D in Definition2.1. Then VY Ae[0,1], X;(4)=X,(4).

Proof: VAe[0,1]

(D) If (xy)eX1(4), i-e. Ri(x,y)>4, we have 2 <R,(x,y) = U R"(x,y) = limR"(x,y) by Lemma 1.1. Then, V>0,

n=1
there exists a positive integer N such that RN(x,y)>R;(x,y)—=, i.e.

sup {R (X, X)) ARG, X)) A AR(Xy 1Y)} > A - ¢ (2.1)
Xp 1o XN €X
Therefore, there exists yy,...,yn_1€X such that
Ri(%y1)AR(Y1Y2)A...AR(YN-1,y)>A—¢ (2.2)

In Eq.(2.2), let &>0", we have Ri(X,y1)AR(Y1,Y2)A...AR(Yn-1,¥)=4, then 3X =Yy, Vi, Yy = Vo3 R(Yi Ving) = 4,
i.e. (Viyis=1)€R, i=0,1,...,N-1.
By Definition 2.1, we have (x,y)eX(4), i.e. Xi(A)X,(A).
(2) If (x,y)eX5(4), by Definition 2.1, 3x =Xy, X,.... X, = ¥,2 R(X;, X,1) € R, i€
R(X,X%.)=24,i=01..,m-1= R(X,x) AR(X, %) A.. AR(X; 1, V) 2 A=
R(x.Y) =SL:|0{R"(x, V3= RT(6Y) 2 R %) AR, X) A ARy 4, Y) 2 4

Then (x,y)eXi(4), i.e. Xo(A)X1(4).
By (1) and (2), this theorem has been proved. O

Corollary 2.1. In Theorem 2.1, let R, be the fuzzy equivalence relation obtained by {X,(1)|0<1<1} as a
corresponding hierarchical structure. Then R1=R,.

Proof: By Theorem 2.1, VA€[0,1], X1(1)=X2(1)=V 1€[0,1], R1,=R2,=R;=R,. O
Corollary 2.2. Let R be a fuzzy similarity relation on X. Then V¥ A1e[0,1], [t(R)],=t(R ).
Proof: We can directly obtain from the proof procedure of Theorem 2.1. O

Corollary 2.2 shows that the transitive closure operation and the cut relative operation on a fuzzy similarity
relation are exchangeable. For a fuzzy similarity relation R, Theorem 2.1 shows that the hierarchical structure of its
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deriving equivalence relation of R is the same as the one of t(R). Therefore, we may analyze the hierarchical
structure of R from the hierarchical structure {D,|0<1<1} defined by Definition 2.1. On the other hand, Theorem 2.1
ensures that the algorithm in the following is reasonable.

Let X={X1,X2,...,Xn}, R is a fuzzy similarity relation on X,

D={R(x,y)Ix,yeX}={11,42,...,An}, Where 1=4,>1,>...>A,. Then the algorithm to obtain all the corresponding
hierarchical structures of R is designed as follows.

Algorithm A.

e Step 1. i<0;

e Step 2. i<i+l, A=A, A<={1,2,...,n}, C<I;

e Step 3. B,

e Step 4. jeA, B&BU{x}, AcA{x};

e Step 5. VKkeA, if R(xj,x)=4 then B&BU{X}, A=A X}, VseA, if R(Xi,Xs)=4 then B=Bu{x.},

A<=A\{x:}, otherwise goto Step 6;

e Step 6. C&BCU{{B}}

e Step 7. If A=, output X(4)=C, then goto Step 8, otherwise goto Step 3.

e Step 8. Ifi=m or C={1,2,...,n}, then goto Step 9, otherwise goto Step 2.

e Step 9. End.

All clustering classes of R can be obtained from Algorithm A, and it is easy to perform the cluster analysis of
R. Its computational complexity is not larger than nx(n—-1)xm/2. Given V¥ 1€[0,1], the computational complexity of
getting X(A) is not larger than nx(n—1)/2.

Example 1. Let X={1,2,...,14}, R is a fuzzy similarity relation on X, whose matrix representation is given in
the following.

By Algorithm A, we obtain the hierarchical structure of R as follows:

X()={{1}{2}..... {14}}; X(:9)={{1,3}{2,4,5}.{6}.{7}.... {12}.{11,13,14} };

X(.8)={{1,3}.{2,4,5,6,7},{8},{9,10,12},{11,13,14}}; X(.7)={{1.2,...,7}.,{8,9,10,12},{11,13,14} };

X(.6)=X(.5)={{1,2,...,10,12},{11,13,14}}; X(.4)={1,2,...,14}

The corresponding clustering map is presented in Fig.1.
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Fig.1 The clustering mapping of Example 1
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3 Fuzzy Clustering Based on Normalized Distance

Lemma 1.2 shows that a fuzzy equivalence relation is equivalent to a normalized equicrural distance on some
quotient space. In fact, the fuzzy clustering researches by introducing distance are usually attracting to researchers
in fuzzy corresponding questions. From the geometric views, the length of distance may directly explain the
membership degree, i.e. the shorter the distance between two elements, the bigger their relationship degree is. But to
verify the equicrural condition of normalized distance is the same difficult as to verify condition (3) of a fuzzy
equivalence relation, and it is easy to build a normalized distance on space X. Then, in this section, we discuss the
relationship between the normalized metric on X and a fuzzy similarity relation on X, furthermore study the
clustering questions based on normalized metric.

