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Abstract: This paper studies the Verifiable Signature Sharing (V2S) introduced by Franklin and Reiter, which
enables the recipient of a signature to share it among n proxies so that a subset of them can reconstruct it later. By
the use of secure distributed key generation based on discrete-log, threshold cryptosystems and verifiable secret
sharing scheme, new protocols for RSA VXS are presented. The protocols are efficient and provable secure and can
tolerate the malicious behavior of up to half of the proxies.
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1 Introduction

A VS protocol, which was introduced by Franklin and Reiter™, is divided into sharing phase and recovering
phase. At the end of sharing phase, each proxy can verify that a valid signature for the given document can be
reconstructed. At the end of recovering phase, such signature is reconstructed no matter what a malicious subset of
proxies may do. It could be widely applied in cash escrow, secure distributed auction and distributed cryptosystems
etc. For the instance of a secure distributed auction, bidders at an auction may be required to verifiably share

» Supported by the National High-Tech Research and Development Plan of China under Grant No.2006AA01Z434 (
(863)); the President’s Foundation of Graduate School, the Chinese Academy of Sciences under Grant No.yzjj2003010 (

)
Received 2004-09-30; Accepted 2005-07-28

© R

http:/ www. jos. org. cn




RSA 169

signatures on checks for the amount of their bids. In this way, it will be impossible for the winner of the bid to
default (since the proxies can reconstruct his check), while the payments of the loser will never be recovered. Some
efficient protocols were given for RSA, Rabin, EIGamal, Schnorr and DSS signatures respectively. But some of
them were broken later. In Ref.[2], based on the key generation protocol from Feldman's verifiable secret sharing
protocol (VSS) and threshold cryptosystems as we will show later, the new protocols for these signatures were
presented, which were efficient and provably secure and can tolerate a malicious sharer and the malicious behavior
of up to half of the proxies during sharing and reconstruction time. But Feldman-VSS assumes that the dealer is
never to be corrupted by the attacker. A distributed solution to this problem is the run of n parallel executions of the
Feldman-VSS as follows, called Joint-Feldman: For prime p and q with g|p-1, each player P; selects a random
secret zeZ, and shares it among the n players using Feldman-V SS. This defines the set QUAL of players that share
their secrets properly. The secret key x is set to be the sum of the properly shared secrets and each player can
compute his share of x by locally summing up the shares he received. The public key y can be computed as the

product of the public valuesy, = g* (mod p) . But Joint-Feldman was insecure (see Ref.[3]).

Our contribution is that we first modify the secure distributed key generation protocol to work over a
composite modulus, then construct a threshold cryptosystem and take advantage of the cryptosystem to obtain a new
RSA VIS protocol, which is efficient and provable secure and can tolerate the malicious behavior of up to half of
the proxies during sharing and reconstruction. The rest of the paper is organized as follows: In Section 2, we present
the communication and adversarial models and some primitive tools. In Section 3, we present a new ElGamal-based
threshold cryptosystem over a composite modulus. In Section 4, we give a new RSA VS scheme.

2 Preliminaries

2.1 The model

We assume there are three entities: the signer (usually called Bob), the recipient (Alice) and a set of n proxies,
Py,...,Pn. The VS protocol will be between Alice and the proxies and must not involve Bob. Each proxy P; has a
opened value, say i, to show his identity. We assume that Alice and the proxies are connected by a full network of
the private channels and a broadcast channel. All communications are synchronous. Moreover, there exists a static
adversary A who can corrupt Alice and at most t of the proxies. Once corrupting one, A can read his memory and
cause him to deviate arbitrarily from the protocol. The computational power of the adversary is specified by PPT
(probabilistic polynomial time) Turing machine.

2.2 Toolsand cryptographic assumptions

In the following, we assume N>>n to be a composite, product of two large safe primes p and g. We say p and q
are safe, if there exist two primes p’ and ' such that p=2p’+1 and g=2q'+1. We denote with #(N)=(p-1)(q-1)=4p'q’
the order of multiplicative group Z,, of the integers modulo N, relatively primeto N.

