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Abstract: A CNF formula F is linear if any distinct clauses in F contain at most one common variable. A CNF
formula F is exact linear if any distinct clauses in F contain exactly one common variable. All exact linear formulas
are satisfiablel*!, and for the class LCNF of linear formulas, the decision problem LSAT remains NP-complete. For
the subclasses LCNF, of LCNF, in which formulas have only clauses of length at least k, the NP-completeness of
the decision problem LSAT is closely relevant to whether or not there exists an unsatisfiable formula in LCNF,
i.e., the NP-completness of SAT for LCNF, (k=3) is the question whether there exists an unsatisfiable formula in
LCNFs. S. Porschen et al. have shown that both LCNF.; and LCNF., contain unsatisfiable formulas by the
constructions of hypergraphs and latin squares. It leaves the open question whether for each k>5 there is an
unsatisfiable formula in LCNF.. This paper presents a simple and general method to construct unsatisfiable
formulas in k-LCNF for each k>3 by the application of minimal unsatisfiable formulas to reductions for formulas. It
is shown that for each k>3 there exists a minimal unsatisfiable formula in k-LCNF. Therefore, the stronger result is
shown that k-LSAT is NP-complete for k>3.
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1 Introduction

A literal is a propositional variable or a negated propositional variable. A clause C is a disjunction of literals,
C=(Lyv...vLy) or a set {L;,...,L,} of literals. A formula F in conjunctive normal form (CNF) is a conjunction of
clauses, F=(Cia...AC,) or a set {C4,...,C.} of clauses, or a list [Cy,...,C,] of clauses. var(F) is the set of variables
occurring in the formula F and var(C) is the set of the variables in the clause C. We denote #cl(F) as the number of
clauses of F and #var(F) (or |var(F)|) as the number of variables occurring in F. CNF(n,m) is the class of CNF
formulas with n variables and m clauses. The deficiency of a formula F is defined as #cl(F)—#var(F), denoted by
d(F). Aformula F is minimal unsatisfiable (MU) if F is unsatisfiable and F—{C} is satisfiable for any clause CeF. It
is well known that F is not minimal unsatisfiable if d(F)<0™?. So, we denote MU(k) as the set of minimal
unsatisfiable formulas with deficiency k>1. Whether or not a formula belongs to MU(k) can be decided in
polynomial timef.

A CNF formula F is linear if any two distinct clauses in F contain at most one common variable. A CNF
formula F is exact linear if any two distinct clauses in F contain exactly one common variable. We define
k-CNF:={FeCNF|(VCeF)(|IC|=k)}, LCNF:={FeCNF|F is linear}, XLCNF:={FeCNF|F is exact linear}, LCNF:=
{FeLCNF|(VCeF)(|C|=k)} and k-LCNF:={FeLCNF|(VCeF)(|C|=k)}. The decision problems of satisfiability are
denoted as k-SAT, LSAT, XLSAT and k-LSAT for restricted instances to the corresponding to the above subclasses,
respectively.

It is shown that every exact linear formulas is satisfiable™, but LSAT remains NP-completeness“®!. For the
subclasses LCNF.,, LSAT., remains NP-completeness if there exists an unsatisfiable formula in LCNF,, 81,
Therefore, the NP-completeness of LSAT, for k>3 is the question whether there exists an unsatisfiable formula in
LCNFs. We are interested in some NP-complete problems for linear formulas, and get some simplified
NP-complete problem by constructing unsatisfiable linear formulas. It is helpful to analyze complexity of
resolutions, and to find some effective algorithm for satisfiability.

In Refs.[4,6], by the constructions of hypergraphs and latin squares, the unsatisfiable formulas in LCNF; and
LCNF., are constructed, respectively. But, the method is too complex and has no generalization. In Ref.[4], it leaves
the open question whether for each k>5 there is an unsatisfiable formula in LCNFy.

