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Abstract: The structure of feedforward inverses is a fundamental problem in the invertibility theory of finite
automata. The characterization of the structure of feedforward inverses with delay steps >3 is a long-term unsolved
problem. This paper deals with this topic. For a binary weakly invertible semi-input memory finite automaton
C(M,,f) with delay 3, where the state graph of M, is cyclic, the characterizations of the structures are given when its
minimal 3-output weight is 1, 2, and 8, respectively. Because C(M,,/) is weakly invertible with delay 3 iff it is
weakly inverse with delay 3, a partial characterization of the structure of binary feedforward inverses with delay 3is
obtained.
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1 Introduction

A semi-input memory (SIM) finite automaton (FA) is called feedforward inverse if it is weakly inverse¥. A
fundamental problem of feedforward inverses is to characterize their structures?. However, this is not trivial. The
previous systematic results on this topic are in the case of delay steps <2, while keeping unsolved for the case of
delay steps >3 for along-term. This paper studies the structure of binary feedforward inverses with delay 3.

Reference [6] shows that the binary weakly invertible(WI) SIM finite automata C(M,,f) with delay 3, where the
state graph of M, is cyclic, can be divided into four classes by the minimal 3-output weight ws,,, i.€., wz =1, 2, 4,
8. Because the binary WI finite automata with delay 3 and the weak inverse finite automata with delay 3 are the
same in some sensé®, we investigate the structure of binary feedforward inverses with delay 3 via WI finite
automata in case of ws,,=1, 2, and 8, respectively, and give their corresponding characterizations.

We briefly recall some definitions and notations. Let M=(X,Y,S,5,4) be an FA, seS. If for any a=xgx;...x; in X*
of length /+1, xo can be uniquely determined by s and A(s,a), then s is called a < I-step state, I>0. If s isa < [-step
state and not a < (/-1)-step state, then s is called an I-step state. Especially, if s is a < O-step state, then s is called a
0-step state. Denote So={s|s €S, |W3“_f |=ws s} . Throughout this paper, an FA M is referred to M=(X,Y,S, 6,4), which
has the property of |X|=|Y|=2. C(M,)=(X,Y,XxS,,6,4) is called a c-order SIM FA, if &(x_...,Xx 1,5.).X0)=
(Xer1r o X0:04(50))s Ay X_1,80):%0) =X ey - - X0 Aa(S4)), Where M,=(S,,Y,,5,, A,y iS an autonomous FA, f is a
mapping from X**x1,(S,) to Y. M, is called cyclic, if So={Sats- - Sanats Oa(Sai)=Sa 1 for i=1,...,n,—1,8,(S4na)=Sa1,
and A,(s,)=s, for any s,eS,. For those terminologies not explained here, readers are referred to Refs.[1,8].

2 Binary WI SIM Finite Automata with Delay 3 of Which w3 =2

Let 2 stand for the condition: Let M be an WIFA, w;,=2, s; and s;; be the successor states of seS; and s;
(ij=1,2), respectively, s1#so.

Lemma 1. Assume that 22 holds. If s is a O-step state, then | A(s;,X)[=|A(s;;,X)|=1, A(s;1,.X)=A(s:2.X).

Proof. Since s is a 0-step state, |A(s,X)|=2. Since seSo, [A(s,X)|=A(s;,X) =1, Alsi1,.X)=A(s:2.X) (i,/=1,2).

Lemma 2. Assume that 2 holds, then s is a 1-step state iff |A(s,.X)[=|A(s;, X)|=1 (i=1,2), A(s1,X)#=A(s2,X).
Furthermore, |A(s;;,X)|=1, A(s;1,.X)=A(s:2.X) (ij=1,2).

Proof: “<" It is obvious. “=" Since s is a 1-step state, |A(s,X)|=1. First, |A(s;,X)|=1 (i=1,2) (Otherwise, there
exist xox; and xpx; such that A(s,xex1)=A(s, xgx; ), Xo# x5, a contradiction). By the definition of 1-step state,
AMs1.X)#A(s2,X). Sincese Sy, |As;,X) =1, A(si,.X)=Als2.X) (ij=1,2).

Lemma 3. Assume that €2 holds, then s; is a 0-step state iff s, is a O-step state.

Proof: Since seSy, using Proposition 2 in Ref.[6], s;€Sy (i=1,2). By symmetry we need only to prove “=".
Suppose that s; is a O-step state while s, isn't. By Lemma 1, s isn't a O-step state. Thus A(s1,.X)=Y, |A(s2,X)|=
|A(s,X)|=1. Since s€So, [A(s2:.X)|=1 (i=1,2), Als21,X)=A(522,X). Note s,€ S0, U; j=1,24(52;:,X)=Y. Since A(s2,X)cA(s1,X),
there exists x;eX such that A(sq,x1)=A(sp, x7) for any x; eX. Denote s11;=8(s1,x1). Since seSo, A(s21,X)=A(s22,X)=
{A(s11,%2)} . Lét 5111=(s11,x2), then A(s111,X)C; j=124(52;,X). There exist xzand x; such that A(s111,x3)=A(s2;, X3 ).
Let 51=8(s,xq), 52=3(s, X4 ), S2;=NS2i, X5), Xo# Xg . Then As,xox1xax3)=A(s, xgx1x5x5 ), Xg# X, Which contradicts that M
isweakly invertible with delay 3. Hence “=" follows.

Lemma 4. Assume that 2 holds, then s is a 2-step state iff (@), (b) and (c) hold, where (a) |A(s,X)|=1; (b)
|A(s:X)[=1 (i=1,2), Als1,.X)=As2,X); (C) [Als1,X) =1 (1j=1.2), Alsi1.X)=As:12:X) (i=1.2), Als11,X)#A(s22.X).

Proof: “<" Itisobvious."=" Sinces is a 2-step state, |A(s,X)|=1. (a) Follows; (b) Suppose that |A(s;,X)|=1 for
some ie{1,2}, then s;is a O-step state. By Lemma 3, s; and s, are 0-step states. Thus A(s1,X)=A(s2,X)=Y. Then there
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exist x3, x; €X such that A(syx1)=A(s2, x7). Let s13=6(s1.x1), 521=(s2, x7). Since seS,, by Lemma 1, there exist
X2, x5 €X such that A(s11,x2)=A(s21, x5). Let s1=(s,x0), s2=(s, x5), X% xg. Then A (s,xoxixz)= A (s, Xox1x5 ), Xo# X5, &
contradiction. Thus |A(s;,X)|=1 (i=1,2). Since s is a 2-step state, by Lemma 2, A(s1,X)=A(s2,X); (C) Since s is a 2-step
state, using (a) and (b) |A(s;,X)[=1 and A(s;1,X)=A(s;2.X) (i,j=1,2). Note s€So, A(s11,X)#A(s22,X). Thus (c) follows.

Lemma 5. Assume that Q holds. If s is a 3-step state, then s, is not a 2-step state.

