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Abstract: The Voronoi diagram (VD) of a planar polygon has many applications, from path planning in robotics
to collision detection in virtual readlity. To study the complexity of algorithms based on Voronoi diagram, it is
important to estimate the numbers of vertices and edges of a VD. Held proves that the inner Voronoi diagram of a
simple polygon has at most n+k—2 vertices and 2(n+k)—3 edges, where n is the number of the polygon’s vertices and
k is the number of reflex vertices. But this conclusion holds not for a multiply-connected polygon, i.e. a polygon
with “holes’. In this paper, by constructing a rooted tree from a VD, and based on some properties of the rooted tree,
new upper bounds on the numbers of vertices and edges in an inner Voronoi diagram of a multiply-connected
polygon are proved. The average numbers of Voronoi vertices and edges on the boundary of aVD are also presented.
The result of this paper has been used to analyze the complexity of VD-based visibility computing algorithm in
SDU Virtual Museum.
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1 Introduction and Motivation

The Voronoi diagram (VD) is an important geometric structure in computational geometry. A VD records the
regions in the proximity of a set of points. There is arich literature on the Voronoi diagram of a set of points, as
well as its extensions, such as high-degree Voronoi diagrams. Rather than for a set of points, the regions in the
proximity of a set of objects, such as line segments, circular arcs and polygons, also form a Voronoi diagram'*7.
The VD of a planar polygon has wide applications in pocket machining!*®®, path planning!*®, media axis
computation™®, collision detection'®® and so on!*® The number of vertices and edges of the VD of a polygon is
important in analyzing the complexity of VD-based algorithms.

Much work has been done on analyzing the complexity of d-dimensional Voronoi diagrams of points™**". Itis
shown!*®! that the VD on n points in 2D plane has at most 2n-5 vertices and 3n-6 edges, and the average number of
edges on the boundary of the VD does not exceed 6. For a Voronoi diagram VD(G) of a planar straight line graph G
on n points, Lee and Drysdale show that the number of vertices of VD(G) is at most 4n—3*!. Reference [6] proves
that the number of vertices of VD(G) is exactly 2n+l+k—2, where | and k are the number of terminals (i.e. endpoints
belonging to exactly one line segment in G) and the number of reflex vertices. It is aso mentioned in Ref.[6] that
the inner Voronoi diagram of a simply connected polygon with n edges and k reflex vertices realizes exactly n+k—2
vertices and at most 2(n+k)—3 edges. In fact, according to the conclusion first given by Lee in 1982[%% the Voronoi
diagram of a simply connected polygon has at most n+k—2 Voronoi vertices and at most 2(n+k)—3 edges. M. Held™
claims that these upper bounds also hold for a multiply-connected polygon. However, we shall see that this
conclusion holds only for the inner VD of a simple polygon, but not for a multiply-connected polygon, i.e. a
polygon with “holes’, as shown by the following example. Figure 1 shows two kinds of polygonsin solid lines and
their inner Voronoi diagram in dotted lines. Let m and e denote the number of vertices and the number of edges of
its inner Voronoi diagram. In Fig.1(a), n=8, k=2, m=8 and e=17, where the polygon has a flat vertex (see Definition
1). The inequalities m<n+k-2 and e<2(n+k)-3 given by Held are correct. For the multiply connected polygon in
Fig.1(b), n=10, k=6, m=18, and e=35. We have m>n+k—2 and e>2(n+k) —3. Thus, Held's inequalities do not hold in
this case.

(a) Simply connected polygon (b) Muiltiply connected polygon
Fig.1 Polygons and their inner Voronoi diagrams

We shall prove new upper bounds on the numbers of Voronoi vertices and edges of a multiply connected
polygon. The average numbers of Voronoi vertices and edges on the boundary of a Voronoi region will also be
studied.

2 Basic Concepts

2.1 Polygon
First, some notation and definitions used in Ref.[1] are introduced. A segment is an open straight line segment.

© DEEREBAAAIFUN bt/ www. jos. org. cn



\oronoi 1529

A point or a segment is called an object. A simply connected polygon is a planar shape bounded by exactly one
simple closed curve, called a boundary, consisting of segments. A multiply connected polygon is a planar shape
bounded by several non-intersecting simple closed curves, called boundaries.

A multiply connected polygon has more than one boundary, and there is no intersection between the
boundaries. One kind of multiply connected polygon has an outmost boundary called a border contour, and all other
boundaries are inside the border contour and called the island contours. An island contour is also called a pocket in
mechanical manufacturing. The second kind of multiply-connected polygons have no outmost boundary containing
all other boundaries (see Fig.2); the interior of such a polygon is unbounded.