It is well known that 3-SAT is NP-complete. In the transformation from a CNF formula to a 3-CNF formula, we
found a basic application of minimal unsatisfiable: for a clause C=(L;vL,v...vL,) (p>3) one can introduce (p-3)
NeW Yu,Ys,...,Yp-s Vvariables, and split C into a partition {L;,Lo},{Ls},.... {Lp-2}.{Lp-1,Lp,} of C, and then construct
(p-2) clauses (LivLavys),(Lav=yivya),....(Lp2v=Ypav¥p3).(Lpavlpvyps). In fact [yi,(=yivya),....(=Yp-av¥p-a),
—Yp-3] is @ minimal unsatisfiable in MU(1), and the partition {L,L>},{Ls},.... {Lp-s}.{Lp-1,Lp} Of C corresponds to a
CNF formula [(LivLy),Ls,...,Lp2,(Lp-1vLp)]. Thus, the formula [(LivLavyi),(Lav—=y1vya),....(Lp—2v—Yp-aVyp-3),
(Lp-1vLpv—yp-3)] is viewed as clauses-disjunction of [(LivLl,),Ls,...,Lo 2. (Lprvhp)]l and [y, (=y1vya)....,
(=Yp-2v¥p-3),—yp-3] at the corresponding positions of clauses, respectively. Additionally, an unit clause L
corresponds to the formula [(Lvyvz),(Lvyv—z),(Lv—=yvz),(Lv—=yv—z)], where [(yvz),(yv—z),(=yvz),(—yv—z)] is a
minimal unsatisfiable formula MU(2), and a clause (L;vL,) corresponds to the formula [(LivLovy),(LivLov—y)],
where [y,—y]=yA—y is a minimal unsatisfiable formula MU(1). It implies that a subclause of the original clause can
be copied.

Based on this observation and the characterization of minimal unsatisfiable formulas, we introduce a generalize
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method in Lemma 1 and Lemma 2, which we can transform a CNF formula into a required CNF formula by
constructing proper minimal unsatisfiable formulas. We have applied this method to reduction for formulas. In
Ref.[7], we present an algorithm to solve an open problem in Ref.[8], which for fixed k and t (3<t<k), one can
transform a k-CNF formula F to a t-CNF formula F' in linear time on the size of F with the same satisfiability. For
some simplified NP-complete problems restricted instances to the subclass (k,s)-CNF the method is also used™,
where (k,s)-CNF is a subclass of CNF, Fe(k,s)-CNF if and only if (iff) F has only clauses of length k, and the
number of occurrences of each variable in F is less than s.

In this paper, we present a simple and general method to construct unsatisfiable formulas in k-LCNF for each
k>3 by the application of minimal unsatisfiable formulas and the induction. It is shown for each k>3 that there exists
a minimal unsatisfiable formula in k-LCNF. Based on existences of minimal unsatisfiable formulas in k-LCNF, the
stronger result is shown that k-LSAT is NP -complete for k>3. In our proof, we introduce two algorithms: Algorithm
1 is for transforming a k-CNF to a linear formula and Algorithm 2 is for lengthening clauses of linear formulas.

2 Minimal Unsatisfiable Formulas and Its Applications

A clause C=(L;vL,v...vL,) can be represented as a set {L;,L,,...,.L,} of literals. Similarly, A CNF formulas
F=(CiAC,A...AC,) can be represented as a set {C,,C,,...,C,} of clauses, or a list [C{,C,,...,C,,] of clauses. var(F) is
the set of variables occurring in the formula F and var(C) is the set of the variables in the clause C. We define
|F|= Zlggm |C, | as the size of F. In this paper, the formulas mean CNF formulas.

A formula F=[Cy,...,C] with n variables xy,...,x, in CNF(n,m) can be represented as a nxm matrix (a;;), called
the representation matrix of F, where a;=+ if x;C;, a;=— if —x;C;, otherwise a;=0 (or, blank).

A formula F is called minimal unsatisfiable if F is unsatisfiable, and for any clause feF, F—{f} is satisfiable.
We denote MU as the class of minimal unsatisfiable formulas, and MU(K) as the class of minimal unsatisfiable
formulas with deficiency k. Let C=(L;v...vL,) be a clause. We view a clause as a set of literals. The collection
Cy,...,C, of subsets of C (as a set) is a partition of C, where C :Umgmci and CinCj=¢ for any 1<izj<m, which
corresponds to a formula Fc=Cia...AC,,. We call Fc as a partition formula of C. Specially, the collection
{Li},....{L} of singleton subsets of C is called the simple partition of C, and the formula [Ly,...,L,]J=LiA... AL, iS
called the simple partition formula of C.

