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Abstract:  In this paper, on the basis of fuzzy quotient space theory, cluster analysis methods based on fuzzy 
similarity relations and normalized distance are proposed to solve data structure analysis of complex systems. Three 
conclusions are given: (1) the strictly clustering analysis theoretical description by introducing hierarchical 
structures of fuzzy similarity relation and normalized distance; (2) the effective and rapid clustering algorithms of 
their hierarchical structures; (3) a sufficient condition for isomorphic hierarchical structures. These conclusions are 
suitable to data structure analysis of all complex systems based on similarity relation. 
Key words:  fuzzy quotient space; hierarchical structure; cluster analysis; fuzzy similarity relation; normalized 

distance; isomorphism 

摘  要: 在商空间理论基础上,提出了基于 Fuzzy 相似关系和归一化距离的聚类分析方法,用以解决复杂系统的数

据结构分析问题.得到了如下结论:(1) 通过引入基于 Fuzzy 相似关系和归一化距离的分层递阶结构,建立了严格的

聚类分析理论描述;(2) 给出了有效的分层递阶结构聚类的快速算法;(3) 给出了两个 Fuzzy 相似关系或由两个归一

化距离诱导的 Fuzzy 相似关系是同构的充分条件.其中所研究的理论和方法适应于建立在相似关系之上的任何复

杂系统的数据结构分析. 
关键词: Fuzzy 商空间;分层递阶结构;聚类分析;Fuzzy 相似关系;归一化距离;同构 
中图法分类号: TP18   文献标识码: A 

1   Introduction 

Since the fuzzy set theory was proposed in 1965 by L.A. Zadel, fuzzy techniques or methods have been applied 
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to many fields extensively. Of them, fuzzy clustering technique, as a fundamental tool for revealing and analyzing 
structures, has been used frequently in actual application. Fuzzy cluster analysis is usually studied based on fuzzy 
equivalence relation[1−3], but, in general, cluster analysis based on fuzzy similarity relation[4−6] is more popular. This 
is because that fuzzy equivalence relation is difficult to verify, and the fuzzy similarity relation is easy to obtain. 
Basic fuzzy cluster analysis based on fuzzy similarity relation is based on transitive closure approach[1−3], whose 
procedure includes the following three steps. 

• Step 1. Based on an actual problem, form a fuzzy similarity relation R; 
• Step 2. Using transitive operation, obtain the transitive closure R* of R, i.e. R*=t(R); 
• Step 3. Obtain the final clustering result from R*. 

where R* is a fuzzy equivalence relation. So the key to solve the question is transformed to compute the transitive 
closure of R, here it is also a difficult work. 

In Refs.[4,5], He, et al. and Fu proposed some fuzzy clustering indirect methods based on fuzzy similarity 
relation, but the computational complexity is high. Besides, Hung, et al.[6] and Kamimura, et al.[7] proposed 
clustering methods based on distance, Tsekouras, et al.[8] also proposed a hierarchical fuzzy clustering approach. 

Fuzzy quotient space theory was introduced by fuzzy equivalence relation in Ref.[9], and obtained the 
conclusion that any two of the fuzzy equivalence relation, the normalized equicrural distance and the hierarchical 
structure on space X are mutually equivalent, and get isomorphism and similarity principle between fuzzy 
equivalence relation R1 and R2. On one hand, those conclusions explain why similar results can be derived from 
various fuzzy equivalence relations on X. On the other hand, normalized equicrural distance and hierarchical 
structure, as the important researching methods, is introduced to fuzzy question researches. They are important 
because it is easy to accept the membership degree represented by the distance and structure of researching question 
when people study actual questions or learn knowledge. 

In this paper, on the basis of Ref.[9], we propose cluster analysis theory based on fuzzy quotient space[10−12], 
and give direct clustering algorithms based on fuzzy similarity relation derived from normalized metric. 