Lemma 2.1. Let N=pq, where p<q, p=2p'+1, g=2q'+1, and p,q,p’,q" are al prime numbers. Then, given an
element weZ, \{-11 such that ord(w)<p'c, either gcd(w-1,N) or gcd(w+1,N) is a prime factor of N.

By the lemma, we can assume in our protocols that any value @ found by a player who does not know the
factorization of N must be of order at least p'q’ except for {—1,1}. And given an element o of ord(w)e{p'q’,2p'q’},

then mfe(w) for any meZj . Let Gy be a random element in Zj,, G=G," (modN), where L=n!. Then G has

order p'q’ sinceL iseven.
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Pederson-VSS over Zy. Let G be an element in Z,, as above, and H be a random element in the subgroup

generated by G. It is assumed that the adversary cannot find loggH. Similar to that in Ref.[3], the dealer will share
the secret o over the integers since he does not know ¢(N). The coefficients of the sharing polynomial must be
chosen large enough to statistically hide information. Given a secret oe[-N?...,N%], the dealer chooses at

t _ t :
randomtwo polynomials f(z)=c+> a;z' and f'(z)=> bz’ with coefficients in [-L*N°,...,L°N], and gives
j=1 j=0
player P; a share oi=f(i) and the value 7=f'(i). Then he commits to each coefficient of the polynomials f and f' as
follows: He broadcasts the values f; = GYH" (modN) . This allows the players to check the received shares by

verifying that H,B}J =G7H" (modN) . At reconstruction time, the players are required to reveal both ¢ and r, and
i

the above equation is used to validate the shares. Note that the value of the secret is unconditionally protected since
the only value opened is 4, =G“H™(modN) . Similar to the proof of Feldman's VSS (see Ref.[1]), we have the
following result on Peder son-V SS over Zy.

Lemma 2.2. Peder son-VSS over Zy isaVSS of fault-tolerancet for any t, n such that n>2t.

Decisional Diffie-Hellman Assumption (DDH). Let N be as above, G a random element of Z,, and J=(G).
Consider the two probability distributions on Jx J3xJ defined as DH=(G? G°,G™)(modN) and #=(G? G",G%)(modN)
for a,b, and ¢ chosen randomly and uniformly in Zy. We assume that the two distributions are computationally
indistinguishable. It is obvious that this assumption relies on the hardness of computing discrete-logs.

ElGamal over a composite. We are going to use the following variation of EIGamal encryption scheme!*®
over a composite modulus. The public encryption key is EK=(N,Gy,G,Y), where N, G, and G are as the preceding.
Y=G*(modN) where XerZy is the secret decryption key. A message M is encrypted under EK by choosing a random
KerZy and computing A=GKX (modN) and B=Y“M(modN). The ciphertext is the pair (A,B). Decryption of a pair

(A,B) is computed by taking M = %m (modN) .

2.3 Verifiable signature sharing

VS consists of a pair of protocols (2Share, 2Recover) for Alice and the proxies. The input of XShare for all the
playersis a message m and the public verification key VK of the signer. The secret input for Aliceis a signature S of
m under the signer's key. The output of ZShare for each proxy P; is a value S, which can assume the special value
S=w denoting that the proxy has rejected the sharing. The protocol ZRecover is then run on the output of ZShare by
the proxies.

Definition 2.1. We say that VXS=(2Share,2Recover) is a verifiable signature sharing protocol with fault
-tolerancet if, for any adversary A that can corrupt Alice and at most t proxies, the following conditions are met:

. Completeness: If Alice is not corrupted, then the output of 3Share is a signature S on m under the
signer’s key VK.

. Soundness: If a good proxy P; outputs S=w at the end of 2Share, then each good proxy P; outputs S=«.
If S=w for good proxies, then the output of 2Recover is asignature Son m under the signer’s key VK.

o Security: Define the view V of the adversary A as the set of messages (including the broadcasted ones)
sent and received by the bad players during the >Share protocol. Then there exists an agorithm Sim
called the simulator which, on input m and VK and with black-box access to A, produces output strings
with a distribution which is computationally indistinguishable from V.