(a) Inner Voronoi diagram (b) Outer Voronoi diagram
Fig.2 Polygons and their Voronoi diagram

For the first kind of polygons, the Voronoi diagram partitions the interior of the border contours and the
exterior of the island contours. The corresponding Voronoi diagram is called the inner Voronoi diagram. For the
second kind of polygons, an outer Voronoi diagram is created. The outer VD partitions the whole plane except for
the interior of every contour. The typical application of an inner Voronoi diagram is for modeling a pocket in NC
path planning, and the outer Voronoi diagram is a useful representation in collision detection. Figure 2(a) shows the
first kind of polygon in solid lines and its inner Voronoi diagram in dotted lines. Figure 2(b) shows the second kind
of polygonsin solid lines and its outer Voronoi diagram in dotted lines.

For pocket modeling it is assumed that a border contour is oriented counter-clockwise and island contours are
oriented clockwise. Hence, the polygon lies on the | eft side of each contour for atraveler going along a contour.

Definition 1. A vertex v of a polygon is said to be reflex if its internal angle between the segments incident
from v is greater than 7; it is called a flat vertex if the internal angle is =7, and a convex vertex otherwise.

2.2 Voronoi diagram of polygon

We now introduce the notation of Voronoi diagrams of polygons. Let Bisector b(o;,0,) denote the locus of all
points equidistant from o, and 0,. Let h(o0;,0,) denote the set of points closer to o; than to 0,. Given a set O of
objects in a planar domain, the Voronoi region VR(0;) of an object 0,0 is the set of all points closer to o; than to
any other objectsin O, i.e.

VR(0) =y, c0-0 (01,0,) -
Given a polygon P in a planar domain, let O be the set of vertices and edges (i.e. segments) of P. The Voronoi
diagram of P is given by
VD(0) =U,,0VR(0) -
In the Voronoi diagram of P, the common boundary of two adjacent regions is called a Voronoi edge. The
points where Voronoi edges meet are called a Voronoi vertex. The degree of a Voronoi vertex v is the number of
Voronoi edges incident at v.

© PEBREBALTU bt/ www. jos. org. cn



1530 Journal of Software Vol.17, No.7, Jduly 2006

3 PreviousWork

For a multiply connected polygon P, Held!” proves that the upper bounds of the numbers of vertices and edges
of P’'s Voronoi diagram are n+k—2 and 2(n+k)—3 respectively, where n is the number of P’s vertices and k is the
number of reflex vertices.

However, the proof in Ref.[1] (refer to the proof of Theorem 5.1%) does not consider the case of multiply
connected polygon. The proof is based on the formula

2[ER3(IF|-1)+n+k
where |E| is the number of edge of the Voronoi diagram, and |F| is the number of faces of the planar graph
constructed by the Voronoi diagram and the original polygon including the unbounded face.

For multi-connected polygon the formula should be modified to

2|E>3(|F|-h-1)+n+k
where h is the number of island contours. Held's formula therefore cannot be used for a multiply connected
polygon.

4 Properties of Inner Voronoi Diagram

The following lemmais trivial.

Lemma 1. Let j be the number of non-leaf node, and i be the number of leaf nodes in a rooted tree. Suppose
that every non-leaf node has at least 2 children, and the root node has at least 3 children. Then

j<i—2.
In particular, if every non-leaf node has exactly 2 children and the root node has exactly 3 children, then
j=i-2.

Definition 2. A V-ring C of an island contour B of a multiply connected polygon P is the smallest closed
polygon form by the Voronoi edges of P such that C contains B but does not intersect B.

For example, in Fig.3, the V-ring of the island contour p;p,psp; consists of the Voronoi edges viV,, Vovs, VaVy,
V4Vs, VsVe, VeV7, V7Vg, VgVg, VoVi0, VioVi1, Vi1Vi.

Definition 3. The R-ring of areflex vertex v is the simple polygon consisting of the Voronoi edges of VR(v).

For example, in Fig.3 (The polygon is shown in
solid lines and its inner Voronoi diagram is shown in
dotted lines. Solid dots stand for cutting points), the
R-ring of the reflex vertex p; consists of the Voronoi
edges vV, Vop; prvip and vyvy. Clearly, areflex v is the
shared endpoint of two Voronoi edges of VR(v). Note
that the R-ring is defined only for areflex vertex.

Theorem 1. For the inner Voronoi diagram of a
polygon P with hisland contours, thereis

m<n+k+2h-2.

Proof: The proof is trivial if h=k=0. So, suppose
that k>0 or h>0. Then the Voronoi diagram of P is not a
Fig.3 Aninner Voronoi diagram and cutting points tree, since there are k R-rings or h V-rings. To make the

Voronoi diagram a tree, we first modify the polygon by

splitting every reflex vertex into two vertices and linking the new two vertices by a sufficiently short line segment.
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Then we cut a Voronoi edge on every V-ring at the middle of the edge to produce cutting points (see Fig.3). In this
way, the Voronoi diagram of P isturned into atree, if h properly chosen edges are cut as follows: if a VV-ring has one
Voronoi edge that is not shared by other V-rings, then we can choose this Voronoi edge as the V-ring’s cut edge. If
every Voronoi edge of a V-ring \Wr is shared by other V-rings, we first choose one Voronoi edge e of Vr and find the