Definition 1.1[2]. Let R∈F(X×X), where F(X×X) denote all fuzzy sets on X×X. If R satisfies 
(1) ∀x∈X, R(x,x)=1; 
(2) ∀x,y∈X, R(x,y)=R(y,x), then R is called a fuzzy similarity relation on X. 
If R is a fuzzy similarity relation on X, and satisfies: 
(3) , , ( , ) sup{min{ ( , ), ( , )}}

z X
x y X R x y R x z R z y

∈
∀ ∈ ≥ , then R is called a fuzzy equivalence relation on X. 

Definition 1.2[9]. Let R be a fuzzy equivalence relation on X. For any λ∈[0,1], space X(λ) consists of the 
equivalence class of cut relation Rλ (Note: Rλ is a crisp equivalence relation) such that ∀λ1,λ2∈[0,1], λ1<λ2⇒ 
X(λ1)<X(λ2), so {X(λ)|0≤λ≤1} consists of an ordering chain structure. Then {X(λ)|0≤λ≤1} is called the hierarchical 
structure of R. 

Definition 1.3[9]. Let R1,R2 be fuzzy equivalence relations on X, {X1(λ)|0≤λ≤1} and {X2(µ)|0≤µ≤1} are 
hierarchical structure of R1 and R2 respectively. If there exists a one-to-one mapping f:[0,1]→[0,1], and f(x) is a 
strictly monotonic increasing function such that µ=f(λ). Then R1 and R2 is called isomorphism. 

Lemma 1.1[2]. Let R be a fuzzy similarity relation on X, where X is a finite set, then 
(1) R⊆R2; 

(2) ; 
1

( ) k

k
t R R

∞

=

=∪
(3) t(R) is fuzzy equivalence relation on X. 
Lemma 1.2[9]. The following three statements are equivalent, i.e.: 
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(1) Given a fuzzy equivalence relation on X; 
(2) Given a normalized equicrural distance on some quotient space of X; 
(3) Given a hierarchical structure on X. 
Lemma 1.3[9] (Isomorphism Discrimination Theorem). The following three statements are equivalent, i.e. 
(1) Fuzzy equivalence relation R1 and R2 is called isomorphic; 
(2) Let R1 and R2 be fuzzy equivalence relation on X. ∀x,y,u,v∈X, 

R1(x,y)<R1(u,v)↔R2(x,y)<R2(u,v) and R1(x,y)=R1(u,v)↔R2(x,y)=R2(u,v); 
(3) There exists a one-to-one mapping f:[0,1]→[0,1], and F(x) is a strictly monotonic increasing function such 

that ∀x,y∈X, R2(x,y)=F(R1(x,y)). 

2   The Structure Representation of Fuzzy Clustering 

In this section, we perform the research from fuzzy similarity relation on X, where X is a finite set. 
Definition 2.1. Let R be a fuzzy similarity relation on X. For any λ∈[0,1], Rλ denotes the cut relation of R. 

1 2 1{( , ) | , ,..., , ( , ) , 1,2,..., 1}m i iD x y x x x x y x x R i mλ += ∃ = = ∋ ∈ = − . 

Then Dλ is called the deriving relation from the base Rλ on X. 
Proposition 2.1. The relation Dλ in Definition 2.1 is a crisp equivalence relation on X. 
Theorem 2.1. Assume R is a fuzzy similarity relation on X, R1 is a fuzzy similarity relation produced by the 

transitive closure of R, i.e. R1=t(R), its corresponding hierarchical structure is {X1(λ)|0≤λ≤1}. {X2(λ)|0≤λ≤1} 
denotes the quotient space of Dλ in Definition2.1. Then ∀λ∈[0,1], X1(λ)=X2(λ). 

Proof:  ∀λ∈[0,1] 

(1) If (x,y)∈X1(λ), i.e. R1(x,y)≥λ, we have 1
1

( , ) ( , ) lim ( , )n n

nn
R x y R x y R x yλ

∞

→∞=

≤ = =∪  by Lemma 1.1. Then, ∀ε>0, 

there exists a positive integer N such that RN(x,y)>R1(x,y)−ε, i.e. 
 