Remar k. We accept a negligible that these conditions are violated. Moreover, completeness means that if Alice

really shares the right signature, then, whatever the corrupted proxies do, the signature will be recovered at the end.
Soundness means that if Alice is malicious, then either she will be caught trying to cheat or she will share a valid
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signature anyway. Finally, security says that a run of XShare gives the adversary no information he could not
compute on his own from the message and the public key. In particular, no information about the signature Sis
revealed unless the scheme is not secure.

2.4 Threshold cryptosystem

With the preceding notations, a public key encryption scheme E is defined by three algorithms:

. Key Generation is a randomized algorithm that takes a security parameter as input and returns a pair
(Y,X) where Y is the public encryption key and X is the secret decryption key.

. Encryption takes as input a message M and public key Y and returns a ciphertext C=Ey(M).

. Decryption takes as input a ciphertext C=E(M) and the private decryption key X and returns M.

Threshold cryptosystems. A threshold cryptosystem T for E distributes the operation of key generation and

decryption among a set of n parties P,,...,P,. That is, Tg is defined by three protocols:

. T-Key-Gen: A randomized protocol that returns as public output the public encryption key Y and as
private output for player P; a value X; such that X,...,X, constitute a t-out-of-n threshold secret sharing
of X.

. Secret-Key-Gen: Each player P; takes as secret input his share X, following communication with the
other players (who hold the remaining shares of X), and generates X as public output.

. T-Decrypt: Each player P; takes as public input a ciphertext C=Ey(M) and X and returns as public output
the message M.

We say that threshold cryptosystem Tg=(T-Key-Gen,T-Decrypt) is secure with fault-tolerance t, if for any
adversary A that corrupts at most t players the following conditions must be met:

o correct key generation: T-Key-Gen generates keys with a probability distribution which is
computationally indistinguishable from Key Generation. Both T-Key-Gen and Secret-Key-Gen must
satisfies the following requirements:

C1. All subsets of t+1 shares from the honest define the same unique secret key X.
C2. All honest players have the same value of public key Y determined by X.

. correct decryption: On input C=Ey(M), T-Decrypt returns as output M.

. simulatability: Let V be the view of the adversary A during that protocol, which consists of the set of
messages sent and received by the corrupted players during a run of that protocol. Then there exists a
simulator Sim with black-box access to A which produces output strings with a distribution which is
computationally indistinguishable from V.

3 OntheThreshold Cryptosystem

In this section, we present a new ElGamal-based threshold cryptosystem over a composite modulus N, which
will be used in our RSA VZSlater, with the techniques appearing in Refs.[1,6].
3.1 Key generation protocol

We are now ready to show the distributed key generation (DKG) protocol for the later threshold scheme. The
general idea follows Gennaro et al.l¥ for the case of discrete-log cryptosystem over a composite modulus N. We

start by running a commitment stage where each player P; commits to two t-degree polynomials (t is the scheme's
threshold) fi(2), f,(z) which shares arandom value z, zZ contributed by P; to the jointly generated secret X and X'.

So the following properties from this commitment stage are required: First, the attacker cannot force a commitment
by a (corrupted) player P; to depend on the commitment(s) of any set of honest players. Second, for any
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non-disqualified player P; during this stage, there are unique polynomials f;, f/ committed to by P; and these
polynomials are recoverable by the honest. Finally, for each honest player P; and non-disqualified player P;,P; holds
the value fi(j), f,(j) at the end of this commitment stage.

To realize the above commitment stage, we use the information-theoretic VSS protocol due to Pederson, i.e.
Peder son-VSS7. At the end of this commitment stage, the secret key X is determined and no later misbehavior can
change it. Most importantly, this guarantees that no bias in the output X or Y of the protocol is possible, and it allow
us to present a full proof of security based on simulation. Once X is fixed, the players could compute Y=G*(modN).
The protocol Key-Gen appearsin below:

Algorithm 1. Protocol Key-Gen.

Input for all players: A composite N as above. An element G e Z,, , constructed by taking a random element
G, €Z;, and setting G:GOL3 (modN) . For an element He(G), assume that it is impossible for the adversary to
find loggH.