Proof: Suppose that s,is a 2-step state. By Lemma 3 s, is not a O-step state, then |A(s,,X)|=1. Since s is not a
1-step state, by Lemma 2, |A(s,X)|=|A(s;,X)|=1 (i=1,2) and A(s1,X)=A(s2,X). Since s; is a 2-step state, by Lemma 4,
[A(s1:X)1=1 (7=1,2), A(s11,X)=Als12,X) and ©; ;=1 pA(s1,,X)=Y. It is easy to see whether sy, is a O-step state or not,
Ms511,X)=AU(512,X) U521, X) UA(s22,X)=Y. Thus there exist x, and x, such that {A(sz, x5)}=A(s11,X)=A(s12,X) for
some ke{1,2}. Let sp1=d(sp x3), SINCE ASz1, X5 ) € Y=U; =1 2A(51;,X), there exists xzeX such that A(sya, x3)=
A(syjx3) for some ije{1,2}. Let s1=(s,x0), 52=0(s, x5), S1,=s1,%1), Su=(s2, X1 ), S1;=(S1:%2), Xo# xg. Then
As xox1x2x3)=A(s, xx1X5X3 ), Xo# Xo, Which contradicts that s is a 3-step state.

Lemma 6. Assume that (2 holds. If s, is a O-step state, then s is a 3-step state, |A(s;,X)|=|A(s;.X)[=1 and
AUsij1X)=Alsy2.X) (ij,k=1,2). Denote {ei}=As11.X), {ex}=Als12.X), {es}=As21.X), {ea}=A(s22,X), {es}=As111.X),
{eg} =A(s121,X), { €7} =A(s211,X), { eg} =A(s221,X), then the following statements hold. (1) If A(sy,x)=A(s2.x’), then e;=e3,
eszer; (2) er=e; iff es=ey, and if ej=e;, then ej=e,=ez=¢y; if eje,, then A(s1,x)=A(s,,x) iff e1=es; (3) es=eg iff e;=es.
And if es=eg, then eszey; if es#es, then esze; iff A(s1,x)=A(s2,x") and e;=e3, where s1;=(s1,x), s21=(s2,x').

Proof. Since sy is a O-step state, by Lemma 3, s, is a O-step state. By Lemma 1, [A(s;,X)|=[A(s;.X)|=1,
A1 X)= Asy.X) (i,k=1,2). Since M is WI with delay 3, s is an [-step state (0</<3). By Lemmas 1, 2and 4, s isa
3- step state. Assume A(s1,x)=A(s2,x"), and let s11=0(s1,X), s21=Ks2,x"). Since s€Sy, e1=e,. Since s is a 3-step state, es
#e7. Thus (1) follows.

(2) By symmetry we need only to prove “=". Suppose e;= e, and ez #e4, then | stf |=3. This contradicts sSp.
Thus “<"follows. Clearly, by (1) if e;=e, then e;=e,=e3=e4. Let ej#e,, e1=es, then esze,. Now suppose A(syx)#
As2,x"), where s11=8(s1,x), 521=6(s2,x"). Then A(s1,x)=A(s2, x" ), x'= x" . Using (1), e1=e4. Thus es=¢,, a contradiction.
Combining with (1), A(s1,x)=A(s2.x") iff e;=e3.

(3) By symmetry we need only to prove “=". Suppose es=eg and e;#eg. Since es=ege{es,eg}, es=eg=e7 OF eg.
Without loss of generality, let es=eg=e;. Let s11=8(s1,x), $1o=(51,X1), $21=(s2,x"), x#x1. By (1), A(s1,x)#=A(s2,x"),
As1,x1)#A(s2,x"). Thus A(so,x") 2 { A(s1.x), A(s1,x1)} =Y, a contradiction. Thus “<"follows. Since s is a 3-step state,
clearly, if es=eg then esze;. Now assume eszeg. TO prove “<”, it is immediate from (1). To prove “=", suppose
es#eq, As1,x)#A(s2,x"), where s11=8(s1,X), 521=(s2,x"). Then eg=e;. Let s15=8(s1,x1), x1#x. By (1), A(s1,x1)#A(s2,x").
Thus A(s1,x1) 2{ A(s1,x),A(s1,x1)} =Y, a contradiction. Combining with (1) “="follows.

Lemma 7. Assume that 2 holds. If s;is a 1-step state, then s is a 3-step state, s, is not a 0-step state, |A(s1,X)|=
|A(s1:,X)|=| A5 1X)[=1 @and A(s1j1,X)=A(s12,X) (,k=1,2). Furthermore, (1) and (2) hold. (1) If some sy is not a O-step
state, then s, is a 1-step state, |A(s2,X)|=A(s2;,X)|=|A(s20X)|=1 and A(s21,X)=A(s22.X) (7,k=1,2). Denote { e;} =A(s11,X),
{ea}=As12.X), {ea} =Als21,X), {ea} =AUs22.X), {es}=As5111.X), {ee} =A(s120,X), {7} =A(5211.X), {eg} =A(5221,X), then (a)
If e;=e3 then esze;; (D) es=eg iff e;=eg. And if es=egthen eszes; if eszes, then e;=es iff eszes; (2) If some sy is a
O-step state, then s, is a 3-step state, s is a O-step state (j=1,2), |A(syX)|=1 (j,k=1,2). Denote {eg}=A(s211,X),
{e1}=Us221.X), {en}=AUs212.X), {e1}=A(s222,X), l€t e1=A(521,x)=A(s22,x"), then (a) eszeq, eg=e1o, en=e1p, Where
§211=0(521,X), S201=N(s22:x"); (D) es=eg iff eg=ej9=e11=e1,. And if es=eg, then eszeq; if eszes, then e;=A(s21,x)=A(s20,x")
iff eszeq.

Proof: Since s; is a 1-step state, by Lemma 3 s, is not a O-step state, then |A(s.,X)|=1, by Lemma 2,
[A(s1.X) = As 1, )I=|A(SyeX)I=1 and A(Sy1,.X)=A(Sy2,.X) (,k=1,2). Since M is weakly invertible with delay 3, s is a

© PEBREBALTU bt/ www. jos. org. cn



[-step state (0< < 3). By Lemmas 1, 2, and 4, s is a 3-step state. Then |A(s,X)|=1. By Lemma 2, A(s1,X)=A(s2,X).
Since seSy, by Proposition 2 in Ref.[6], s2€So.