Let Fi=[fy,....fn] and Fo=[04,...,0m] be formulas. We denote FiveFo=[fivgy,...,fuvgm]. Similarly, let C be a
clause and F=[fy,...,f,,] a formula, denote CvF=[(Cv¢fi),...,(Cvafm)]-

Lemma 1. Let C=(Lyv...vL,) (n>2) be a clause and Fc=[Cy,...,C] (M>2) a partition formula of C. For any
MU formula H=[fy,...,f,,] with var(C)nvar(H)=¢, if a truth assignment v satisfies the formula FcvH, then (C)=1.
Conversely, for any truth assignment v, satisfying C, 1, can be extended into a truth assignment v satisfying FcvH.

Proof: Let C=(Lyv...vL,) be a clause and Fc=[C,...,C,y] (m>2) a partition formula of C. Without losses of
generality (w.l.o.g.), we assume C,=(Lv..vL),C,=(L v..vL),...Co=(L .Vv.-VvL).

Let v be a truth assignment satisfying FcvgH. Since H is minimal unsatisfiable, we have (f,)=0 for some
(1<k<m). It must be 1{C,)=1. It implies (C)=1 since Cy is a subclause of C.

Conversely, suppose that C is satisfied by a truth assignment v, Since C is disjunction of literals L;,...,L,,
there exists some k (1<k<n) such that vy(Ly)=1. W.l.0.g., we assume 1y(L,)=1, then 15(C,)=1. Since H is minimal
unsatisfiable, we have H—{f;} is satisfiable, thus there exists a truth assignment 14 such that v;(H—{f;})=1. Note that
var(C)nwvar(H)=¢, we can join into a truth assignment v from v, and v, which for xevar(C)uvar(H), (x)=vy(x) for
xevar(C), and ®x)=v(x) for xevar(H). It is clear that v is a truth assignment satisfying FcvH. O

Based on the method in Lemma 1 for a clause, we have the following Lemma 2. It presents a method
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constructing the required formulas.

Lemma 2. Let F=C;A...AC, be a formula with |C;|>2 for 1<i<n. Suppose that for each 1<i<n, F; is a partition
formula of C; and #cl(F;)=m;>2. Let Hy,...,H, be MU formulas satisfying the following conditions:

(1) For each 1<i<n, #cl(H;)=m;.

@) ([, var(H) nvar(F) = .

(3) For any 1<i=j<n, var(H;)nwvar(H;)=2.

We define F:=(FyvgH)A(FavaHo)A. .. A(FavaHn). Then, F is satisfiable iff F” is satisfiable.

Proof: (=) Assume that F is satisfiable. We have a truth assignment 1, over var(F) such that ,(F)=1. It
implies 14(C;)=1 for each 1<i<n. By the proof of Lemma 1, we can extend 1, into a truth assignment v; over
var(F)uvar(H;) such that 1j(FivHi)=1. By condition (3), we can combine 1,...,v, into a truth assignment v" over
var(F)uvar(H;)u...uvar(H,) such that v (FivgH))=1 for each 1<i<n, where V'(x):=w(x) for xevar(F) and
V' (X):=vi(x) for xevar(H;) (1<i<n). It means that F" is satisfiable.

(<) Assume that F" is satisfiable. We have a truth assignment v over var(F)uvar(H;)u...uvar(H,) such that
UF)=1. It implies W(FivgH;)=1 for each 1<i<n. Note that for each 1<i<n, H; is minimal unsatisfiable and
#cl(H;)=#cl(F;)=m;. We have vj(H;)=0 for each 1<i<n, where v; is the restriction of v over var(H;). By the defini-
tion of Fiv¢H; and v{FivqHi)=1, there exists a clause C;; of F; such that 1,(Ci;)=1, where vy is the restriction of v
over var(F). Since C;; is a subclause of C;, we have 15(C;)=1. So, we have v,(C;)=1 for each 1<i<n. It means that F
is satisfiable. (I

We now introduce the following four MU formulas.

