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Abstract:  A general-purpose parallel three-list six-table algorithm that can solve a number of knapsack-like 
NP-complete problems is developed in this paper. This kind of problems includes knapsack problem, exact 
satisfiability problem, set covering problem, etc. Running on an EREW PRAM model, The proposed parallel 
algorithm can find a solution of these problems of size n in O(27n/16) time, with O(213n/48) space and O(2n/8) 
processors, resulting in a time-space-processor tradeoff of O(25n/6). The performance analysis and comparisons 
show that it is both work and space efficient, and thus is an improved result over the past researches. Since it can 
break greater variables knapsack-based cryptosystems and watermark, the new algorithm has some cryptanalytic 
significance. 
Key words:  NP-complete problem; parallel algorithm; time-space-processor tradeoff; knapsack problem 

摘  要: 将串行动态二表算法应用于并行三表算法的设计中,提出一种求解背包、精确的可满足性和集覆盖等背
包类 NP 完全问题的并行三表六子表算法.基于 EREW-PRAM 模型,该算法可使用 O(2n/8)的处理机在 O(27n/16)的时
间和 O(213n/48)的空间求解 n维背包类问题,其时间-空间-处理机折衷为 O(25n/6).与现有文献的性能对比分析表明,该
算法极大地提高了并行求解背包类问题的时间-空间-处理机折衷性能.由于该算法能够破解更高维数的背包类公
钥和数字水印系统,其结论在密钥分析领域具有一定的理论和实际意义. 
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1   Introduction 

Every NP-complete problem can be solved in O(2n) time by exhaustive search, but this complexity becomes 
prohibitive when n exceeds 60 or 70. Assuming that NP≠P, we cannot hope to find algorithms whose worst-case 
complexity is polynomial, but it is both theoretically interesting and practically important to determine whether 
substantially faster algorithms exist. In this paper we describe a parallel algorithm which can solve the knapsack 
problem. But owing to the work done by Schoreppel and Shamir[1], our proposed algorithm actually can solve a fair 
number of NP-complete problems including knapsack, partition, exact satisfiability, set covering, hitting set, 
disjoint domination in graphs, etc. Although the proposed algorithm is a versatile algorithm that can solve the above 
kind of NP-complete problems, to make this algorithm more easily understood, we only take the knapsack problem 
as the representative. As to the details on how our proposed algorithm can be applied to solve other NP-complete 
problems in this kind, one can refer to Ref.[1]. 

Given n positive integers W=(w1,w2,…,wn) and a positive integer M, the knapsack problem is the decision 
problem of a binary n-tuple X=(x1,x2,…,xn) that solves the equation 

 =M (1) ∑
=

n

i
ii xw

1

This problem was proved to be NP-complete[2] and, unless NP=P, its complexity is exponential in n. Solving 
the knapsack problem can be seen as a way to study some large problems in number theory and, because of its 
exponential complexity, some public-key cryptosystem are based on it[2−4]. 

A major improvement in this area was made by Horowitz and Sahni[5], who drastically reduced the time needed 
to solve the knapsack problem by conceiving a clear algorithm in O(n2n/2) time and O(2n/2) space. Based on this 
algorithm, Schrowppel and Shamir[1] reduced the memory requirements with the two-list four-table algorithm which 
needs O(2n/4) memory space to solve the problem in still O(n2n/2) time. They also showed their algorithm can solve 
the above knapsack-like NP-complete problems. Using unbalanced four tables, an adaptive algorithm is presented in 
Ref.[6]. Although the above algorithm is by far the most efficient algorithm to solve the knapsack-like problems in 
sequential, it means nothing for any instances where the size n is great. 