(1). Assume some sy is not a O-step state, by Lemma 3, s, is not a O-step state (j=1,2), then |A(s;,X)|=1 (j=1,2).
Suppose s, is not a 1-step state. Note s,€80, U j=124(s2;,X)=Y, then {es,es} c\; ;=1 24(s2;,X). On the other hand,
Ms1.X)=A(s2.X)cY={eq,e5} . Then there exist xorpxoxzand xpxjxox; such that A (s,xoxxoxa)=A(s, xgx1x5x3 ), Xo# Xg, &
contradiction. Thus s,is a 1-step state. By Lemma 2, [A(s2,X)[=|A(52,X) |=| A Sy, X) =1, ASp0.X)=USp2:X) (.k =1,2),
and A(s21,X)#A(s2,X). Since s is a 3-step state, it is easy to see that (a) follows; (b) By symmetry we need only to
prove “=". Suppose es=es, ei#eg, then es=ege Y={e7,eg}. Thus es=es=e; or eg. Without loss of generality let
es=eg=e7, then ej#es, er#es, i.e., ezg{erex} =Y, a contradiction. “<” follows. Since s is a 3-step state, by its
definition, it is not difficult to see that the remainder of (b) hold.

(2). Assume that some sy is a 0-step state, by Lemma 3, s,; is a O-step state (j=1,2). By Lemma 1, |A(s2;.X)|=1
(7,k=1,2), by Lemma 6, s, is a 3-step state. Let e;=A(s21,x)=A(s22,x"). Since s is a 3-step state, es#eq. By Lemma 1,
eg=eq0, en1=e1r, Where S,11=8(S1,x), Sp21=(Sp2x'). Since eg=eqo, enn=e1n, t0 prove “=", sSUPPOSe es=eg, eg#e11,
then es=ege{eg.e11} =Y. On the other hand, {ej,es}=A(s21,X)=Y. There exist xoxxox3 and xyx;x5,x; such that
As xox1x2x3)=A(s, Xgx1x5x3 ), Xo# Xg, @ contradiction. Thus “="follows. By the same arguments “<"follows. Since s
is a 3-step state, clearly, if es=egthen eszeg. Now assume es#eg, by the same arguments as Lemma 6, the remainder
of (b) hold.

Lemma 8. Assume that £2 holds. Then s, s; (i=1,2) are 3-step states iff s, is a O-step state (i,/=1,2). Assumes, s;
(i=1,2) are 3-step states, then |A(s;.X)=1 (i/,k=1,2). Denote { e} =A(s;.X) (i/,k=1,2), then (8) e;11=e;1 iff e1=ei
(i=1,2); (b) eim=eip=ein=eiz iff ern1=erip=exi=ezn. If ern=ei;=ei1m=eir, then ep#ers; if einzerns, then
As1%)=AUs20,x") TTF €117 €.

Proof: “=" Sinces, s; (i=1,2) are 3-step states, |A(s,X)|=|A(s;,X)|=1 (i=1,2), A(s1,X)=A(s2,X). Since seS,, by
Proposition 2 in Ref.[6], s;€S, (i=1,2). By Lemma 3, we consider three cases. Case 1. s;is a 0-step state (i,/=1,2);
Case 2. s; (i,y=1,2) are not O-step states; Case 3. Some s, is a 0-step state while some s, is not a 0-step state, m=n.
Next we prove Cases 2 and 3 don’t occur. Suppose Case 2 holds. Since s; (j=1,2) are 3-step states, by Lemma 2,
Asi1.X)=A(s,2,X) (i=1,2). Note seSy, by Lemma 4, s is a 2-step state, a contradiction. Suppose Case 3 holds and let
s, be a O-step state, s, not be. Since s, is a 3-step state, A(s,1,X)=A(s,2,X). Note s,€So, U; 4=12A(s4nX)=Y. Clearly,
A8, X)= A8, X) Y= A1, X) = A m2,X), ASimjin X)) p=1,2A(8,5,.X). There exist xoxpxoxs and xgxixsx; such that
A(sXoxaxaxg)=A(s, xox1x5X3 ), Xo# Xg, @ contradiction. Thus “="follows. To prove “<”", assume that s;is a O-step
state (i,j=1,2). By Lemma 6, s; (i=1,2) are 3-step states. Since s is an /-step state (0</<3), by Lemmas 1, 2, and 4, s
is a 3-step state. Assume that s, s; (i=1,2) are 3-step states, then s; (ij=1,2) are O-step states, by Lemma 1,
[A(s;#:X)1=1 (i,/,k=1,2). (@) It isimmediate from Lemma 6. (b) By the same arguments as Lemma 7, (b) follows.

Lemma 9. Assume that £ holds. If some s, is a 0-step state, then s and s,, are 3-step states, s, is a 1-step state
or a 3-step state (m=n).

Proof. Assumethat s,, is a O-step state, by Lemma 6, s,, is a 3-step state. By Lemma 3, s, is not a O-step state.
Since M is weakly invertible with delay 3, s is an [-step state (0</<3). By Lemmas 1, 2, and 4, s is a 3-step state.
Since s, is an [-step state (1</<3), by Lemma 5, s, is not a 2-step state. Therefore by Lemmas 7 and 8, s, is a 1-step
state or a 3-step state.

Lemma 10. Assume that £2 holds. Then [A(sy,X)[=1 (=1,2) and A(s11,X)=A(s12,X) iff [A(s2,X)=1 (=1,2) and
As21,X)=A(s22,X).

Proof: By symmetry we need only to prove “=". Assume that |A(s1,X)|=1 (=1,2), A(s11.X)=A(s12.X). By
Lemma 2, s;is not a 1-step state. Next we consider three cases of s1. Case 1. s;is a 0-step state. By Lemma 6, the
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conclusion follows; Case 2. s;is a 2-step state. By Lemmas 1, 2, 4, and 5, there are three subcases of s to discuss: s
is a 0-step state or a 1-step state, or 2-step state. It is immediate from Lemmas 1or 2, or 4, respectively; Case 3. 51is
a 3-step state. By Lemmas 1, 2, 4, 7, and 8, there are three subcases of s to discuss: sis a O-step state or a 1-step
state, or 2-step state. It isimmediate from Lemmas lor 2, or 4, respcectively.

Lemma 11. Assume that £ holds. Then [A(s1;,X)[=1 (ij=1,2) and A(s111,X)=A(s112,X)=A(5121,X)= (5122, X) iff
[A(s2,X)1=1 (ij=1,2) and A(s211,X)=A(5212,X)=A(5221,X)=A(s5222,X). If this case occurs, then A(s111,X)=A(s112,.X)=
AUs121,X)= As122, X)# A(5211,X) = AU5212,X) = A5221,X) = A5222,X).

Proof: By symmetry we need only to prove “=". Assume |[A(s1;,X)|=1 (iy=1,2), As111,.X)=A(5112,X)=
As121,X)= As120,X), by Lemma 4, s,is not a 2-step state. Next we consider three cases of s,. Case 1. s;is a 0-step
state; Case 2. s;is a 1-step state; Case 3. s, is a 3-step state. In the first two cases, it is immediate from Lemmas 8
and 7, respectively. In Case 3, since s1€80, A(s11,.X)UA(s12,.X)=Y. By Lemma 3, sy; (j=1,2) are O-step states. By
Lemma9, s is a 3-step state, and s, is a 3-step state or a 1-step state. Thus it is immediate from Lemmas 8 and 7,
respectively.