(1) Ap=[(X1v - vXn), (X1 VvX2) (X2 X3), - - -, (—Xn_1VvXn) , (XnvX1)  (—Xp v . .. v—X,) ] e MU(2). Its representation matrix is

X (+ - + -
X |+ + - -

+ + - -

We take a formula AS =[(=% Vv X,), (=X, V Xg), e (X, 4 V X)), (—X, v X,)] . Clearly, both AS +{(xyv...vxp)} and
A +H{(—Xpv...v—X,)} are satisfiable, and A’ +{(X;v...vXp)|[=(XiA...AX)} and AT +{(=Xv ... v—Xg) = (=X AL A
—Xn) }.

Clearly, the subformula A’ of A, is satisfiable, and for any truth assignment r satisfying A’ it holds that
7(X)=...=7(X,). The formula A; represents a cycle of implication: X;—>X,—>...—>Xp—>X;.

(2) Bn=[(X1vX3),(—X1vX2), - oy (i X6V Xs41), - - (—Xn_2VXn_1),(—Xn_1v—X3)]eMU(1), where n>6. The representation
matrix of Bg is
X[+ -

X t -
Note that #cl(B,)=n and #var(B,)=n-1, and B, is a linear formula for n>6.
(3) The standard MU formulas S,, with n variables, Xy,...,x,, is defined by

S =

& &
n A(gl,...,gn)e{o,i}"(xl Ve VX
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The representation matrix of S; is
X(+ + + + - - - -
N+ + — — + + - —|.
X\+ — + — + - + -

The above MU formulas are useful in constructions of the required formulas in this paper.
3 Construction of Linear Minimal Unsatisfiable Formulas

In this section, we introduce a subclass of CNF, called linear CNF formulas, and present a general constructing
method of linear MU formulas.

Definition 1.

(1) Aformula FeCNF is called linear if

(a) F contains no pair of complementary unit clauses, and
(b) Forall C;,C,eF with C1#C,, |var(Cy)nwvar(C,)|<1.

Let LCNF denote the class of all linear formulas.

(2) A formula FeCNF is called exact linear if F is linear, and for all C;,C,eF with C;#C,, |[var(Cy)n

var(C,)|=1.

For example, the formula B, is linear for n>6. Let (XLCNF) LCNF denote the class of all (exact) linear
formulas. Similarly, denote by (XLCNF,,) LCNF the class of all (exact) linear formulas, in which formulas have
only clauses of length at least keN.

Lemma 3. Let F=[Cy,...,Cy,] be a MU formula with |Cj|=I;>2 for each 1<i<m, and let G, =[f/....f/] be a
linear MU formula for 1<i<m, where var(G;)nvar(Gj)=¢ for any 1<i#j<m. Then, the formula
F" = Aiem(Fe, Vo G;) is a linear MU formula, where F. is the simple partition formula of clause C; for 1<i<m,
and var( var(F)n (| J,__var(G))=¢.

Proof: Let F=[C,,...,Cy] be a MU formula with |Cj|=1;>2 for each 1<i<m. For 1<i<m, we assume that
Ci=(L,v..vL,) and define a block formula: F. v, G, :==[(L,Vv f)..(L, v f)], where F; =[L,...L,],
and the the formula: F™:= A (Fe, v G) -

(1) F" is minimal unsatisfiable.

Firstly, by Lemma 2, F~ is unsatisfiable since F is unsatisfiable and Gy,...,G,, are minimal unsatisfiable.

Secondly, F* is minimal unsatisfiable. For any clause geF", w.l.0.g., we assume g = (L, v 1), and consider
the satisfiability of F'—{g}.