With the advent of the parallelism, much effort has been done in order to reduce the computation complexity of 
problems in all research areas[7−15], most of which are based on CREW (concurrent read exclusive write) PRAM 
(parallel random access machine). Karnin[7] proposed a parallel algorithm that parallelizes the generation routine of 
the two-list four-table algorithm. In his algorithm the knapsack problem could be solved with O(2n/6) processors and 
O(2n/6) memory cells in O(2n/2) time. Amirazizi and Helman[8] were the first to show that parallelism could 
accelerate to solve larger instances of this problem. Their algorithm runs in O(n2αn) time, 0≤α≤1/2, by allowing 
O(2(1−α)n/2) processors to concurrently access a list of this same size. Amirazizi and Helman[8] also present a more 
feasible Time-Space-Processor (TSP) model for evaluation of the performance of different algorithms for solution 
of knapsack-like NP-complete problems. In 1991, Ferreira[9] proposed a brilliant parallel algorithm that solves the 
knapsack problem of size n in time T=O(n(2n/2)ε), 0≤ε≤1, when P=O((2n/2)1−ε) processors and S=O(2n/2) are 
available. Chang et al.[10] presented another parallel algorithm where the requirement of the sharing memory is 
O(2n/2) by using O(2n/8) processors to solve the knapsack problem still in O(2n/2) time. Thereafter, in 1997, based on 
Chang et al.’s parallel algorithm, Lou and Chang[11] successfully parallelize the second stage of the two-list 
algorithm. Regretfully, it is independently found in Refs.[12,13] that the analysis of the complexity of the Chang et 
al.’s algorithm was wrong, which invalidate the results of Lou and Chang[11]. Except pointing out the wrong in 
literature[10], we also proposed a CREW-PRAM cost-optimal parallel algorithm[12], and thereafter, a cost-optimal 
algorithm without memory conflicts was further presented in Ref.[14]. 
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However, because the memories required in both of these two cost-optimal parallel algorithms are still O(2n/2), 

it makes the available memory cells a bottleneck when using these algorithms to break practical knapsack-based 
cryptosystem. When explaining the open problems existed in this kind of NP-complete problems, G. Woeginger 
recently concludes that the space is more important than the time[16]. Therefore, to further reduce the required 
memory units for the solution of knapsack-like problems is still valuable. 

To reach this goal, based on Ferreira’s CREW parallel three-list algorithm[15] and the two-list 2k-table serial 
algorithm[17], we propose a parallel three-list six-table algorithm in this paper. The novel properties of the proposed 
algorithm are: 

(i) This algorithm can solve knapsack-like NP-complete problems in O(27n/16) time, O(213n/48) shared memory 
units when O(2n/8) processors are available. The Time-Space-Processor tradeoff of this algorithm is only O(25n/6), 
which is considerably better than those of all algorithms published so far. 

(ii) It can be performed on an EREW PRAM machine model, and thus is a totally without memory conflicts 
algorithm for the knapsack-like problems. Furthermore, the algorithm is completely practical in the sense that it is 
easy to program and its overhead is small. 

The rest of this paper is organized as follows. Section 2 explains the parallel three-list algorithm, on which the 
proposed algorithm is based. The proposed parallel algorithm is described in Section 3. Then, in Section 4, the 
performance analysis and comparison follow. Finally, some concluding remarks and some future research directions 
in this field are given in Section 5. 

2   The Parallel Three-List Algorithm 

In 1995, Ferreira presented a parallel three-list algorithm, which is based on a CREW PRAM model[15]. The 
number of processor, time complexity, and space requirements in it are O(2βn), O(n2(1−ε/2−β)), O(n2εn/2), 0<ε<1, 
0≤β≤1−ε/2, respectively. It is viewed as an important breakthrough in the research of knapsack-like problems, for it 
can solve the knapsack-like problems in a way of both work and space effective[15]. Because our algorithm is based 
on this algorithm, we introduce it. 

Algorithm 1. The Three-list algorithm. 
Generation stage 
1. Divide W into three parts: W1=(w1,w2,…,w7n/16), W2=(w7n/16+1,w7n/16+2,…,w14n/16), W3=(w14n/16+1,…,wn). 
2. Form all possible subset sums of W1, W2, then sort them in a nondecreasing order and store them as 

A=[A1,A2,…,
16
7

2
nA ] and B=[B1,B2,…,

16
7

2
nB ], respectively. 

3. Form all possible subset sums of W3, and store them as C=[C1,C2,…,
82
nC ]. 

Search stage 
1. For all Cm in C where 1≤m≤2n/8 
2. Ci execute the binary search over A+B. 
3. If a solution is found: then stop, output the solution; else: output that there is no solution. 