1 1
1 1 1 2 1

,...,
sup { ( , ) ( , ) ... ( , )}

N
N

x x X
R x x R x x R x y λ ε

−
−

∈
∧ ∧ ∧ > −  (2.1) 

Therefore, there exists y1,…,yN−1∈X such that 
 R1(x,y1)∧R(y1,y2)∧…∧R(yN−1,y)>λ−ε (2.2) 

In Eq.(2.2), let ε→0+, we have R1(x,y1)∧R(y1,y2)∧…∧R(yN−1,y)≥λ, then 0 1 1, ,..., , ( , )N i ix y y y y R y y λ+∃ = = ∋ ≥ , 

i.e. (yi,yi+1)∈Rλ, i=0,1,…,N−1. 
By Definition 2.1, we have (x,y)∈X2(λ), i.e. X1(λ)⊆X2(λ). 
(2) If (x,y)∈X2(λ), by Definition 2.1, 0 1 1, ,..., , ( , )m i ix x x x y R x x Rλ+∃ = = ∋ ∈

1

1

, i.e. 

1 1 1 2

1 1 1 2

( , ) , 0,1,..., 1 ( , ) ( , ) ... ( , )

( , ) sup{ ( , )} ( , ) ( , ) ( , ) ... ( , )
i i m

n m
m

n

R x x i m R x x R x x R x y

R x y R x y R x y R x x R x x R x y

λ λ

λ
+ −

−

≥ = − ⇒ ∧ ∧ ∧ ≥ ⇒

= ≥ ≥ ∧ ∧ ∧ ≥  

Then (x,y)∈X1(λ), i.e. X2(λ)⊆X1(λ). 
By (1) and (2), this theorem has been proved. □ 
Corollary 2.1. In Theorem 2.1, let R2 be the fuzzy equivalence relation obtained by {X2(λ)|0≤λ≤1} as a 

corresponding hierarchical structure. Then R1=R2. 
Proof:  By Theorem 2.1, ∀λ∈[0,1], X1(λ)=X2(λ)⇒∀λ∈[0,1], R1λ=R2λ⇒R1=R2. □ 
Corollary 2.2. Let R be a fuzzy similarity relation on X. Then ∀λ∈[0,1], [t(R)]λ=t(Rλ). 
Proof:  We can directly obtain from the proof procedure of Theorem 2.1. □ 
Corollary 2.2 shows that the transitive closure operation and the cut relative operation on a fuzzy similarity 

relation are exchangeable. For a fuzzy similarity relation R, Theorem 2.1 shows that the hierarchical structure of its 
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.6 .3 .4 .4 .5 .5 .6 .7 .6 .8 .3 1

.4 .2 .3 .4 .2 .4 .3 .1 .4 .3 .9 .3 1

.3 .2 .2 .1 .1 .3 .2 .1 .2 .4 .8 .4 .9 1⎣

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

deriving equivalence relation of R is the same as the one of t(R). Therefore, we may analyze the hierarchical 
structure of R from the hierarchical structure {Dλ|0≤λ≤1} defined by Definition 2.1. On the other hand, Theorem 2.1 
ensures that the algorithm in the following is reasonable. 

Let X={x1,x2,…,xn}, R is a fuzzy similarity relation on X, 
D={R(x,y)|x,y∈X}={λ1,λ2,…,λm}, where 1=λ1>λ2>…>λm. Then the algorithm to obtain all the corresponding 

hierarchical structures of R is designed as follows. 
Algorithm A. 
• Step 1. i⇐0; 
• Step 2. i⇐i+1, λ⇐λi, A⇐{1,2,…,n}, C⇐∅; 
• Step 3. B⇐∅; 
• Step 4. j∈A, B⇐B∪{xj}, A⇐A\{xj}; 
• Step 5. ∀k∈A, if R(xj,xk)≥λ then B⇐B∪{xk}, A⇐A\{xk}, ∀s∈A, if R(xk,xs)≥λ then B⇐B∪{xs}, 

A⇐A\{xs}, otherwise goto Step 6; 
• Step 6. C⇐BC∪{{B}} 
• Step 7. If A=∅, output X(λ)=C, then goto Step 8, otherwise goto Step 3. 
• Step 8. If i=m or C={1,2,…,n}, then goto Step 9, otherwise goto Step 2. 
• Step 9. End. 