Since F is minimal unsatisfiable, there exists a truth assignment z, over var(F) satisfying [C,,...,Cn], and o
forces each literal in C; to be false, i.e., 7,(L;;)=...=7,(L;,)=0, and 7o(C2)=...=7(Cp)=1. Since G; is minimal
unsatisfiable, there exists a truth assignment z; over var(G,) satisfying G, —{f}. Thus, we have a truth assignment
r, satisfying (F vy G)—{(L,v £} by joining % and 71, where z;(x) =7,(x) for xevar(F) and 7 (x) = 7,(x)
for xevar(G,).

For each 2<k<m, since 7p(Cy)=1, there is a literal L ; (1< j, <I,) such that z,(L,;)=1. By the minimal
satisfyability of Gy, we have that G, —{fj‘;} is satisfiable. Therefore, we have a truth assignment z; over var(Gy)
satisfying G, —{fj‘:}. Thus, we have a truth assignment 7, satisfying (Fe, va Ge) by joining 7 and #, where

7(X) =74(x) for xevar(F)and z,(x)=7,(x) for xevar(Gy).

©

AFWFFEET  http:// www. jos. org. cn



516 Journal of Software 1 3%& Vol.19, No.3, March 2008

Finally, we have a truth assignment 7 satisfying F'—{g} by combining zy,z,...,7m, Where 7 (x)=7(x) for
xevar(F) and 7 (x)=7(x) for xevar(G) (1<k<m).

(2) Fis linear.

For any distinct clauses f,geF", we consider the following cases.

Case 1: Both f and g are in the same block formula.

There exists some k (1<k<m) such that f =(L v ff) and g=(L v f£) for some 1<szs'<l,. By sz,
var(f) nvar(g) cvar(f¥) nvar(f}). Since Gy is linear, we have |var(f*)~var(f¥)|<1. Thus, |var(f)rvar(g)|<1.

Case 2: fand g are in the different block formulas.

There exist some k and k' (1<k=k'<sm) such that f e(F; v, G,) and ge(F; v, G,). By constructions of
block formulas, we have f = (L v ) for some 1<s<l  and g=(L,, v f£) for some 1<s'<l,.. By k=K', we
have var(G,)nvar(G,)=@.Thus, var(f)nvar(g)cvar(L,)nvar(L, ). It implies that |var(f)rvar(g)|l<1. O

In Lemma 3, we present a method constructing MU formulas k-LCNF for k>3 by S, and B, (n>6).

We consider firstly the construction of formulas for the case of k=3.

We take MU formulas Sg and Bg with var(Sg)nvar(Bg)=¢ in Section 2. Note that Bg is a linear MU formula, and
|C|=6 for each CeSg, and |C|=2 for each CeBs.

XA AXE of X and take a copy of Bs, denoted by Bg***, and define a formula (F, . v, Bg®).

..... P vt

It restricts var(B2~%)var(Bi~®)=@ for any distinct (g,...&),(¢...c0) €{0,1}°, and var(Bi )
var(S;) =@ forany (&,...,8)<{0,1}°.

We now define the following formula

SL = Ay etons (e Vet BE9).

SLs is a linear MU formula by Lemma 3.

Note that #cl(SL3)=6-2°, and |C|=3 for each CeSLs.

We define inductively a counting functions of clauses cl(k) for k>3: cl(3)=6-2° and cl(k+1)=cl(k)-2'® for k>3.
For the case of k>3, suppose that the linear formula SL, has been constructed such that SL, is a linear MU formula,
and the length of each clause in SL, equals to k.

By Lemma 3, we define inductively the following linear MU formula

o e el (K)
Sy, = /\(cl,...,sc.(k))e{o,l}“(“(F‘fl ..... gy Vol Sk )

where, for (&1,..., &) €40,137.

@F, ., Isthesimple partition formula of clause X, . . ~€Sqq,-

(b) SL¥*® s a copy SLy with new variables.

Seigo 1S minimal unsatisfiable, SLy is both minimal unsatisfiable and linear. By Lemma 3, SL., is a linear MU
formula. Thus, we have the following result:

Theorem 1. For each positive integer k>3, k-LCNF contains MU formulas.

4 NP-Completeness of SAT for Linear Formulas

In this section, we consider complexities of decision problems of satisfiability for restricted instances in LCNF
and LCNF (k=3), respectively.