Generating X:

1. Each player P; performs an unconditionally secure VSS of arandom number zeg[-N?,...,N?] as adedler:
(@ P chooses two random polynomials fi(z) and f,(z) over [-L?N3,...,L°N% of degree t: fi(2)=a+
az+...+a,Z and f/(z)=b,+b,z+..+b,z'. Let Lz=a,=f(0) and z =h,= f/(0). P, broadcasts
C, =G*H™ (modN), where k<t. P; computes the shares s;=fi(j) and s; = f(j) for j=1,2,...,n
and sendss; and s, to player P;.
(b) Each player P; verifies the shares he received from the other players. For each i=1,2,...,n, P; check
if
GYHY = cmf[ciikk (mod N @)

k=1
If the check fails for an index i, P; broadcasts a complaint against P;.
(c) Each player P; who, as a dedler, received a complaint from player P; broadcasts the values s; and
s, that satisfy Eq.(1).
(d) Each player marks as disqualified any player that either
° Received more than t complaintsin Step 1(b); or
e  Answered to acomplaint in Step 1(c) with values that falsify Eq.(1).
2. Each player then builds the set of non-disqualified players QUAL (In fact, all honest players build the
same set QUAL).
3. The distributed secret value X is not explicitly computed by any player, but it equals X = Zzi . Each

icOUAL

player P; setshis share of thesecretas x = s, ;X = > s and {Ci— [[G"H® |1sisn}.

jeQUAL jeQUAL jeQUAL
Extracting Y=G*(modN):
4.  Each player P;, ieQUAL, exposes Y, =G?%(modN) .

(8) Each player P, ieQUAL, broadcasts A, =G%* (modN) for k=0,1,....t.
(b) Each player P; verifies the values broadcast by the other players in QUAL, namely, for each
i€QUAL, P; checksiif

t B
G" =] Al (modN) ®)
k=0
If the check fails for an index i, P; complains against P; by broadcasting the values s; and s that satisfy
Eq.(1) but do not satisfy Eq.(2).
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(c) For players P; who receives at least one valid complaint, i.e. values which satisfy Eq.(1) but do not
satisfy Eq.(2), the other players run the reconstruction phase of Pederson-V SS to compute Lz,fi(2)

and A for k=0,1,....t. For al playersin QUAL, set Y, = A, =G% (modN) . Compute Y = HYi(modN) .

icQUAL

So the public key isset to be Y.
3.2 Secret decryption key generation protocol

We now show the secret decryption key generation protocol in below. The approach is the same as the
reconstruction phase of Peder son-VSS.

Algorithm 2. Protocol Secret-Decrypt-Key-Gen.

Input for all players: The public input and output of Key-Gen, { Cj|1<i<n}, GoL2 =G, and H.

Private Input for player P;: The secret output of Key-Gen, i.e., (X;;X).

1. Each player P;eQUAL broadcasts (G;H”)(modN) and proves L-logG +logH> =logC, to each
player P,e QUAL in Zero Knowledge (ZK) (see Ref.[7]). Set A =G (modN) .

2. If the proof fails for an index j, P; broadcasts a complaint against P;.
Each player P; accepts those for which at most t complaints are broadcast. Take t+1 accepted value A
and evaluate interpolation coefficients A;; to compute A* =G =[] A" (modN) . So secret decryption

key AX(modN) is obtained.

Theorem 3.1. TEG:=(Key-Gen,Secret-Decrypt-K ey-Gen) is a secure key generation protocol for threshold
cryptosystem over a composite with fault-tolerance t for any t and n such that n>2t.