Lemma 12. Let M be a c-order SIM FA C(M,,f), M,=(S,,Y,,6.,4,) be cyclic, X=Y={0,1}, w3 =2, ¢=3, if M is
WI with delay 3, then there exist mappings /o from X 1xS, to {0,1}, h; from X*2xS, to {0,1}, &, from X3S, to
{0,1}, fofrom X°xS, to ¥, f; from X*1xS, to Y, f>from X* xS, to ¥, f3from X xS, to ¥, such that

(2.1) ho(x_cy . X0,5)=0—ho(X ety X_1,0,(5))=INA1(X_c42y -+ X1, 55 (sa))=1, ho(xX_cy . X_2,8)=IAA(X_ct1r-ens
X 1,0a(8a))=INRA(X ey X2, 0a(54)) =0 e (X a2y X1, 5: (5a)=L ho(x_ci- o X 25)=INR1 (X ey X 2,00(54))=1—>
Bo(x a2y X2, 82 (52))=0, ho(Xcy-vr X-2,8)ZONAL( ety e X2, 00(52))ZL>Po(Xcuty - X3, 04(54)) =1L, ho(X—e, ... x3,0,
Sa)=O0Aho(X_¢y. .. X_3,1,5,)=0AR (X a1, X_3.X-2,04(54))=0—>A1 (X1, X3, X5 ,0u(52))=0(x 0% X7, ), ha(_cy... X_g,84)=1
Sh(X ey X3,54)7L, hy(xX_gr-e X 3,85) =1 ho(X ¢y X _2,8,)=1.

(2.2) folx_cse--x-2,0,50) Hox_cre X 2,1,80)=h3(X a1y X_2,04(54))s 1T Ao(X iy e X 2,8)=OARL(X a1, X _2,04(54))=0;
ha(X_cyeee X 3,50)=ha(X 1y X_2,0(5,)) 1, if ho(x_c,...,x_3,0,5.)=1Aho(x_¢,...,x_3,1,5,)=IAh(x_¢y... . X_3,5,)=0A
ha(x a1y X 3,00(54))=0; folx ey x3,0,0,5)Ho(x s X 3,1,0,5)=fa(x e, 3,0,0,00(5)) (¥ _c1,- X 3,1,0,04(54))
+1, if ho(x_c,. . x_3,0,5,)=0Ahg(x_c, ... x-3,1,8,)=OAR (X _pr1s. . X_2,84(54))=0; folX_cre- . X_3.%-2,0,8,) 41 (X_cyovn X3, X5 ,8,)
(X 1y %2,0,84(5)) Ho(Xertye ey X5 Ou(s)) L, i ho(x gy .. X 3,% 2,5,)=0Aho(X ¢y X 3, X5 Sa)=INAL (X a1y X2,
Su(5))=0 (oo x5 ); folXoereer X-2,0,80) Hfo(Xerrer X2, 1,80) =ha(X_cr2reee X2, 82 (52))+1, if ho(X_ey... X_2,5,)=0A
R1(X_ct1s e X2, 04(80))=INAA(X 42y - X2, 55 (s2))=0.

Sox_p X y,8,) + X9, i hg(x_,.,...,x5,5,)=0;
(23) /05 o o) (XX p,8,) X, .if ho(x_y s X_p,8,) =1Ah (X0 X _5,5,)=0;
S x g8, )+ x5, 1T (X X g,8,) =IAN,(x_ 10X _4,5,)=0;
Sa( X g8, )+ x5, 0F By(x_,xy,s,) =1
where (2.4) hs(x_cy-- - X_3,52)=f1(% -+ X_3,0,8) H1(Xere o X _3,1,80) 40X ey X 2,8 0)=f2(X oo X_4,0,80) Ha(X ey X2,1,84)-

Proof: Denote Ty(x_2)=(x_¢,....X-2,50), T1(x-2%_1)=(Xoce1,emX-1,64(50)), T(x_2X_1%0)=(X_cs2,-.. X0, Op (54)),
Ty(20_ 10X )= (X cazrn o X1, Op (50))s T2(x-8)=(xoco e X-3:50)s ToX-a¥2)=(Xocotyene i X-2,6,(50))s To(¥-3¥_2%_1)=(X_cazre.o X1,
52 (50))s Tox_3x2X_1X0)=(X_c43,--- X0s Op (50))s Ta(x-a)=(X_croronX-a50)s Ta(x-4¥_3)=(X_cotr oo X3, 04(50))s Ta(x_ax_ax_5)=
(0 _c42s- - X2, 55 (54)), Ta(x_gx_ax ox_1)=(X_c43y--- X 1, é'f (54)) S(rox_1)=(x cyere X 1,80, S(X_2X_1X0) =X _c1y -+ X0, 0a(Sa))s
S(r_oX 120X 1) =(Xcare X1, OF (54))s S(X_2X_1X0X1X2)Z(X a3, . X2, O (54)). DEfiNe folxcre X_1,8) /v ¥-1,0,5,),
S s X 2,80) = ey 0%22,0,0,8,), fo(X ey X_3,80) =X ey 1X-3,0,0,0,5,), fa(x_cy s X_2:50)=fx_cy--%-4,0,0,0,0,s,).
ho(T1(x_2))=1 iff s(x°) is not a O-step state, hy(To(x_3))=1 iff fx_,....x_5,0x_1,%0,5,) doesn’t rely on x_; and x,
ho(Ta(x_g))=1 iff flx_c,...,.x_4,0,x_2,x_1,X0,5,) doesn’t rely on x_,x_1,xo. Clearly, hy(T3(x_4))=1—>h1(To(x_3))=1,
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hi(Ta(x_3))=1—ho(T1(x_2))=1.Since M, is cyclic, M =C(M,) is strongly conn-ected. Then |7, |=2, VseS.

Clearly, by Lemmas 3, 10, 11, ho(Ty(x_5))=1 iff s(x',) is not a O-step state, h1(To(x_3))=Liff Mx_c,...,x_3,1x_1,
X0:84) doesn’t rely on x_; and xq, hx(T5(x_4))=1 iff fix_c,....x_4,1,x_2,x_1,%0,5,) doesn’t rely on x_,,x_1,xo-

To prove (2.1), assume ho(T1(x_»))=0, then By Lemma 1, ho(Ti(x_ox_1))=Inh(T>(x_3x_ox_1))=1. Assume
ho(T1(x_2))=1nho(Ty(x_2x_1))=1nhy(To(x_3x_2))=0, then |A(s(x_2x_1),X)|=|A(s(x_2x_1x0),X) |71, A(s(x_2x%),0)%
AMs(x_z x4 ),0). Thus s(x_px_1) is a 1-step state. By Lemma 2, hy(To(x_sx_ox_1))=1. Assume ho(T1(x_2))=1A
ha(To(x_3x_p))=1, then |A(s(r_ox_1).X)[=1, A(s(x_ax_1x0),x1)=A(s(x_; x% ),0), Vxgxi€X. Since | W;Z(MVH) =2,
Usgr,exHs (x-2x_1),X)=Y, thus ho(Ta(x_sx_ax_2))=0. Assume ho(T1(x_2))=0nhs(To(x_sx_5))=1, then s(x%,), s(x',) are
O-step states, A(s(x_ax_1x0),x1)=A(s(x_2x%),0), Vx_1,x0x1€X. By Lemma 6, /y(T5(x_sx_5))=1. Assume hy(T31(0))=0
Aho(T1(1))=0Ahq(To(x_3x_2))=0, s(x_px_1), Vx_px_1€X are O-step states. By Lemma 8, 41(T>(x_3x’,))=0 (x o= x',).