All clustering classes of R can be obtained from Algorithm A, and it is easy to perform the cluster analysis of 
R. Its computational complexity is not larger than n×(n−1)×m/2. Given ∀λ∈[0,1], the computational complexity of 
getting X(λ) is not larger than n×(n−1)/2. 

Example 1. Let X={1,2,…,14}, R is a fuzzy similarity relation on X, whose matrix representation is given in 
the following. 

By Algorithm A, we obtain the hierarchical structure of R as follows: 
X(1)={{1},{2},…,{14}}; X(.9)={{1,3},{2,4,5},{6},{7},…,{12},{11,13,14}}; 
X(.8)={{1,3},{2,4,5,6,7},{8},{9,10,12},{11,13,14}}; X(.7)={{1,2,…,7},{8,9,10,12},{11,13,14}}; 
X(.6)=X(.5)={{1,2,…,10,12},{11,13,14}}; X(.4)={1,2,…,14} 
The corresponding clustering map is presented in Fig.1. 
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Fig.1  The clustering mapping of Example 1 
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3   Fuzzy Clustering Based on Normalized Distance 

Lemma 1.2 shows that a fuzzy equivalence relation is equivalent to a normalized equicrural distance on some 
quotient space. In fact, the fuzzy clustering researches by introducing distance are usually attracting to researchers 
in fuzzy corresponding questions. From the geometric views, the length of distance may directly explain the 
membership degree, i.e. the shorter the distance between two elements, the bigger their relationship degree is. But to 
verify the equicrural condition of normalized distance is the same difficult as to verify condition (3) of a fuzzy 
equivalence relation, and it is easy to build a normalized distance on space X. Then, in this section, we discuss the 
relationship between the normalized metric on X and a fuzzy similarity relation on X, furthermore study the 
clustering questions based on normalized metric. 

Definition 3.1. Let d(⋅,⋅) be a normalized distance on X. Assume a one-to-one mapping f:[0,1]→[0,1], f(⋅) is a 
strictly monotonic decreasing function. We define a relation R on X as follows: 

∀x,y∈X, R(x,y)=f(d(x,y)), then R(x,y) is called a fuzzy relation derived from d, where f is called the deriving 
mapping from d. 

Proposition 3.1. The relation in Definition 3.1 is a fuzzy similarity relation on X. 
The relation R in Definition 3.1 is also called a fuzzy similarity relation derived from distance d. 
Theorem 3.1. d(x,y) is a normalized distance on space X⇔ there is a fuzzy similarity relation R on X such that  

 R=f(d) and , , ( ( , )) inf{ ( ( , )), ( ( , ))}
z X

x y X f R x y f R x z f R z y− − −

∈
∀ ∈ ≤  (3.1) 

where one-to-one mapping f:[0,1]→[0,1], f(⋅) is a strictly monotonic deceasing function and f(0)=1, f− is the inverse 
function of f. 

Proof:  “⇒” By Definition 3.1 and Proposition 3.1, we may obtain a fuzzy similarity relation R on X, whose R 
is a deriving relation of d. Because d(x,y) is a normalized distance on space X, therefore ∀x,y∈X, d(x,y)≤d(x,z)+ 

d(z,y), i.e. , that is . ( , ) inf{ ( , ) ( , )}
z X

d x y d x z d z y
∈

≤ + , , ( ( , )) inf{ ( ( , )) ( ( , ))}
z X

x y X f R x y f R x z f R z y− − −

∈
∀ ∈ ≤ +

“⇐” From R=f(d) and satisfying conditions, we get d=f−(R(x,y)). Because R is a fuzzy similarity relation R on 
X, we obtain conclusion as follows: 

(1) ∀x∈X, d(x,x)=f −(R(x,x))=f −(1)=0; 
(2) ∀x,y∈X, d(x,y)=f −(R(x,y))=f −(R(y,x))=d(x,y); 
(3) 