Proof: We first prove that the distribution of the public key generated by the protocol is“amost” the same as
if it was generated by a centralized user. The distribution of Y is induced by that of X(mod#(N)). In the centralized
case, X is chosen in Zy with uniform probability. This results in a distribution statistically close to uniform for Y. So
we need to prove that, when X is generated by the protocol, X(modg(N)) has a distribution which is also statistically

close to uniform. Notethat X = Zzi . Since some of the z’s are under the control of adversary, we can set X=X+
icQUAL

Xu(modg(N)), where X, is chosen by the adversary while Xy is determined by the honest. Note that X, can follow
any distribution, but it isindependent of Xy, since the adversary decided on it at the end of step 1(c) when she has no
information about that of the honest. Thus we can consider X, as a constant. Now it is enough for us to prove that

Xy is distributed almost uniform over Z,y). W.l.o.g., we assume the first t+1 players are honest, then
t+1
Xy = ZZi (modg(N)) . For any values u; and u, in Z ), we can assume that there exists vector (z,...,z.1) such that
i=1
t+1
W =Yz (modg(N)), where ze[-N?....N?, then (zy,...,z41-Us+U,) can generate U,. It is easy to verify that this

i=1
vector is legal if and only if Pr[|z,, > N?—g(N)] <%N . Note that we can fix any components of the vector, we
get |Pr[X, =u]-Pr[X, =u,]k (%N)”l. So the difference between the distribution of Xy and the uniform over
Z,n iS at most (%N)t , which is negligible.

For T-Key-Gen and Secret-Key-Gen, similar to the general t-out-of-n threshold secret sharing scheme (see
Ref.[3] and therein references), we know that it satisfies C1 and C2. Now we show simulation of the protocol.
Assume w.l.0.g. that A corrupts players Py,...,P, B={1,...,t} and 3={t+1,...,n}, the indices of the honest. The

simulator Sim works as follows.
The simulation of a run of Key-Gen. During the run of Key-Gen, A sees the following probability distribution

© DEEREBAAAIFUN bt/ www. jos. org. cn



174 Journal of Software Vol.1,8 No.1, January 2007

of data produced by the uncorrupted players:
. Values {s;,s;|ie3,jeB} uniformly chosenin Zy.
. Values Ciy,Aix,i € F,k=0,...,t corresponding to coefficients of randomly chosen polynomials and for which
Eq.(1) and Eq.(2) are satisfied for all jeB, and {ci [16%H® |1<i< n}.
jeQUAL
The simulator Sim with input Y performs Step 1(a)~Step 1(d), Step 2 on behalf of the uncorrupted players
Pi.1,...,Pn exactly asin Key-Gen. This includes receiving and processing the information sent privately and publicly

from the corrupted to the honest. At the end of Step 2, the following holds in addition to what A sees as above:

. The set QUAL is well defined. Note that ScQUAL and that polynomials fi(2), f(z) for ie 3 are chosen
at random.

. Sim knows all polynomials fi(2), f/(2) for ieQUAL. In particular, he knows al the shares s, s;, the
coefficients ay, bjx and the public values Cjy.

So simulator Sim performs the following computations:

e  Compute A, =G* forieQUAL\{nN}, k=0,...,t

e Set Ay=Y" J]A;(modN) andassign s, =s, = f,(j) forj=1,...t

icQUAL\ n}

t *
. Compute A, = (A:O)’lkol_[(Gs*i Y% for k=1,...,t, where A, ’s are the Lagrange interpolation coefficients.
i=1

Here we must note that all exponents are integer since G = GOL3 (modN) and L=n!.

Then Sim performs Step 4(a)~Step 4(c). But we must note that the above distribution of valuesis characterized
by the choice of polynomials fi(z), f(z) for ie3\{n} and f,(z) as random independent t-degree polynomials
over Zy, and of f(2) as auniformly chosen polynomial from the family of t-degree polynomials over Zy satisfying

f,(0)=L-logs Y~ f,(0) =logg Ayo(modN) ©)

ieQUAL\{ n}

Now we show that the probability distribution output by Sim isidentical to the above distribution of A. Note
that the above distribution depends on the set QUAL defined at the end of Step 2 of the protocal, since all Sim’'s
actions performing Step 1, Step 2 are identical to the actions of the honest interacting with A in a real run of the
protocol, we know that the set QUAL is defined in this simulation step identically to that in the real. Now we
describe the output distribution of Sim by modifying some notations as follows:

For ieA\{n}, set f to f, and f" to f/. For i=n, define f  via the values f,(0)=logs A, and

fo(i)=s;=f.(i), j=1....,t. And f" is defined via the equation: f,(2)+df, (2)=f,(2)+df; (2)(modN),
where d=loggH. By this definition, we can see that all the values of these polynomials evaluated at jeB coincide
with that in Step 1. Also, the coefficients of these polynomials agree with exponentials Cix published by the
simulated honest in Step 1 as well aswith Ay, ie A{n} and A, published by the simulator on behalf of the honest
corresponding to that in Step 4a. Hence, all these values pass the verifications of Eq.(1) and Eq.(2) asin the real. So,
we only need to prove that polynomials f and f” belong to the right distribution. Indeed, for ie A{n}, it is
immediate by the definition. For f,, at points j=1,...,t, it evaluates to random value Sy, While at 0, it evaluates
logs A, satisfying Eq.(3). Moreover, by the definition of f,” as above, and note that f is chosen as a random
and independent polynomial in Step 1, sois f,”. So the output of the simulation is clearly Y, and the simulated
view of the adversary isidentically distributed to that of the real for Key-Gen.

The simulation of a run of Secret-Decrypt-Key-Gen. With G; and H as input and output AX(modN), Sim
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evaluates interpolation coefficients { Ay]i=1,...,t+1}. For Py, he broadcasts the values G+ = A (modN) .

HGlxi}m
i<t

Repeat this operation, for each player P;, i=t+2,...,n, Sim can broadcast Gf . Hence, for constant 1, we have
Gf =G, By the same method, Sim can broadcast H “(modN) for i=t+1,...,n and have the similar property. So

it is easy to see that the simulated view is identically distributed to that of the real. This completes the proof.
4 RSA Verifiable Signature Sharing Scheme

In this section, we will present a RSA VZS scheme in below, where we take full advantage of the distributed
key generation of the preceding protocol. The key is generated distributively by proxies instead of Alice. This will
also allow for avery efficient verification that the ciphertext contains the required signature. Indeed, the proxies can
verify that the signature is contained in the pair (As,Bs) in the following protocol correctly by checking that

BVB B (YKS)VB - YKVB SVB -
S (Aés)xf — /GK)XL%B = KKVB =m(modN) 4

Algorithm 2. Protocol RSA VS

Input for Alice: The message m, Bob’'s RSA public key (N,vg), the signature Son m, i.e. a value such that
m=S"(modN) .

RSA-ZShare:

1.  Alice sends to proxies the message m, Bob’s RSA public key (N,vg) and arandom valuereZy.

2. The proxies run Key-Gen on input N and the bases Go=m'(modN), G :GoLg(mod N) and He(G). They

return to Alice the public key Y=G*(modN).
3. Alice encrypts S using the EIGamal encryption scheme with public key (N,G,,G,Y). That is, she

generates a random number KeZy and computes Ag =G<§<L2 (modN) and Bs=Y“S(modN). Alice sends
(As,Bg) to all proxies.
4. The proxies run the Secret-Decrypt-Key-Gen to get A . Then, on the pair (AS“®,B¥), they

VB
compute BS/ASLXVB . If the output is m, they accept; otherwise reject.

RSA-ZRecover: The proxies run Secret-Decr ypt-K ey-Gen on the pair (AgBg) to get A . Then S= %L .

Theorem 4.1. Under the Decisional Diffie-Hellman assumption modulo a composite, the protocol RSA V3Sis
a secure V2Sprotocol for RSA with fault-tolerancet for any n, t with n>2t.

Proof: It is easy to see that the correctness of Secret-Decrypt-Key-Gen results in RSA VIS's correctness
and soundness. And Eq.(4) is a necessary and sufficient condition for (As,Bs) to decrypt to the signature. So either
al the proxies reject if Eqg.(4) is not satisfied, or they will al accept when the signature will be decrypted
successfully at the end of RSA-2Recover.

Now we only need to prove the security of this scheme. W.l.0.g., assume that adversary A corrupts proxies
Py,...,P;. The simulator Sim works on input m and (N,vg), but not the signature S:

1. Sim just sends m, (N,vg) and arandomly chosen f to the proxies.

2. Sim runs Key-Gen for the good proxies, where the bases are set to be G=m' (modN) and H e(é). At
the end, the values éi =GYHY are public and Sim knows the shares (X,X) of the secret key of all proxies.