The time complexity of this algorithm is O(n×29n/16), and the needed memory unit is O(27n/16)[15]. Based on its 
serial algorithm, Ferreira’s parallel algorithm is very direct. It runs on a CREW model, as shown in Fig.1[15]. The 
number of processors is P=2n/8. The subset sums in lists A and B which hold 27n/16 subset sums respectively are 
stored in the shared memory. And each processor Pi (1≤i≤P), which holds the subset sum Ci, executes a “virtual” 
binary search on the list A+B to make sure whether A[j]+B[l]=M−Ci is satisfied, 1≤j,l≤27n/16. The parallel three-list 
algorithm consists of the following three main steps[15]: 
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Algorithm 2. Parallel three-list algorithm. 
for all Pm where 1≤m≤2n/8 do 
1. Generation of the three lists A, B and C 
2. Sorting of the two lists 
3. Binary search over A+B 

end 
The total time needed in this algorithm is bound by O(n×27n/16), and the space requirements are O(27n/16)[15]. 

 
 
 
 
 
 
 
 

Subset
sums

CpC1 C2 C3

W2W3

W 

W1 

A[j]+B[l]      1≤j,l≤27n/16 

Fig.1  The parallel three-list algorithm (P=2n/8) 

3   The Proposed Parallel Algorithm 

Although Ferreira’s above algorithm is considered as a main breakthrough for the researches on the knapsack 
problem, it still have an obvious shortcoming, for it has a O(n×2n) TSP tradeoff, which is a little greater than that of 
the recent parallel algorithms[12,14] by a factor n. To overcome this shortcoming, we redesign the two main stages of 
the parallel three-list algorithm. Inspired by the idea used in serial algorithm[17], in the list generation stage, we 
introduce six tables to produce two ordered list A and B dynamically. By doing so, we can reduce the space 
complexity from O(27n/16) to O(213n/48). While in the list search stage, we replace the matrix search way in Ref.[15] 
with the two-list like search algorithm, which is more simple and able to reduce the time needed by a factor O(n) in 
the search stage. 

In our proposed algorithm, each of the two lists stored in the shared memory has a size of O(27n/16), whose 
elements will be dynamically generated one by one, by using only O(213n/48) shared memory units. Now consider the 
two stages of the algorithm. For convenience, we first introduce the algorithm used in the search stage. 

3.1   The search stage 

Now we use the two-list like search to fulfill the list search stage. Suppose the two sorted lists A and B exist 
before the following Algorithm 3 executes. Because each processor holds the subset sum element C[m] in its local 
memory, 1≤m≤2n/8. We can use the following two-list like search algorithm to make sure that for any C[m], 
1≤m≤2n/8, whether there exist A[i] and B[j], 1≤i,j≤27n/16, such that the formula A[i]+B[j]+C[m]=M are satisfied. 

Algorithm 3. Parallel two-list like search algorithm. 
The subset sums in list A are sorted in an increasing order, while the sums in list B are sorted in a decreasing 

order 
for all processors Pm where 1≤m≤2n/8 do 
1. i=1, j=1. 
2. if A[i]+B[j]=M−C[m], then stop: A solution is found, and write the result into the shared memory. 
3. if A[i]+B[j]<M–C[m], then i=i+1; else j=j+1. 
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4. if i>27n/16 or j>27n/16 then stop: there is no solution. 
5. goto step 2. 
end 
Lemma 1. The time needed to perform Algorithm 3 is at most 2×27n/16. 
Proof.  The condition that the loop ends shows that once the variables i or j is greater than 27n/16, the algorithm 

terminates. While for each computation step, one of the above two variables must increase by 1. So it is obvious that 
the maximum of the needed time to perform Algorithm 3 is 2×27n/16. □ 

3.2   The three-list generation stage 

Since each element in list C is stored in the local memory of each processor, and it is easy to produce it. We 
only discuss how to produce all elements of lists A and B stored in the shared memory. Note that in the list search 
Algorithm 3, each processor accesses the elements of the sorted lists A and B sequentially, and thus there is no need 
to store all the possible subset sums of A and B simultaneously in the shared memory—what we need is the ability 
to generate them quickly (on-line, upon request) in the sorted order. So if we generate the two ordered lists 
dynamically, the needed space will be reduced greatly. To implement this key idea, we explore the thoughts in 
Ref.[17] where 2k tables are used to dynamically produce two sorted lists in serial. Here we use six tables T1, T2, T3, 
and T4 , T5, T6, to dynamically produce the two sorted lists A and B, where T1 includes all possible subset sums of 
knapsack entries W11=(w1,w2,…,w7n/48),…,T3 includes all subset sums of W13=(w14n/48+1,w14n/48+2,…,w21n/48), and T4 
includes all sums of W21=(w21n/48+1,w21n/48+2,…,w28n/48),…,T6 includes all subset sums of W23=(w35n/48+1,w35n/48+2,…, 
w42n/48). Let e=27n/48, and mark Ti=(ti1,ti2,…,tie), i=1,…,6. At first we introduce how to dynamically produce the two 
sorted lists A and B with these six tables in serial by only using O(27n/48) space. 
3.2.1   Production of the two lists in sequential 