Let F be a formula, we denote pos(x,F) (resp. neg(x,F)) as the number of positive (resp. negative) occurrence
of variable x in F, and write occs(x,F)=pos(x,F)+neg(x,F). Sometimes, we denote Fg as a subformula of F, which
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consists of rest clauses of F.
For a formula F=[C;,...,Cy], the following facts are clear:
(1) If pos(x,F)>0 and neg(x,F)=0 (or, pos(x,F)=0 and neg(x,F)>0) for some xevar(F), then the resulting
formula F’ by deleting clauses, in which x occurs, has the same satisfiability with F.
2 If F=[(xvyvC),(—=xv=yvC)),F.] (or F=[(xv—-yvC),(=xVvyvC,;),Fl), where Free=[Cs,...,
Cnl, such that pos(x,F)=neg(x,F)=1 and pos(y,F)=neg(y,F)=1, then the formula F'=[(xvyvC)),
(—=xvzvCy),(myv—zvC),F] (or F'=[(xv-ayvC),(—xvzvC),(yv—-zvC,),F.]) has the
same satisfiability with F, where z is a new variable.
From now on, for the sake of description, we assume that the formulas satisfy the following conditions: (for a
formula F)
(1) For each xevar(F), pos(x,F)>0 and neg(x,F)>0, and
(2) For any x,yevar(F) (x=y), if pos(x,F)=neg(x,F)=1 and pos(y,F)=neg(y,F)=1 then the number of clauses
containing x or y is at least three.
Lemma 4. Let F=[(xvfy),...,(xVvfs),(—=xVvg1),...,(—=xv0y),Frest] be @ CNF formula with pos(x,F)=s and neg(x,F)=t
and occs(x,F)=s+t>3, where F g is the subformula of F. By introducing (s+t) new variables x,...,Xs:, we define a
formula
FUI:=(xv), oy (V) (X1 v ) (st B0 Frestd (X0 vXa) (o Xa), o (st 1V Xsi) (Xssev )],
Then, we have that:
(1) F is satisfiable if and only if F™ is satisfiable, and
(2) For any distinct clauses C,C’'eF™, [var(C)nvar(C')n{xy.... Xs«}|<1.
Proof: Note that var(F)~{xy,....Xs}=¢ and var(F™)=(var(F)—{x})u{xy,... Xs:}.
(1) Assume that F is satisfied by a truth assignment z over var(F), then F™ is satisfied by the truth assignment
2 over var(FM)=(var(F)—{x})U{X1,... Xs«}, where 2(y)==(y) if ye(var(F)—{x}), and 2I(y)==(y) if ye{Xs,... Xset}-
Conversely, we assume that F is satisfied by a truth assignment 2 over var(FP). It implies that 7 satisfies the
subformula  [(—X1VvX2),(—X2VX3), ..., (—Xsst_1VXst), (—Xs4tvX1)]  OF FX. The subformula [(—=X1vX2),(=XovX3), ...,
(—Xsrt_1VXsrt), (—XsstvX1)] represents a cycle of implication: X;—Xo—>Xz—>...—Xst—>X1. Thus, 7/(X1)=...=7 (Xs+y)-
Therefore, F is satisfied by a truth assignment ¢’ over var(F), where 7'(y)=7(y) for ye(var(F)—{x}), and
7'(X)=7(Xp).
(2) It is clear that for any distinct clauses C,C’'eFM, |var(C)rvar(C')~{Xy,....Xs«}|<1, since the formula
[X1s- - Xsats (5 X1V X2), (X2 X3), - -« s (—Xs+t-1VXsst) (—Xs+¢vX1)] 1S linear when s+t>3. O
The following example help readers to observe the resulting formula by replacing a variable with new variables
in proof of Lemma 4.
Example 1. Let F be a formula. Its representation matrix is
X(+ + - -
y|+ - - -
z -+ - +

Then, the representation matrix of FI is
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N
|