To prove (2.2), assume fo(T1(x_2))=0nhy(To(x_3x_5))=0, then s(x%), s(x',) are O-step states. By Lemma 1,
|A(s(x_ax_1x0), X)[=1, Vx_g,x0eX. Since hy(To(x_sx_2))=0, A(s(x_ox%),0#A(s(x_ox"),0), Vx_1eX. By Lemma 6,
As(x°,),0)=A(s(x",),0) iff As(x%),0)=A(s(x'3),0). Then A(s( x°,),0)+A(s( x",),0)=A(s( x% ),0)+A(s( x'%),0). Thus
Jolxoey o ix-2,0,8) Hfo(x—¢, ... x-2,1,5,) =h3(T2(x_3x_2)). Assume ho(T1(0))=1nho(T1(1))=1nh1(T2(x-3))=0A
ho(Ta(x_gx_3)=0, then |A(s(x_2x_1),X)|=1, Vx_px_1eX. Since hy(Ta(x_3))=0, by Lemma 10, A(s( x°,),0)=A(s(x_21),0),
Vx_peX. By Lemma3, (x_.4,...,x_3,, 0, ! (s4)) (i=0,1) are O-step states, or neither is, where s(x_»x_,) is the successor
state of (x_c_1,....% a0, 0, (54)), Vx_px_1€X. In the first case, since hy(Ts(x_sx_3)=0, by Lemma 6, A(s(x_ox_1x0),x1)=
Us(x_2x%),0), Vx_eX (k=-2, -1,0,1), A(s(x%),0)=A(s(x%),0), and A(s(00),0)=A(s(10),0) iff A(s(000),0)=
A(s(100),0). Then A(s(00),0)+4(s(10),0)=A(s(000),0)+A(s(100),0)+1. ThUS f{x_,...,%-2,0,0,0,5) (X cr... x_3,1,0,0,5,)
fx_ertse-%-3,0,0,0,0,84(5)) H(x_cr1s - %-3,1,0,0,0,04(5.)) +1, i.€., ha(Ta(x-3))=ha(Ta(x_3x_2))+1, where hy(Ts(x_s))=
So(To(0))+f2(T2(1)). In the second case, by Lemma 2, (x_._1,....x_a,i, 5,  (s,)) (i=0,1) are 1-step states. By the same
arguments and using Lemma 7, h3(T2(x_3))=ha(T2(x_3x_2))+1. Assume ho(71(0))=0nho(T1(1))=0Ah1(T2(x_5x_2))=0,
using (2.1), hy(Ta(x-3x',))=0 (', #x2). Since ho(Ty(x-2))=0, Vx_peX, s(x%) and s(x',) are O-step states. By
Lemma 1, |A(s(r_ax_1x0),X)I=1, Vx_ox_1,x0€X. Since hy(Ta(x_sx_2))=0, by Lemma 6, A(s(x_5x% ),0)=A(s(x_2 x",),0).
By Lemma 8, A(s(00),0)=A(s(10),0) iff A(s(000),0)~4(s(100),0). Then A(s(00),0)+4(s(10),0)=4(s(000),0)+
A(s(100),0)+1. Thus fo(x_e,...,x_3,0,0,5,)+fo(x_c,...,x_3,1,0,5,)=f1(T1(00))+/1(T1(10))+1. Assume ho(T1(x_5))=0A
ho(Ta( x', ))=Inhy(To(x_2x_2))=0(x_o# x', ), then s(x’% ) and s(x',) are O-step states. By Lemma 9, (x_.1,....x_2,
5, (s2)) is a3-step state, (x_c1,..., x',,5," (s,)) isa3-step state or a 1-step state (x_# x’, ), where s(x_px_;) is the
SUCCeSSOr state of (x_1,...,X g0, 5, (54)), Vx_px_1€X. Since ho(Ty( x',))=1, s(x'3), s(x"3) are not O-step states. By
Lemma 8, (x_c1,..., x',,0, (s2)) is a 1-step state. By Lemma 2, A(s( ', X_1x0).x))=A(s( ", x%).0), |A(s(x’, x-1),
X)|=1, Vx_1.xox1€X. Since hy(To(x_x_2))=0, by Lemma 6, A(s(x_o x° ),0)2A(s(x_o x*;),0), Vx_1€X. By Lemma 11,
AUs(x'F),002A(s(x'%),0). By Lemma 7, A(s(x%,),0)=A(s(x'9),0) iff A(s(x%),00=A(s(x'P),0). Then A(s(x°,),0)+
As(x'$),00=A(s(x_200),0)+A(s( xS ),0)+1. Thus fo(x_c,....x2,0,5.) +(T1(x’, )=/ U(To( x% ) /o Talx_3 x', ))+1.
Assume ho(Ty(x_2))=0nhy(To(x_x_5))=1nhy( Ta(x_sx_3x_2))=0, then s( x°, ) and s( x*,) are O-step states. By Lemma 1,
As(x_ox_1x0x1) ,X2)=A(s (x_ox_1x00),0), |A(s(x_2x_1x0),X)|=1, Vx_1,x0.x1,x2€X. Since hy(Ta(x_sx_»))=1, by Lemma 6,
AUsGe_ax_1x0) x1)=As(x%),0), Va_1,x0x1€X. Since hy(Ts(x_sx_sx_5))=0, by Lemma 11, A(s(x_5 x% ),0)%A(s(x_2 x'3),0),
Vx_;eX. Then by Lemma 6, A(s(x%),0)=A(s(x%,),0) iff A(s(x%L),002A(s(x'L),0). Thus fo(x_c,...,x_2,0,5,)+
Jo(x_er X2, 1,80)=ha(Ta(x_ax_3x_2))+1.
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To prove (2.3), assume /o(T1(x_5))=0, then s(x%) and s(x',) are O-step states. Clearly, A(s(x_ox_1),x0)=
Als(x_ox_1),0)+xqg, Vx_1,x0€X. Then flx_,....x0:50)=fo(X_cs--- X_1,55)Ftxo. Assume ho(T1(x_2))=1Ah1(T>(x_3))=0, then
A(s(x_x_1),x0)=A(s(x_2x_1),0), Vx_;eX. Let e=A(s(x_px_1),0), x';#x_;. Since hi(T2(x_3))=0, A(s(x_2x_1),0)=
As(x_2x',),0). Thus A(s(x_px",),0)=e+1. Then flx_,...x0.5q)=A(s(x_2x_1),0)=A(s( x%, ),0)+x_1=f1(T1(x_5))+x_1.
Assume hy(To(x_3))=1nha(T5(x_4))=0, then A(s(x_xx_1)x0)=A(s(x%),0), Vx_1,x0eX. Let e=A(s(x%).,0), X!, #X 2.
Since ho(T4(x_4))=0, A(s(x%),0)=A(s(x'%),0). Thus A(s(x'%),0)=e+1. Then f(x_.,...,x0,5,)=
As(x2,),0)=2(s(00),0)+x_, =fo(Talx_3))+x_p. Assume hy(T5(x_s))=1, then A(s(x_x_1),x0)=A(s(00),0), Vx_x_1,X0€X.
Let e=A(s(00),0), X! #X 3 By Lemma 11, A((x_,...,x_3,0,0,s,),0)=A( (x,(,,...,x'_3 ,0,0,5,),0).Thus l((x,g,...,x’_3,0,0,
50,.0)=e+1. Then flx ... x0,54) =A(s(x_2x_1),x0)=f3(T3(x_4))+x 3.