We focus on the procedures to generate list A because the process to generate list B is similar. As shown in 
Fig.2, we first sort all sums in T1 in an increasing order, and then use one priority queue Q1. At beginning Q1 stores 
all pairs of the first (T1) and all elements t2i. It can be updated by two operations deletion and insertion, which 
enables arbitrary insertions and deletions to be done in logarithmic time of the length of the queue, and makes the 
pair with the smallest t1i+t2j sum accessible in constant time. The following algorithm is designed to dynamically 
produce all sums of T1+T2 in an increasing order. 

 
 
 
 
 
 
 
 
 
 T4      Q3: t4i+T5         Q4: S2+T6 T1      Q1: t1i+T2         Q2: S1+T3 

Max 
heap 

Max
heap

Min 
heap 

Sorted
tableMin

heap
Sorted 
table 

Increasing 
Decreasing

Fig.2  Structure of the six tables to produce the two lists 

Algorithm 4. Algorithm for dynamically generating all sums of T1+T2 in an increasing order. 
Tables T1=(t11,t12,…,t1e), T2=(t21,t22,…,t2e) are given 
(1) sort T1 into an increasing order; 
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insert into Q1 all the pairs (first (T1), t2i) for all t2i∈T2; 

(2) repeat until Q1 becomes empty. 
(t1,t2)←pair with the smallest t1+t2 sum in Q1; 
S1←(t1+t2) 
if S1 is needed and used for the objectivity of computation, delete (t1,t2) from Q1; 

if the successor  of t1
1t 1 in T1 is defined, insert ( t ,t1

1 2) into Q1; 

Lemma 2. If one element in T1+T2 is produced at any time, the required time is O(7n/48); if all 27n/24 elements 
are required, the time is correspondingly O(n27n/24). 

Proof.  According to the theory of heap[17], one time of deletion and insertion on the heap can be performed 
with logarithmic time of the size of the heap. Since the heap constructed in Algorithm 4 has a size of 27n/48 and the 
combination T1+T2 has 27n/24 elements, it validates the results of Lemma 2. □ 

Notice that in Algorithm 4, to produce all 27n/24 sums in T1+T2 one by one, only O(27n/48) space is needed. Now 
we go a little further to produce all 27n/16 sums in T1+T2+T3 still with O(27n/48) space cells. The procedure to do so is 
exactly similar to Algorithm 4. We use another priority queue Q2 which also has a length of O(27n/48). Q2 stores all 
pairs of the first (T1+T2) and all elements t3i in T3. It can be updated by deletion and insertion, and it makes the pair 
with the smallest (t1i+t2j)+t3l sum accessible in constant time. 

Algorithm 5. Algorithm for dynamically generating all sums of (T1+T2)+T3 in an increasing order. 
Tables T3=(t31,t32,…,t3e) are given and all pairs in T1+T2 can be obtained by their increasing order dynamically. 
(1) insert into Q2 all the pairs (S1,t3l) for all t3l∈T3 where S1 denotes the least sum in Q1; 
(2) repeat until Q2 becomes empty. 

(S1,t3)←pair with the smallest S1+t3 sum in Q2; 
S←(S1+t3); 
if S is needed and used for the objectivity of computation, delete (S1,t3) from Q2; 

if the successor  of S1
1S 1 in T1+T2 is defined, insert ( ,t1

1S 3) into Q2; 

Lemma 3. The required time to produce one sum and all sums in T1+T2+T3 in an increasing order is 
respectively O(7n/48) and O(n27n/16) at the condition of the initial heap for queue Q2 having been constructed. 