+ - +
By Lemma 4, we have the following algorithm for reducing a formula F to a linear formula F'"" in polynomial
time of |F|.
Algorithm 1. Linear transformation for CNF formulas.
Input: A formula F with variables xy,...,X,;
Output: A linear formulas F'™",
begin
F'":=F; i:=1;
while (i<n)A(oces(x;,F'™)=3) do
(let F™ =[(x; v ,)oa (% v £).(=% v ), (=% v 0,), FIN T, (s+t=(0cCs(xi,F™))).
Introducing new variables i1, ...,V st
e (7202 1 R (ARV S N G VARPRVE 1) RO CTANTRVE D N iy 5
(i vV Yi2) (Y2 v Yig)sooo (Wisieaa v YisedDs (Vi s V Yid)]s
i=i+1;
end_do;
output F'™™;
end;

Algorithm 1 can be completed in times of O(mn), and we have |F™|= 2n2+32 oces(x;,F))<3|F |,

ny +1<i<n
where n=|var(F)| and m=#cl(F), n,=|{xevar(F)|occs(x,F)=2|.

Theorem 2. LSAT is NP-complete, where LSAT is the decision problem of satisfiability for restricted instances
in LCNF.

Proof: Let F be a 3-CNF formula with variables x,...,x, We assume that F satisfies the following conditions:

(1) For each xevar(F), pos(x,F)>0 and neg(x,F)>0, and

(2) For any x,yevar(F) (xzy), if pos(x,F)=neg(x,F)=1 and pos(y,F)=neg(y,F)=1, then the number of clauses
containing x or y is at least three.

W.l.o.g., let var(F)={xq,... Xn}={X1,- - Xm}IHA{Xm+1,--- . Xn}, Where 0<m<n, and occs(x;,F)=2 for 1<i<m, and
oces(xj,F)=3 for m+1<j<n.

By the assumption, for any distinct clauses C,C’'eF, we have

[var(C)mnvar(C")n{Xy,... Xm}H<1 ™)

By Algorithm1, F can be transformed into F'™ in polynomial times of |F|, and only variables Xp.1,...,X, are
replaced by new variables.

For any distinct clauses f,geF"™, the followings are true:

(1) If both f and g come from the original clauses in F by replacing variables, then |var(f)nvar(g)n
{Xi,... Xa}<1 by Eq.(*), and var(frwvar(g)n(var(F™)—{xi,....xn})=¢ by the proof of Lemma 4. It implies
[var(f)nvar(g)|<1.

(2) If either f or g comes from the original clause in F by replacing variables, and the other is a new additional
clause in Algorithm 1, then |var(f)rwvar(g)|=var(f)rvar(g)n(var(F'™—{x,,.... x=}I<1 by the proof of Lemma 4.
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(3) If neither f nor g comes from the original clauses in F by replacing variables, then var(f)nvar(g)~{xu,...,
Xn})=¢ and |var(frwvar(g)n(var(F™—{xi,... xn})|<1 by the proof of Lemma 4.

Finally, [var(f)~war(g)|<1. Thus, F'" is linear.

By Lemma 4, F is satisfiable if and only if F'" is satisfiable.

F'" can be computed from F in polynomial time of F. By NP-completeness of 3-SAT we have LSAT is
NP-complete. O

Lemma 5. Let F=[Cy,...,C;] be a linear formula and G=[fy,...,f,] a linear MU formula. We define a formula
F':=[(C, v 1),C,,...Cy,, T,,..., f,], where var(F)nvar(G)=¢ and f is a nonempty subclause of f;. Then, F' is a
linear formula, and F is satisfiable if and only if F’ is satisfiable.

Proof: Itis clear that F' is linear, because of var(F)nvar(G)=¢ and linearity of F and G.

By renaming of literals in G, i.e., —x is renamed to x, we can assume that f; contains only positive literals. Let
fi=(yav...vyy), and  f/=(y, v..vy,), where 1<s<t.

Since G is minimal unsatisfiable, any truth assignment zg satisfying subformula [f,,...,f,] forces variables
Y1,...,Yt to be false.