3 Binary WI SIM Finite Automata with Delay 3 of Which ws =1 and 8

Lemma 13. Let M be a c-order SIM FA C(M,,f/), M,=(S,,Y.,0,,A,) be cyclic, X=Y={0,1}. If ¢=3, w3,~=1, M is

weakly invertible with delay 3, then there exists a mapping f3 from XS, to Y such that
SO e X008 0) S 3(X ey X 2yS ) X 3.

Proof: Since M, is cyclic, C(M,,f) is strongly connected. Then |W5Y|=ws,=1,VseS. Thus A(s(x_zx_1).x0)=
A(s(00),0), Vx_p,x_1,x0€X. Since M is weakly invertible with delay 3, A({(x_,...,x_4,0,0,0,5,),0)£A({x_c,. .., x_4,1,0,0,
$a20,0). Thus flx_¢,....x080)=A( {X_¢yeeiX-4,0,0,0,8,),0)+x_3=f3(x ... X 4,50) X3, Where fa(x_cy.. X 2,50) =X cyne X sy
0,0,0,0,s,).

Lemma 14. Let M be a c-order SIM FA C(M,,f), M,=(S,.Y,.0,, A4, be cyclic, X=Y={0,1}. If ¢=3, w3,,=8, M is
weakly invertible with delay 3, then there exists a mapping f, from X“xS, to ¥ such that

SOy e X0:80) =y -+ X _1,84) FX0-

Proof: Since M, is cyclic, C(M,,f) is strongly connected. Then |W3’f |=8, VseS. Thus A(s(x_»x_1),0)#

As(x_2x_1),1). Then flx_c,...,x0,82)=A(s (x_2x_1),0) +x0=/0(X_c, - - - X_1,54) TX0, Where fo(x_c, ..., X_1,55) =+ -+ %_1,0,8,)-
4 Binary WI SIM Finite Automata with Delay 3

Theorem 1. Let M be a c-order SIM FA C(M,f), M,=(S.,Y.,0.,4,) be cyclic, X=Y={0,1}, ¢=3. Then M is
weakly invertible with delay 3, if one of the following conditions holds:

(a) There exists a mapping fo from X°xS, to Y such that

SO e X0,8 ) foXy -+ X _1,50) FX0;
(b) There exists a mapping f; from X xS, to Y such that
SO e X0:80) =f3(X gy e Xy Sa)FX_3;

(c) There exist mappings /o from X°*xS, to {0,1}, /; from XS, to {0,1}, h, from X* xS, to {0,1}, fo from

X°xS, to Y, fifrom X*IxS, to ¥, f, from X“ xS, to ¥, f3from X* xS, to ¥, such that (2.1), (2.2) and (2.3) hold,

where /3 and 7,4 are defined by (2.4).

Proof: Assume that one of conditions (a), (b) and (c) holds. In case of (a), M is weakly invertible with delay O;
In case of (b), it is easy to verify that M isweakly invertible with delay 3. Below we discuss the case of (c); Assume

that (c) holds, let s=(x_,....Xx_1,80), S =X citrere X_1,0,04(80)) s Si; =X cs2rn Xo1al s 55 (Sa))r Sijk =(X_cezren Xopalyf ks
52 (s.)) (i4,4=0,1), other notations used below are referred to the proof of Lemma 12. Since M, is cydlic, A(s,xq)=
S ey X0, Aa(80)) T s X0580) BY (2.1), hoTa(x-4))=1—>ha(Talx 3))=1, hi(Ta(x 3))=1—>ho(T1(x 2))=1. Thus, to
prove s is a t-step state with 0<¢<3, there are two main cases to consider.

Case 1. ho(T1(x_2))=0. By (2.3), A (s,x0)=fo(X_c,- - X_1,5,)+xo. Thus A(s,0)=A(s,1). Hence s is a O-step state;
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Case 2. ho(T1(x_2))=1. By (2.3), A(s,0)=A(s,1). Next we further consider Ao(T1(x_ox_1)).

Subcase 2-1. ho(T1(x_2x_1))=0. By (2.3), A(s;,0)0#A(s;,1) (i=0,1). By (2.1), ho(T1(x_ox_1x0))=1, hy(To(x_zx_ox_1
x0))=1, VxoeX. Then by (2.3), A(s;;,0)=A(s:,,1), A(s:;60)=A(s:,1), Asi;0,0)=A(s:;,1,0) (i,j,k=0,1). Since hy(T3(x_4
X_ax_px_1))=1—hy(To(x_3x_x_1x0))=1, we further consider i,(T3(x_gx_3x_ox_1)).

Subcase 2-1-1. hy(T3(x_ax_sx_px_1))=1. By (2.3), A(s;;;*)=A(5:0,0:0), A(50,0,0,0%A(51,00.0) (if,k=0,1), VxeX.
Hence s is a r-step state (2<¢<3).

Subcase 2-1-2. hy(Ts(x_sx_3x_v_1))=0. Since hy(To(x_zx_x_1x0))=Inha(Ta(x_sx_sx_ox_1))=0, by (2.3), A(s;00,0)#
As:1,0.0) (i=0,1). Since hy(To(x_gx_px_1))=1—ho(T1(x_2x_1x0))=1, we further consider /;(T5(x_zx_px_1)).