1
1 1, , , ( , ) ( ( , )) inf { ( ( , )) ( ( , ))}

z X
x y z X d x y f R x y f R x z f R z y− − −

∈
∀ ∈ = ≤ +  

≤f −(R(x,z))+f −(R(z,y))=d(x,z)+d(z,y); 
(4) ∀x,y∈X, 0≤f −(R(x,y))≤1⇒∀x,y∈X, 0≤d(x,y)≤1. 
Therefore d(x,y)=f −(R(x,y)) is a normalized distance on space X. □ 
Corollary 3.1. Let ∀x,y∈X, R(x,y)=1−d(x,y), then d(x,y) is a normalized distance on space X⇔ is a fuzzy 

similarity relation on X and 
 , ,1 ( , ) sup{ ( , ) ( ,

z X
x y X R x y R x z R z y

∈
)}∀ ∈ + ≥ +  (3.2) 

Theorem 3.1 and Corollary 3.1 show that the concept of normalized distance on space X is stronger than the 
concept of fuzzy similarity relation on X, i.e. a given normalized distance on space X may be used to construct a 
fuzzy similarity relation on X, contrarily, the conclusion is not held, because a fuzzy similarity relation on X only 
satisfying condition (3.1) or (3.2) may be used to build a normalized distance on space X. Let T(R) be the set of all 
fuzzy equivalence relations on X, ℜd denote the set of all fuzzy similarity relations derived from normalized metric 
d on X, ℜ denote the set of all fuzzy similarity relations on X, then they have the relationship as follows 
 T(R)⊂ℜd⊂ℜ (3.3) 
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For convenience, we discuss only fuzzy similarity relations R(x,y)=1−d(x,y), where R is derived from the 
normalized metric d. In fact, those conclusions in the following are also held for Definition 3.1. 

Theorem 3.2. Assume d(x,y) is a normalized distance on space, R(x,y)=1−d(x,y), Bλ={(x,y)|d(x,y)≤λ,0≤λ≤1}}. 
Dλ is the deriving crisp equivalence relation from the base Bλ on X. Let R1 be a fuzzy equivalence relation, where 
R1λ=D1−λ for any λ∈[0,1], R2=t(R), then fuzzy equivalence relation R1,R2 satisfies R1=R2. 

Proof:  ∀λ∈[0,1], B1−λ={(x,y)|d(x,y)≤1−λ}={(x,y)|R(x,y)≥λ}. By using Corollary 2.2, 
R1λ=D1−λ=t(B1−λ)=t(Rλ)=[t(R)]λ=R2λ⇒R1=R2. 

Definition 3.2. In Theorem 3.2, X(λ) denotes the quotient space of D1−λ, then {X(λ)|0≤λ≤1} is called a 
hierarchical structure of X derived from the normalized distance d. 

Corollary 3.2. In Theorem 3.2, let {X1(λ)|0≤λ≤1},{X2(λ)|0≤λ≤1} be the hierarchical structures of R1,R2 
respectively, then ∀λ∈[0,1], X1(λ)=X2(λ). 

In fact, by Definition 3.2 and Corollary 3.2, X1(λ) is the quotient space of D1−λ, i.e. X1(λ)=X(λ). 
In the proof procedure of Theorem 3.2, we make only use of the normalized condition rather than the triangle 

law of distance. The conclusion in the following could directly be obtained from Theorem 3.2, Corollary 3.2, 
Definition 3.2 and Definition 1.2. 

Theorem 3.3. Let d be a normalized distance on space X, ∀x,y∈X, R(x,y)=1−d(x,y). Then, for any ∀λ∈[0,1], 
the corresponding fuzzy clustering of R is uniquely determined by the quotient space of D1−λ. 

Let X={x1,x2,…,xn}, d is a normalized distance on space X, D={R(x,y)|x,y∈X}={d1,d2,…,dm}, where 0=d1< 
d2<…<dm. Similar to Algorithm A in Section 2, we can also give the algorithm to obtain all the clustering classes of 
the fuzzy similarity relation derived from d. 