Definition 3.1. Let d(-,-) be a normalized distance on X. Assume a one-to-one mapping f:[0,1]—[0,1], f(-) is a
strictly monotonic decreasing function. We define a relation R on X as follows:

vx,yeX, R(x,y)=f(d(x,y)), then R(x,y) is called a fuzzy relation derived from d, where f is called the deriving
mapping from d.

Proposition 3.1. The relation in Definition 3.1 is a fuzzy similarity relation on X.

The relation R in Definition 3.1 is also called a fuzzy similarity relation derived from distance d.

Theorem 3.1. d(x,y) is a normalized distance on space X< there is a fuzzy similarity relation R on X such that

R=f(d) and Vx,y € X, f (R(x,y)) < izrgi{f “(R(x,2)), T (R(z,y))} (3.1)
where one-to-one mapping f:[0,1]—[0,1], f(:) is a strictly monotonic deceasing function and f(0)=1, f is the inverse
function of f.

Proof: *“=” By Definition 3.1 and Proposition 3.1, we may obtain a fuzzy similarity relation R on X, whose R
is a deriving relation of d. Because d(x,y) is a normalized distance on space X, therefore Vx,yeX, d(x,y)<d(x,z)+
d(zy), i.e. d(x,y)< ier\I{d(x,z)+d(z,y)}, thatis Vx,ye X, f (R(x,y)) < iZQI{f’(R(x, )+ f(R(z,y))}.

“<=” From R=f(d) and satisfying conditions, we get d=f"(R(x,y)). Because R is a fuzzy similarity relation R on
X, we obtain conclusion as follows:

(1) vxeX, d(x,x)=f “(R(x,x))=f ~(1)=0;

(2) vxyeX, d(xy)=f “(R(x.Y))=f “(R(y.x))=d(x.y);

@) vxy.ze X, d(xy) =T (R(xy)) < If{T(R(xz))+ T (R(z, y))}

<7 (R(x,2)+H “(R(zy))=d(x,.2)+d(z.y);
(4) vx,yeX, 0<f 7(R(x,y))<1=Vx,yeX, 0<d(x,y)<1.
Therefore d(x,y)=f "(R(x,y)) is a normalized distance on space X. Ol
Corollary 3.1. Let Vx,yeX, R(xy)=1-d(x,y), then d(x,y) is a normalized distance on space X< is a fuzzy

similarity relation on X and
VX, ¥y € X, 1+ R(x,y) > sup{R(x,z) + R(z,y)} (3.2)
zeX

Theorem 3.1 and Corollary 3.1 show that the concept of normalized distance on space X is stronger than the
concept of fuzzy similarity relation on X, i.e. a given normalized distance on space X may be used to construct a
fuzzy similarity relation on X, contrarily, the conclusion is not held, because a fuzzy similarity relation on X only
satisfying condition (3.1) or (3.2) may be used to build a normalized distance on space X. Let T(R) be the set of all
fuzzy equivalence relations on X, %, denote the set of all fuzzy similarity relations derived from normalized metric
d on X, 97 denote the set of all fuzzy similarity relations on X, then they have the relationship as follows

T(R)cHyc (3.3)
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For convenience, we discuss only fuzzy similarity relations R(x,y)=1-d(x,y), where R is derived from the
normalized metric d. In fact, those conclusions in the following are also held for Definition 3.1.

Theorem 3.2. Assume d(x,y) is a normalized distance on space, R(x,y)=1-d(x,y), B,={(x,y)|d(x,y)<1,0<A<1}}.
D, is the deriving crisp equivalence relation from the base B, on X. Let R; be a fuzzy equivalence relation, where
Ry,=D;_, for any 1€[0,1], R,=t(R), then fuzzy equivalence relation Ry,R; satisfies R;=R,.

Proof: vA1€[0,1], By_;={(x,y)|d(x,y)<1-A}={(x,y)|R(x,y)>1}. By using Corollary 2.2,

R1,=D1;=t(B1_2)=t(R)=[t(R)],=R2:=R:=R..