Assume that F is satisfiable, then there exists a truth assignment z; satisfying F. Since G is minimal
unsatisfiable, [f,,...,f,] is satisfiable, and then there exists a truth assignment =, satisfying [f,,...,f,], and
(Y1)=...=n(y;)=0. We have a truth assignment 7z over var(F)uvar(G) satisfying F’, where #(x)=7,(x) for xevar(F),
and o(x)=1»(x) for xevar(G).

Conversely, we assume that F' is satisfiable, then there exists a truth assignment z satisfying F'. Thus, the

restriction 7fyarg) Of 7 over var(G) satisfies [fy,...,fo], and zvar)(Y1)=-.-=2vars)(Y))=0. Similarly, the restriction
thare) OF 7 over var(F) satisfies [Cy,...,Cq]. Since 7(C,v f))=1 and zyarc)(Y1)=---=fvar(e)(¥s)=0, we have 7(C;)=1
It means that j,q.(r) satisfies F. O

Lemma 5 represents a method lengthening clauses.

Lemma 6. For any fixed positive integer k>3, k-SAT is NP-complete.

Proof: It is sufficient to show that 3-SAT can be reduced polynomially to k-SAT for k>3. Let F=[C;,...,C,,] be
a 3-CNF formula, and 1=k-3. We define a k-CNF formula F':= A, (C; vy S), where S is a copy of the
standard MU formula S, (in Section 2) with new variables for 1<i<m. Clearly, |F’'|=2'|F|, where 2' is a constant for
fixed k. Similar to the proof of Lemma 2, we can show that F is satisfiable if and only if F’ is satisfiable. O

Theorem 3. For any fixed positive integer k>3, k-LSAT is NP-complete, where k-LSAT is the decision problem
of satisfiability for restricted instances in k-LCNF.

Proof: It is sufficient to show that k- SAT can be reduced polynomially to k-LSAT by Lemma 6.

Let F=[Cy,...,C] be a k-CNF. W.l.0.g., we assume occs(x,F)>3 for each xevar(F). We now transform F into a
formula F~ in k-LCNF by the following two stages.

Stage 1: Call Algorithm 1 (Linear Transformation for CNF formulas) to transform F into a linear formula F'",
Note that for any clause Ce F'™ |C|=k or |C|=2.

Stage 2: Lengthen clauses of the length 2 in F'™.

By Theorem 1, we can take a linear MU formula G in k-LCNF. Further, we can assume G=[(y;v...vyy),f1,....fil
where [fi|=k for 1<i<l. Define H:=[(ysv...vyy),f1,....fil. The following algorithm generates a linear formula F" in
k-LCNF.

Algorithm 2. Lengthening clauses in linear formulas.

Input: The formula F'™;

Output: A linear formula F” in k-LCNF.
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begin
F=f'in.
while ((3CeFM)(/C|=2)) do
taking a copy [(y5 v...v ¥¢), f',.., i1 of H with new variables;
Fr=(F -{CH+(Cvy;v..vy)+[f... {1
end_do;
output F™;
end;
(For formulas F; and F,, F1+F, means FiAF)).
The above stages can be completed in polynomial time of |F|, and we have |F’|=|F|-[H].
By Lemma 4, F is satisfiable iff F'" is satisfiable. By Lemma 5, F'" is satisfiable iff F" is satisfiable. Thus,
k-SAT can be reduced polynomially to k-LSAT. O

5 Conclusions and Future Work

Based on the application of minimal unsatisfiable formulas and the induction, we present a simple and general
method to construct some linear formulas minimal unsatisfiable in k-CNF for each k>3, which is stronger than the

581 Based on existences of minimal

open problem whether or not there are unsatisfiable formulas in LCNFy
unsatisfiable formula in k-LCNF for k>3, we show that the decision problem k-LSAT is NP-complete for k>3.
Additionally, we present two algorithms in the proof for transforming a k-CNF to a linear formula and lengthening
clauses of linear formulas, respectively. The idea of algorithms is helpful for constructing other linear formulas. The
future work is to investigate deeply structures and characterizations of linear formulas, and to apply linear formulas

to analyzing complexity of resolutions and modifying effective algorithms for satisfiability.
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