Subcase 2-1-2-1. hy(Talx 3¢ ox 1))=1. Since ho(T1(x 2% 1))=0Aha(Ta(x ax 2x 1))=1, by (2.1), ha(T3(x_sx sx 2))=1,
A(50,0,0)=A(50,1,0)=A(51,0,0)=A(51,1,0). It suffices to show that whether A(so0,0,0)=4(s1,0,0,0) holds, if A(s0,0)=A(s1,0).
Since ho(Tu(x-ox_1))=0Aha(To(x_ax_ox_1))=Inho(Ta(x_sx_sx_x_1))=0, by (2.2), folx_cs1,--%-1,0,84(50)) Hfo(r—cs1,--- X1, 1,
Oa(50))=ha(Ta(x_ax_g3x_ox_1))+1. BY (2.4), fo(X_ci1r-%-1,0,0,(50)) Hfolx_ci1s---¥_1,1,5,(50)) /2 To(x_3x_2 x5 )+
Jo(To(x_3x_ xfl ))+1. On the other hand, since Ao(T1(x_2x_1))=0, by (2.3), fo(xX_cs1s--- X_1,%0:0a(84)) =/ Xt 1s- - X_1,%0,0,
0u(54))s VxoeX. Since hy(Ta(x_sx 2x¢ 1x0))=1nha(Ta(x_sx_gx 2x 1))=0, VxoeX. By (2.3), fa To(x_sx 2% 1x0))=fx _c43,-- -,
%0:0,0,0, 82 (s,)), VxoeX. Then Aso,0)+A(s1,0)=A(50,00,0)+A51,00,0)+1. Thus A(se,0)=A(s1,0) iff A(50,0,0,0)% A(5100,0).
Hence s is a 3-step state.

Subcase 2-1-2-2. hy(T5(x_zx_px_1))=0. Since hy(Ta(x_sx_ox_1))=0nho(T1(x_ox_1x0))=1, VxoeX, by (2.3), A(s;0,0)=
As;1,0) (i=0,1). It suffices to show whether A(sp 0,0)=A(s1,0,0) and A(s0,0,0,0)=A(s1,00,0) hold, respectively, if A(so,0)=
AUs1,0).  Since  Ay(Talr_ax2x_1))=0nho(Ta(x_2x-1))=0, by (2.2), folx—cs1,- - %-1,0,0u(s0)) Holr-csts - X1, 1, 6,(54))=
ha(Ta(x_3x_2%_1)). BY (2.3), fo(¥—cs1s -+ X120, 0u(80)) T X1, - X_1,%0,0,8(50)), Vxo€X. Using (2.4), ha(Ta(x_ax_ox_1))=
SuT1(x_2 x4 )+ (Te(x_2 x%)). Since hy(To(x_ax_2x_1))=0nho(T1(x_2x_1x0))=1, by (2.3), fi(T1(x_2x_1x0))=
SOerzre o X-1,%0,0,0, 82 (54)). Thus A(sg,0)+A(s1,0)=A(50,0,0)+A(s1,0,0). Hence A(so,0,0)=A(s10,0) if A(s0,0)=A(s1,0).
Since ho(T1(x-2 x% ))=Inho(T1(x-2 x% ))=Inhy(To(x_5x_2x_1)=0nhao(Ts(x_4x_3x_2x1))=0, by (2.2), ha(Ta(x-sx_ox_1))=
ha(Ta(x_ax_3x_px_1))+1. Using (2.4), ha(Ta(x_3x_ox_1))=f1(Te(x_2 x% ) +/1(Te(x_2x%;)), ha(Ta(x_ax_sx_ox_1))=
SoATo(x_ax_2 x°% )4/ To(x_ax_o x*)). Since ha(Ta(x_ax_2x_1))=0nho(T1(x_2x_1%0))=1, by (2.3), fi(T1(x_2x_1%0))=
Sx_e42,-4-,%0,0,0, éf (s4))), VxgeX. On the other hand, since A1(Ta(x_sx_ox_1x0))=1nha(Ta(x_sx_3x_ox_1))=0, by (2.3),
JoTo(x_3x_2x_1x0))=f(x_c+3,---X0,0,0,0, é‘ﬂz (s4)). Then A(s0,0,0)+A(51,0,0)=A(50,0,0,0)+A(51,0,0,0)+1. Thus A(sg0,0)=
Ms1,0,0) iff A(50,0,0,0)#A(51,00,0). Therefore, if A(so,0)=A(s1,0) then A(so0,0)=A(s1,0,0) and A(so,0,0,0)%A(51,0,0,0). Hence
s isa3-step state.

Subcase 2-2. ho(T1(x_ox_1))=1. Since h(To(x_3x_2))=1—>ho(T1(x_2x_1))=1, we consider h1(To(x_3x_5)).

Subcase 2-2-1. hy(To(x_3x_5))=0. Since ho(T1(x_2x_1))=1nhi(To(x_sx_5))=0, by (2.3), A(s;,0)=A(s;,1), A(s0,0)#
As1,0) (i=0,1). Therefore s is a 1-step state.

Subcase 2-2-2. hy(To(x_3x_5))=1. By (2.3), A(s0,0)=A(s0,1)=A(s1,0)=A(s1,1). Since ho(T1(x_2))=Inhi(T2(x_3x_5))
=1, by (2.1), ha(Ts(x_sx_3x_2))=0. Since hx(Ts(x_sx_3x_2))=1—>h1(T2(x_3x_2x_1))=1, ha(T2(x_3x_2x_1))=1->
ho(T1(x_ox_1x0))=1, Vx_1,x0e X, we further consider the following cases.

Subcase 2-2-2-1. hy(To(x_zx_x_1))=1nhy(T3(x_sx_3x_5))=0. By (2.3), A(s;;,0)=A(s;7,1), A(s:0,0)=A(s;,1,0), A(50,0,0)
#A(51,0,0) (iy=0,1). Therefore s is a 2-step state.

Subcase 2-2-2-2. hy(To(x_sx_nx_1))=0. We consider three cases.

Subcase 2-2-2-2-1. ho(T1(x_2x_10))=0nho(T1(x_ x% ))=0. By (2.1), ho(T1(x_2x_1x0x1))=1, Vxox1€X. There are
two cases to consider.

Subcase 2-2-2-2-1-1. hy(Ta(x_ax_ox_1x0))=1. Since ho(T1(x_ox_1x0))=0Ah(To(x_3x_ox_1x0))=1, VxpoeX. By (2.1),
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ho(Ta(x_ax_gx_px_1))=1, by (2.3), A(s:j10)=A(s:;51)=A(5:00,0), A(500,0,0)#A51,00.0) (if, k=0,1). Thus s is a 3-step
state.