Proof.  Note that the number of sums in (T1+T2)+T3 is |T1|×|T2|×|T3|=(27n/48)3=27n/16. Following the proof of 
Lemma 2, the conclusions here are obviously correct. □ 

Therefore, by using Algorithms 4 and 5, we can dynamically obtain all sums in T1+T2+T3 in an increasing order 
with only O(27n/48) memory units. To produce all elements dynamically in a decreasing order, the procedure is 
almost the same as the above procedure, except that we have to sort the elements in T4 in a decreasing order, and use 
two max heaps for the priority queues Q3 and Q4. 
3.2.2   Producing the two lists in parallel 

Refering to Fig.1, it seems that it is possible for all processors to use the same priority queues to produce all 
the needed elements in T1+T2+T3 and T4+T5+T6, and thus O(27n/48) shared memory units are enough for the parallel 
case. However, O(27n/48) space cells indeed do not fit the parallel case. When Algorithm 3 starts to perform, at first 
all processors Pm need the sum pair A[1] and B[1] to make sure whether A[1]+B[1]=M−C[m], 1≤m≤2n/8. But after 
that time, the value C[m] each processor holds may be different from each other. Therefore, to make the search 
algorithm perform successfully, we must prepare two queues (heaps) for each processor. As a result, in parallel case, 
the shared memory must have more memory units than that needed in sequential case. 

By combining the discussions in 3.1 and 3.2.1 into a whole, we get the final parallel three-list six-table 
algorithm. 
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Algorithm 6. An EREW based parallel three-list six-table algorithm for knapsack-like problems. 
A knapsack instance including W=(w1,w2,…,wn) and M is given 
for all processors Pm where 1≤m≤2n/8 do 

1. Generate list C and six tables T1, T2, T3 and T4, T5, T6, and sort T1 and T4 in parallel. 
2. Construct two min heaps for queues Q1m, Q2m, and two max heaps for queues Q3m and Q4m. 
3. Perform Algorithm 4. 
4. Perform Algorithm 5. 
5. Perform two-list like search algorithm (Algorithm 3). 

end 
Theorem 1. n-variable knapsack-like problems can be solved on EREW model in O(27n/16) time when O(2n/8) 

processors and O(213n/48) shared memory units are available. 
Proof.  With 2n/8 processors, producing list C and four even tables can be finished in n and 4×2n/48 time 

respectively, while the two tables T1 and T4 can be generated and sorted in 4×2n/48 time through the parallel merging 
generation algorithm in Ref.[18] without any memory conflicts. It will take 4×2n/48 time for each processor to 
construct four heaps. Following Lemmas 3, to perform Algorithm 3, each processor need element pair A[i] and B[j]. 
A[i] comes from heap Q2 and needs 7n/48 time, and finding the updating elements for heaps Q2 (from heaps Q1) will 
take another 7n/48 time. Since there are 2×27n/16 elements in lists A and B, the total needed time is 

 







×=






××+×+×+ 167

22
1674848 2

2304
49

48
7222424 nnnn nOnn  (2) 

Compared with the exponential factors, the low polynomial factor has little impact on the time complexity and 
thus is usually omitted in the analysis of the algorithms on knapsack-like problem[7−10,15]. So the time complexity of 
the proposed parallel algorithm is O(27n/16). As for space complexity, since there are 2n/8 processors, and each of 
them needs 4×27n/48 for the construction of heaps, the total space requirements are O(213n/48). To avoid memory 
conflicts, at first, we copy the knapsack variables for each processor. Thereafter, each processor accesses and 
updates its own heaps, so it is obvious that all processors have no memory conflicts. □ 

4   Performance Analysis and Comparison 

We adopt the time-space-processor (TSP) tradeoff as the criterion of evaluation of relevant algorithms[8]. 
Karnin’s parallel algorithm takes O(n2n/2) time to solve the knapsack problem with O(2n/6) processors and O(2n/6) 
shared space, resulting in a TSP tradeoff of O(25n/6)[9]. The TSP tradeoff of Ferreira’s parallel three-list algorithm in 
Ref.[15] is O(n2n). The parallel algorithm proposed by Amirazizi and Helman[8] runs in O(n2αn) time, 0≤α≤1/2, by 
allowing O(2(1−α)n/2) processors to concurrently access a list of the same size, hence the TSP tradeoff of this 
algorithm is also O(n2n). Ferreira’s parallel one-list algorithm in Ref.[9] solves the knapsack problem in time 
T=O(n(2n/2)ε), 0≤ε≤1, when P=O((2n/2)1−ε) processors and S=O(2n/2) are available. Therefore, it results in an O(n2n) 
TSP tradeoff. The TSP tradeoff of Chang et al.’s parallel algorithm[10] is O(29n/8), while the parallel algorithm Lou 
and Chang presented bears the same performance as Chang et al.’s algorithm[11−13]. In addition, both of the 
algorithms in Refs.[12,14] have O(2n) TSP tradeoff. 