V-ring V, that sharese. If V, has one Voronoi edge e; that is not shared by other V-rings, we can cut e; and then
cut e. Otherwise, we find the V-ring V, that shares ;. Let V, be V, and we repeatedly process V, until we

find a Voronoi edge of V, that can be cut. The process must stop at one step for the inner Voronoi diagram of a

polygon.
Take one Voronoi vertex as the root node and other Voronoi vertices as non-leaf nodes. All vertices of the

modified polygon and the cutting points are leaf nodes, and all Voronoi edges are edges in the rooted tree. In this
case the modified polygon has n+k vertices, the rooted tree has n+k+2h leaf nodes, m non-leaf nodes and e+h edges.
Because the degree of every Voronoi vertex is at least 3'Y, the root node of the rooted tree has at least 3
children, and the other non-leaf nodes have at least 2 children. By Lemma 1, we have
m<n+k+2h-2.
This completes the proof.
Theorem 2. For the inner Voronoi diagram of a polygon P with h island contours, thereis
e<2(n+k)+3h-3.
Proof: In the proof of Theorem 1, the rooted tree has n+k+2h leaf nodes, m non-leaf nodes and e+h edges.
Since the number of nodes is one great than the number of edges, we have
eth=(m+n+k+2h)-1,
e=m+n+k+h-1.
By Theorem 1,
e<(n+k—2+2h)+n+k+h-1,
e<2(n+k)+3h-3.
Corollary 1. For aVoronoi region V; of the inner Voronoi diagram of a polygon P,
1) the average number a, of the edges of V; isless than 5;
2) the average number a, of the vertices of V; isless than 4.
Proof: Because a unique Voronoi region is defined for each edge or reflex vertex, the Voronoi diagram of P
has n+k Voronoi regions. Since two adjacent VVoronoi regions share one Voronoi edge, we have
agx(n+k)=2e.
By Theorem 2,
aex(n+k)<2(2(n+k)+3h-3)<4(n+k)+6h-6,
a,<4+6h/(n+k)—6/(n+k).
In a polygon with h>0 island contours, for every island contour, the number of its vertices is greater than or
equal to 3 and the number of itsreflex verticesis also greater than or equal to 3. Therefore, n+k>6h. Then
a.<4+(n+k)/(n+k)—6/(n+k)<5-6/(n+Kk).
It follows that a.<5.
Since, for a Voronoi region, the number of Voronoi vertices is equal to the number of Voronoi edges minus one,
we obtain a,=a.—1<4. The proof is completed.
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If apolygon isasimply connected polygon, i.e. h=0, then we have the following theorem.
Theorem 3. For the inner Voronoi diagram of a simply connected polygon,
1) msn+k-2;
2) e<2(n+k)-3.
Corollary 2. For aVoronoi region of the inner Voronoi diagram of a simply connected polygon,
1) the average number a, of Voronoi edges on its boundary is less than 4;
2) the average number a, of Voronoi vertices on its boundary is less than 3.
Proof: By Theorem 3,

aex(n+k)=2e<2(2(n+k)—3)<4(n+k)—6,

8.<4-6/(n+k).

Hence, a.<4 and a,<3.

5 Further Discussions

Let NL denote the set of all non-leaf nodes of arooted tree, and g, be the number of children of a non-leaf node

Lemma 2. Let j, i be the number of non-leaf nodes and the number of leaf nodes of a rooted tree. If every
non-leaf node has at least 2 children, then

j=i-1-3(g,-2).

neNL
If the degree of every Voronoi vertex is considered, then, by Lemma 2, more precise equalities can be obtained

asfollows.
Theorem 4. For the inner Voronoi diagram of a polygon with h>0 island contours inside, we have
1) m=n+k-1+2h->'(q,-2);

neNL

2) e=2(n+k)-2+3h- > (q,-2).

neNL
Proof: By Lemma 2, these equalities can be proved by applying the same methods for proving Theorem 1 and
Theorem 2.

6 Conclusions

The number of vertices and edges of the VD of a polygon is important in analyzing the complexity of
VD-based algorithms. It's well known that the Voronoi diagram of a simply connected polygon has at most n+k-2
Voronoi vertices and at most 2(n+k)-3 edges. But M. Held claims that these upper bounds also hold for a
multiply-connected polygontY.

We have shown that the upper bounds given by Held on the number of vertices and the number of edges of a
Voronoi diagram do not hold for the inner Voronoi diagrams of multiply connected polygons, and we have proved
new upper bounds for these cases—the Voronoi diagram of a polygon has at most n+k+2h-2 Voronoi vertices and at
most 2(n+k)+3h-3 edges. The average numbers of Voronoi vertices and edges on the boundary of a Voronoi region
are also presented—for a Voronoi region of the inner Voronoi diagram of a polygon, the average number of Voronoi
edges and Voronoi vertices are less than 5 and 4 respectively.

The result of this paper has been used to analyze the complexity of VD-based visibility computing algorithm in
SDU Virtual Museum!*?. And inspired by the method of this paper we have also given the upper bounds of the size

of outer Voronoi diagram of polygon'®.
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