3. Sim encrypts the value 1 by choosing a random K e Z, since he does not know S and broadcasting
A, =GX(modN) and Bg =YX (modN).

4. At this point the proxies runs Secret-Decrypt-Key-Gen on A’ = AS and H . In order to get m as the
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result, Sim hasto cheat as follows:
Note that he knows A =(A')* for 1<i<t and interpolation coefficients 4; for al i and j, and each proxy

broadcasts A" and provein ZK (see Ref.[6]) that it is correct with respect to éi . For any t+1 proxies R ,..,R .,
the simulator will broadcast A]f for je{is,....i} and prove their correctness in ZK. Then for B, he broadcasts
. _BP

Aul -

s » Whose correctness will be proved in ZK either.
m [ J(A™)™
ih<j<iy

So the differences between the simulated view and the real are as follows:
i) Inthe real execution (As,Bs) is an encryption of S, while in the simulation, (AS, és) is an encryption of 1.

ii) In the real execution, (Gf,G**=A,, A% =G**) is a DiffieHellman triplet. In the simulated
execution, (A =GX ,é**l,All) isone.

If we distinguish between the real view and the simulated view, then we could distinguish either of the above
two cases. It is easy to see that this contradicts the DDH assumption. This completes the proof.

5 Conclusions

We present a new, efficient and provably secure V2S protocol for RSA signature scheme against static active
adversary with a negligible probability, which substantially puts forward both theory and practice in this field.
Indeed it could be widely applied in cash escrow, secure distributed auction, and distributed cryptosystems etc., and
achieves best-possible robustness at present. Although there are some efficient protocols given for RSA, Rabin,
ElGamal, Schnorr and DSS signatures, their RSA and Rabin V.S protocol s were subsequently broken'?. Catalano et
give a new scheme based on key generation protocol from Feldman's verifiable secret sharing protocol (VSS) and
threshold cryptosystems, but as we had shown that Feldman's verifiable secret sharing protocol is not secure. In
view of this, our protocol is more secure and as practical as their. Of course, our scheme is complicated and
unfavorable to application to some extent, so it may be an interesting problem to find more simple and practical,
secure VS protocol.

References:

[1]  Franklin m, Reiter M. Verifiable signature sharing. In: Proc. of the Eurocrypt’95. LNCS 921, Springer-Verlag, 1995. 50-63.

[2] Catalano D, Gennaro R. New efficient and secure protocols for verifiable signature sharing and other applications. In: Proc. of the
CRYPTO' 98. LNCS 1462, Springer-Verlag, 1998. 105-120.

[3] Gennaro R, Jarecki S, Krawczyk H, Rabin T. The secure distributed key generation for discrete-log based cryptosystems. In: Proc.
of the EUROCRY PT’99. LNCS 1592, Springer-Verlag, 1999. 295-310.

[4] DiffieW, Hellman ME. New directions in cryptography. |EEE Trans. on Information Theory, 1976,1T-22(6):644-654.

[5] ElGamal T. A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. on Information Theory,
1985, 1T-31(4):469-472.

[6] Gennaro R, Jarecki S, Krawczyk H, Rabin T. Robust and efficient sharing of RSA functions. In: Proc. of the EUROCRY PT’ 96.
LNCS 1109, Springer-Verlag, 1996. 157-172.

[7]  Pederson T. Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum J, ed. Advances in
Cryptology CRYPTO’91. LNCS 576, Berlin: Springer-Verlag, 1991. 129-140.

LU Kewei was born in 1970. He is an
associate professor at the Graduate School
of Chinese Academy of Sciences. His
current research areas are complexity
theory, secure protocols, signature, and
zero knowledge proof.

© hEE

AT hupy/ www. jos. org. cn




	Introduction
	Preliminaries
	The model
	Tools and cryptographic assumptions
	Verifiable signature sharing
	Threshold cryptosystem

	On the Threshold Cryptosystem
	Key generation protocol
	Secret decryption key generation protocol

	RSA Verifiable Signature Sharing Scheme
	Conclusions