Subcase 2-2-2-2-1-2. hy(To(x_gx_ox_1%0))=0. Since ho(T1(x_p x% ))=0nho(T1(x_z x; ))=0Ah1(To(x_3x_ox_1%0))=0, by
(2.1), ha(To(x-sr_2x_1 x))=0 (x0* x} ). Since ho(T1(x_2x_1x0x1))=Inh1(To(x_3x_2x_1%0))=0, Vxo,x1€X, by (2.3), Als;;10)
=1 01), A(si;,0,0)%A(s:,,1,0) (i,/,k=0,1). By subcase 2-1-2-2, it suffices to show whether A(sq 0,0,0)=A(s1,0,0,0) hold,
if A(50,0,00=A(s10,0). Since ho(T1(x_»x% ))=0nho(T1(x_2 x4 ))=0Ah1(To(x_ax_ox_1x0))=0, by (2.2), fo(x_cs2,...,%-1,0,0,
52 () Holx-crzr- - X-1,1,0, 87 (50)) U Tax 2 x5 )Hf(Tolr2 X9 )+1. Since ho(Ty(x_2x-1%0))=0, by (2.3), folx_cizi---
x1,%0,0, 87 (5)) S _cs2,--.%0,0,0, 87 (54)). Since hy(To(x_gx_px_1x0))=0nho(To(x_2x_1x0x1))=1, Vxox1€X, by (2.3),
J1(T1(x_2x_1x00))=f(x_c43, .- %0,0,0,0, é'f (s4)). Thus A(s0,0,0)+A(51,0,0)=A(50,0,0,0)+A(51,0,0,0)+1. Hence if A(sp0,0)=
A51,0,0), then A(so,0,0,0)#A(s1,00,0). Therefore s is a 3-step state.

Subcase 2-2-2-2-2. ho(Ty(x_2 x% ))=Anho(T1(x_2 x5 ))=1Ahy(To(x_ax_ox_1))=0. Since ho(T1(x_ox_1x0))=1A
hi(To(x_gx_ox_1))=0, VxeeX, by (2.3), A(s:;0)=A(s;;,1), A(s;,0,0)2A(s;,1,0) (ij=0,1). Since ho(T1(x_2x_1))=1A
ho(T1(x-2x-1x0))=Inh1(To(x-ax2x_1))=0, by (2.1), hi(To(x_3x2x_1x0))=1, VxoeX. Since hy(Ts(x-ax_gxox_1))=1—>
h1(Ta(x_3x_ox_1x0))=1, we consider the following two cases.

Subcase 2-2-2-2-2-1. hy(T3(x_sx_3x_»x_1))=1. By (2.3), it iseasy to see that s is a 3-step state.

Subcase 2-2-2-2-2-2. hy(Ta(x_sx_3x_x_1))=0. Since hy(Ts(x_sx_3x_2x_1))=0Ah1(To(x_sx_ox_1x0))=1, by (2.3),
A1 0)= A5, 0 1)=A(540,0), A(8,0,0,0)0#A(s:,1,0.0) (i,f,k=0,1). It suffices to show whether A(so,0,0,0)=A(s1,0,0,0) holds,
it As50,0,0)=4(51,0,0). Since ho(Te(x_2x_1x0))=Inhi(To(x_ax_ox_1))=0nhy(To(x_sx ox_1x0))=1, VxeeX, by (2.2),
ha(To(x_gx_2x_1))=ha(T3(x_gx_3x_px_1))+1. Using (2.4), by the same arguments as above, A(sg0,0)+A(s1,0,0)=A(50,0,0.0)
+A(s1,0,0,0)+1. Thusif A(s00,0)=A(51,0,0), then A(s0,0,0,0)#A(51,0,0,0). Therefore s is a 3-step state.

Subcase 2-2-2-2-3. ho(T1(x-2x-1x0))=O0nho(T1(x-ox1 xj ))=1 (xo# xj ). Without loss of generality, let
ho(Ta(x 2 x% )=0, ho(Ta(x o %y ))=1. By (23), As0;00#As051) (=00). By (21), hy(Tolx s¥ 2x 1))=0,
ho(Ta(x_2 x° x1))=1, VxieX. Since hy(Ta(x_3x ¢ 1))=0nho(Ti(x 2 x%, ))=1, by (2.3), A(s1,,00=A(s1,,1), Als1,0,0)%
As11,0) (7=0,1). Since ho(T1(x_ax_1))=Anho(T1(x_o X7, ))=Inh1(To(x_sx_2x_1))=0, by (2.1), h1(To(x_sx_5 x*; ))=1. Since
ho(Th(x_o x% x1))=1, Vx;€X, we further consider hy(Ta(x_sx_o x% )).

Subcase 2-2-2-2-3-1. hy(To(x_sx_2x°%))=1. By (2.1), ha(Ts(x_sx_sx_x_1))=1, by (2.3), A($:j6:0)=A(s; 1 1)=
A8.00:0), U50,0,00)#A(51,00,0) (i,/,k=0,1). Therefore s is a 3-step state.

Subcase 2-2-2-2-3-2. hy(Ta(x_sx_x% ))=0. Since ho(Ty(x_ x° x1))=Inhy(To(x_3x_ x% ))=0, Vxi€X, by (2.3),
A$0,.16:0)=A(50,,:1), A(S0,,0,0)%A(50,,1,0) (7,k=0,1). Since h(Ta(x_zx_7 x%))=0, by (2.1), ho(Ts(x_sx_sx_2x_1))=0. Since
ha(Ta(x_ax_5 x71))=1, by (2.3), As1jx0)=A(s1,41)=A(s1,,0,0), A(510,0,0)%A(s1.1,0,0) (7,k=0,1). Using subcase 2-1-2-2,
M50,0,000)=A(50,1,0,0) if A(50,0,0)=A(s50,1,0). It suffices to show whether A(so00,0)=4(s10,0.0) holds, if A(s00,0)=
A(s1,0,0). Since ho(T1(x_2x° ))=0nho(T1(x_2 X%, ))=1nhy(To(x_3x_2x% ))=0, by (2.2), fo(x_cs2,..-x-1,0,0, 57 (s2))+
FiGeszreee X1,y 82 (5)) =X er3r - %-1,0,0, 82 (50)) Hfo(Xcwar- - X_1,1, 52 (5,))+1. By the same arguments as above, we
can conclude that s is a 3-step state.

To sum up, if condition (c) holds, then any state s of M is a t-step state (0<¢<3). Therefore M is weakly
invertible with delay 3.

5 Binary Feedforward Inverse Finite Automata

Theorem 2. Let M be a c-order SIMFA C(M,,,f), M,=(S,,Y,,5,,A.) be cyclic, X=Y={0,1}, ¢>3. Then if one of the
following conditions holds, M is afeedforward inverse with delay 3.
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(a) There exists a mapping fo from XxS, to Y such that f{x_c,...,%0:50) =f0(X_cy -+ X_1,54) +X0;

(b) There exists a mapping f; from X xS, to ¥ such that f{x_.....,%0,50) f3(x_cr- .. X_a,8a) FX_3;

(c) There exist mappings o from X<xS, to {0,1}, A, from X*~2xS, to {0,1}, h, from X*3xS, to {0,1}, f; from
X°xS, 10 Y, fifrom X* xS, to Y, f> from X“ xS, to ¥, f3from X*~3xS, to Y, such that (2.1), (2.2) and (2.3) hold, where
hz and h, are defined by (2.4).

Proof: Since M, iscyclic, M is strongly connected. By Theorem 2 in Ref.[6], M is a feedforward inverse with
delay 3 iff M isweakly invertible with delay 3. Therefore, by Theorem 1, M is a feedforward with delay 3 if one of
conditions (@), (b) and (c) holds.
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