Definition 3.3. Let R1,R2 be fuzzy similarity relation on X. If fuzzy equivalence relations derived from R1,R2 
are isomorphic, then fuzzy similarity relations R1 and R2 is called isomorphism about fuzzy fuzzy clustering 
analysis. 

Theorem 3.4. Assume d1 and d2 are normalized distances on space X, R1 and R2 are fuzzy similarity relations 
derived from d1 and d2 respectively. If there exists an one-to-one mapping f:[0,1]→[0,1] and F(⋅) is a strictly 
monotonic increasing function such that d2=F(d1), then R1 and R2 are isomorphic. 

Proof: 0 0
1 2,R R  denotes fuzzy equivalence relations derived from R1 and R2 respectively, their corresponding 

hierarchical structure is {X1(λ)|0≤λ≤1}, {X2(λ)|0≤λ≤1} respectively. By Definition 1.3, X1(λ) and X2(λ) are quotient 
spaces of 0

1R λ  and 0
2R µ  respectively. By Corollary 2.2, 0

1 1( )R t Rλ λ= , 0
2 2( )R t Rµ µ= . 

∀λ∈[0,1], R1λ={(x,y)|R1(x,y)≥λ}={(x,y)|d(x,y)≤1−λ}={(x,y)|d2(x,y)=F(d1(x,y))≤F(1−λ)}=R2f(λ), 
where f(λ)=1−F(1−λ), it is obvious that f is a one-to-one mapping from [0,1] to [0,1] and f(⋅) is a strictly monotonic 
increasing function. 

Then 0 0
1 1 2 ( ) 2 ( ) 1 2( ) ( ) ( ) ( ( )f fR t R t R R X X fλ λ λ λ )λ λ= = = ⇒ = , so 0

1R  and 0
2R  are isomorphic by Definition 1.3. 

Therefore, R1 and R2 are isomorphic about fuzzy clustering analysis by Definition 3.3. 

Remark. The reverse of Theorem 3.4 is not held. Because “ 0 0
1 2 ( ) 1 2 ( )fR R R R fλ λ λ= ⇒ = λ ” is held in the proof 

procedure of Theorem3.4, but its reverse proposition is not held. 
Corollary 3.4. Assume R1,R2 are fuzzy similarity relations on X. If there exists an one-to-one mapping 

F:[0,1]→[0,1], F(⋅) is a strictly monotonic increasing function such that ∀x,y∈X, R2(x,y)=F(R1(x,y)), then R1 and R2 
are isomorphic. 

Theorem 3.4 and Corollary 3.4 state the fact that hierarchical structure is an inherent property of data structures 
for complex systems. 
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Example 2. Let X∈Rn, d1 and d2 are normalized distances on space, and x,y∈X, 
d1(x,y)=1−exp(−||x−y||), d2(x,y)=1−exp(−||x−y||2), 

where ||⋅|| is a norm number of space X. Because d1 and d2 have the relationship as follows: 

⎩
⎨
⎧

=
∈−−−

==
1,1

)1,0[)),1(lnexp(1
)(

1

11
2

12 d
dd

dFd . 

And F satisfies the condition in Theorem 3.3, then fuzzy cluster analysis results derived from d1 and d2 are 
similar, their difference is only the selection of various distance thresholds. 

4   Conclusions 

In this paper, on the basis of fuzzy quotient space theory, we propose cluster analysis methods based on fuzzy 
similarity relations and normalized distance to solve data structure analysis of complex systems, and get three 
conclusions as follows: (1) the strictly clustering analysis theoretical description by introducing hierarchical 
structures of fuzzy similarity relation and normalized distance; (2) the effective and rapid clustering algorithms of 
their hierarchical structures; (3) a sufficient conditions for isomorphic hierarchical structures. These conclusions are 
suitable to data structure analysis of all complex systems based on similarity relation. At the same time these 
research works will be helpful to analyze effectively the structure of complicated problems and to solve real 
problems. 
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