In our parallel three-list six-table algorithm, following Theorem 1, we can get a TSP tradeoff of 
O(49n2/2304×2n/8×213n/48×27n/16)=O(25n/6). Among all algorithms that can be found in literatures, the TSP tradeoff of 
the algorithm proposed by Karnin[7] is the lowest, which is also O(n25n/6). However, it has obvious defects that it 
can’t reduce the execution time even in parallel, for it must take O(n2n/2) time to solve the knapsack-like problems. 
Although Ferreira’s parallel three-list algorithm is the first algorithm that can solve the knapsack-like problem with 
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less than O(2n/2) time when the available hardware is also less than O(2n/2), it does little in reducing the overall 
performance tradeoff because of its O(n2n) TSP tradeoff. In spite of the fact of our proposed algorithm is not cost 
optimal, it is both work and memory efficient. Moreover, our algorithm is based on EREW-PRAM model, so it can 
avoid memory conflicts when different processors access the shared memory. 

For the purpose of clarity, the comparisons of the mentioned parallel algorithms for solving the knapsack-like 
problems are depicted in Table 1. It is obvious that our parallel algorithm outtakes undoubtedly other parallel 
algorithms in the overall performance. 

Table 1  Comparisons of the parallel algorithms for solving the knapsack-like problems 
Algorithms Model Processor Time Memory TSP tradeoff 

1[7] CREW O(2n/6) O(2n/2) O(2n/6) O(25n/6) 

2[8] CREW O(2(1−α)n/2) O(2αn) O(2(1−α)n/2) O(2n) 
3[15] CREW O(2βn) O(2(1−ε/2−β)n) O(2εn/2) O(2n) 
4[9] CREW O(2(1−ε)n/2) O(2εn/2) O(2n/2) O(2n) 
5[10] CREW O(2n/8) O(2n/2) O(2n/2) O(29n/8) 
6[11] CREW O(2n/8) O(2n/2) O(2n/2) O(29n/8) 
7[12] CREW O((2n/4)1−ε) O(2n/4(2n/4)ε) O(2n/2) O(2n) 
8[14] EREW O((2n/4)1−ε) O(2n/4(2n/4)ε) O(2n/2) O(2n) 
Ours EREW O(2n/8) O(27n/16) O(213n/48) O(25n/6) 

Notations: 0≤ε≤1, 0≤α≤1/2, 0≤β≤1−ε/2. 

5   Conclusions 

Inspired by the ideas in parallel three-list algorithm[15] and serial two-list 2k-table algorithm[17], we propose a 
new parallel three-list six-table algorithm for solving the knapsack-like problems. Through dynamically producing 
the elements of the two lists with four priority queues and two sorted tables, we dramatically reduce the space 
requirements from O(27n/16) in parallel three-list algorithm[15] to O(213n/40). Moreover, the memory conflicts are also 
avoided by leaving different memory address segment for different processors, permitting the algorithm to be able 
to perform on EREW machine model. Performance comparison on the TSP criterion shows our proposed algorithm 
greatly outweighs the parallel algorithms presented by far, and thus it is an improved result over the past researches 
on parallel solution of the knapsack-like NP-complete problems. Since it can solve problems that are almost 1.6 
times as big as those handled by the previous algorithms, it may have some importance in research of cryptosystem. 

However, for NP-complete problems, we know that, unless NP = P, some exponential factor should appear in 
parallel solutions, either as the time complexity, the number of processors used or even as the memory 
requirements[19]. Therefore, even modern supercomputer can break 100-variable knapsack cryptosystem, but how 
about 120-variable or more? Perhaps, the DNA-based parallel computation may be a way to go out[20], so one of our 
future work is on how to combine the ideas in designing traditional algorithms and DNA methods to obtain new 
DNA algorithms; other possible work may be on how to design distributed algorithms on the grid sources to solve 
this kind of hard problems. 
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