Definition 3.2. In Theorem 3.2, X(A) denotes the quotient space of D,_;, then {X(1)|0<i<1} is called a
hierarchical structure of X derived from the normalized distance d.

Corollary 3.2. In Theorem 3.2, let {X;(1)|0<4<1},{X2(4)[0<A<1} be the hierarchical structures of Rq,R;
respectively, then V 1e[0,1], X;(4)=X,(4).

In fact, by Definition 3.2 and Corollary 3.2, X;(2) is the quotient space of D;_,, i.e. X;(4)=X(A4).

In the proof procedure of Theorem 3.2, we make only use of the normalized condition rather than the triangle
law of distance. The conclusion in the following could directly be obtained from Theorem 3.2, Corollary 3.2,
Definition 3.2 and Definition 1.2.

Theorem 3.3. Let d be a normalized distance on space X, Vx,yeX, R(x,y)=1-d(x,y). Then, for any ¥ 1e[0,1],
the corresponding fuzzy clustering of R is uniquely determined by the quotient space of D,_,.

Let X={X1,X,...,Xn}, d is a normalized distance on space X, D={R(x,y)|x,yeX}={d;,d,,...,d}, where 0=d;<
d,<...<d,. Similar to Algorithm A in Section 2, we can also give the algorithm to obtain all the clustering classes of
the fuzzy similarity relation derived from d.

Definition 3.3. Let Ry,R, be fuzzy similarity relation on X. If fuzzy equivalence relations derived from R;,R,
are isomorphic, then fuzzy similarity relations R; and R, is called isomorphism about fuzzy fuzzy clustering
analysis.

Theorem 3.4. Assume d; and d, are normalized distances on space X, R; and R, are fuzzy similarity relations
derived from d; and d, respectively. If there exists an one-to-one mapping f:[0,1]—[0,1] and F(-) is a strictly
monotonic increasing function such that d,=F(d,), then R; and R, are isomorphic.

Proof: R?,R! denotes fuzzy equivalence relations derived from R, and R, respectively, their corresponding
hierarchical structure is {X;(1)|0<A<1}, {X,(1)|0<A<1} respectively. By Definition 1.3, X;(4) and X,(4) are quotient

spaces of RY, and R}, respectively. By Corollary 2.2, Rf, =t(R,), R, =t(R,,).

VA€[0,1], Ryz={(x.y)IR1(x.y)2A}={ (xM)ld(x,y)<1-A3={(x,y)Id2(x.,y)=F(d1(x,y))<sF(1-A)}=Rzr),
where f(1)=1-F(1-2), it is obvious that f is a one-to-one mapping from [0,1] to [0,1] and f(-) is a strictly monotonic
increasing function.

Then R, =t(R,) =t(Ry;(;)) =Ry ;) = X,(4) = X,(f(4)), so R’ and R; are isomorphic by Definition 1.3.
Therefore, Ry and R, are isomorphic about fuzzy clustering analysis by Definition 3.3.

Remark. The reverse of Theorem 3.4 is not held. Because “R,, =R,,, = R, =R, ;, " is held in the proof
procedure of Theorem3.4, but its reverse proposition is not held.

Corollary 3.4. Assume Ry,R, are fuzzy similarity relations on X. If there exists an one-to-one mapping
F:[0,1]—[0,1], F(-) is a strictly monotonic increasing function such that vx,yeX, Ro(x,y)=F(R1(x,y)), then R; and R,
are isomorphic.

Theorem 3.4 and Corollary 3.4 state the fact that hierarchical structure is an inherent property of data structures
for complex systems.
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Example 2. Let XeR", d; and d, are normalized distances on space, and x,yeX,
dy(x.y)=1-exp(—lIx-yll), do(x.y)=1-exp(-[|x-y|),
where ||-|| is @ norm number of space X. Because d; and d, have the relationship as follows:
p— p— 2 —
6, = F(d) = 1-exp(-In*(1-d,)), d,[0]).
1, d=1

And F satisfies the condition in Theorem 3.3, then fuzzy cluster analysis results derived from d; and d, are

similar, their difference is only the selection of various distance thresholds.

4 Conclusions

In this paper, on the basis of fuzzy quotient space theory, we propose cluster analysis methods based on fuzzy
similarity relations and normalized distance to solve data structure analysis of complex systems, and get three
conclusions as follows: (1) the strictly clustering analysis theoretical description by introducing hierarchical
structures of fuzzy similarity relation and normalized distance; (2) the effective and rapid clustering algorithms of
their hierarchical structures; (3) a sufficient conditions for isomorphic hierarchical structures. These conclusions are
suitable to data structure analysis of all complex systems based on similarity relation. At the same time these
research works will be helpful to analyze effectively the structure of complicated problems and to solve real
problems.
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suggestions to improve this paper after the careful reading throughout it.
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