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Abstract: As an effective supplement to end-to-end congestion control mechanism, active queue management
aims to keep high link utility while maintaining low queuing delay. As an effective mechanism, the FIPD (fuzzy
intelligent packet dropping) algorithm provides a brand-new method for active queue management. However, the
FIPD algorithm also has its intrinsic defects, such as high packet loss rate. The objective of this paper is to
overcome the defects of FIPD, and a new active queue management method FIPE(FIPD with ECN) is also proposed.
Firstly, in this paper, the algorithm FIPD is reviewed and analyzed. Then the advantages and disadvantages are also
pointed out. In order to overcome the defects such as high packet loss rate, the well-known ECN mechanism is
introduced, which greatly improves the successful packet transmission. At the same time, some amendments are
employed and a new active queue management algorithm FIPE is developed. Finally, the validity of the new
algorithm is verified by a series of simulations on NS2 simulator.
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1 Introduction

Along with the fast increase of the Internet users and various applications, the current network bandwidth
usually cannot meet the transmission request. Thus network congestion frequently occurs in the present Internet,
Network congestion can incur the excess packet loss and intolerable transmission delay, even network breakdown.
As aresult, congestion control has become one of the focuses in recent academic researches.

The end-to-end TCP traffic control mechanisms which emerged in the late of the eighties, from the quick
recovery mechanism in the TCP Reno to the selective acknowledgement in the TCP SACK and etc, have become the
leading technology to solve this kind of problems gradually. Many related settlements are proposed in Ref.[1] and
some of them have been the basis of the congestion control in the TCP network nowadays. The basic idea in all
these settlements, which is simple and comprehensible, is that the TCP sender adjusts its sending rate according to
the network traffic status. The modeling and the verification through simulations and real network measurements
have become more and more precise and persuasivel>’]. Thereafter, to eliminate the negative effect caused by the
multiple dropped packets in the same window, many enhanced versions of the TCP traffic control algorithm are
proposed, such as Tahoe, Reno, New Reno, SACK!* and etc. But all the aforementioned work focuses on the end
system. Recent researches indicate that whatever subtle mechanisms are adopted, the effect that the end systems can
put on the traffic control is restricted and extending the function of the intermediate node should be an effective way
to reinforce the end-to-end traffic control system.

The queuing management algorithms on the intermediate node affect the performance of TCP up to the whole
network. An inappropriate queuing management algorithm, such as DropTail, may induce the global synchronization
of all the TCP connections, the long-time full state of queue and subsequently the dispensable network delay along
with the low tolerance to the burst traffict’). Therefore, Braden et al. firstly brought forward the research proposal of
Active Queue Management (AQM)!®) in 1998. As an enhancement to the end-to-end congestion control system,
Active Queue Management mainly aims at keeping a low queuing delay while maintaining a high link utility!”,
Meanwhile, Active Queue Management includes a series of secondary objective, such as improving the equity by
eliminating the prejudice against the burst traffic, avoiding the unnecessary packet dropping, preventing the global
synchronization as well as enhancing the tolerance to the instantaneous congestion and etc. The RED algorithm!®!
put forward by Floyd in 1993 met the technical objective of AQM and RFC2309'®) recommended it as the only
candidate algorithm. Subsequently, the applications and researches around the AQM and RED were booming up
gradually. Due to the consideration of performance, router manufacturers support the RED algorithm in their
products, such as Cisco 7500, Juniper M40 or M80 and so forth. !

As the researches go deep, however, various restrictions of RED have been realized, such as the traffic
oscillation, dispensable overhead in quick forwarding and so on®®\. On the other hand, there exists another kind of
operation point problem in RED algorithm. That is, the algorithm is very sensitive to the configuration parameter
and network state, and an improper configuration may result in the unsteadiness of the whole network and even the
traffic’s breakdown. Therefore, in the subsequent long period, some modifications and amendments were put onto
the RED algorithm and many improved versions of the RED algorithm emerged, such as Stabilized-RED!],
Self-configuring RED!""!, Adaptive RED"? and so on. Besides the betterments to the RED, many novel AQM
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mechanisms were also put forward, such as BLUE!'Y, PI controller''* and so forth. Summarizing the existing AQM
algorithm, and majority of the algorithms follow the probability dropping mechanism of RED and its usefulness is
indubitable. However, the process of determining whether the packet is dropped or not is essentially a
decision-making process based on the particular objective. Supported by the intelligent decision-making technology,
FIPD (fuzzy intelligent packet dropping) algorithm can achieve the technical objective of AQM. As a brand-new
packet dropping mechanism, FIPD have become a prospective queue management algorithm.

In this paper, we first review the philosophy of FIPD algorithm and the ECN mechanism. From the review, the
defect of the FIPD algorithm like high packet loss rate is revealed. In order to overcome the defect, we combine
them into a new algorithm FIPE (FIPD with ECN) and further make several steps of improvement. These measures,
such as introducing non-ECN queue length, tuning queue excursion, give the new algorithm a better performance.
After these amendments, we verify the new algorithm from several aspects, such as the packet loss rate, queue
evolvement, equity and robustness. The simulation results show out the advantages of the new algorithm.

2 Related Work

2.1 FIPD algorithm

The FIPD algorithm!'®! applies the intelligent computing technology of Fuzzy Logic to the decision-making
process of packet dropping. It brings forward a brand-new idea in the queue management and has achieved a fairly
good result in the network simulations.

The FIPD algorithm adopts the queue length and its change as the indicators of network traffic state. It maps
the two indicators from their basic universe of discourse to the linguistic variables respectively, which also have
their own universe of discourse. In the mapping process, the designer needs to determine the quantifying factor of
each indicator. After the quantifying and mapping, the fuzzy set and the relevant subject function of each linguistic
variable are also required. For the sake of computing, the designer may build a fuzzy assignment Table for each
linguistic variable. The FIPD algorithm also defines a new observing variable —— congestion indicator to
characterize the network traffic state. The congestion indicator is also required for quantifying, mapping,
determining the fuzzy set and subject function of the relevant linguistic variable along with the fuzzy assignment
Table. After all of the aforementioned operations are done, the designer is required to determine a fuzzy reasoning
rule Table, which is built based on the human’s experience and intelligence. Uniting the above three fuzzy
assignment Tables and depending upon the fuzzy reasoning rules, we can do the fuzzy reasoning computation and
get a final fuzzy judge Table, which is the guide line of determining whether a packet is dropped or not. The fuzzy
judge Table of FIPD employed in Ref.[15] is shown in Table 1.

Table 1 Fuzzy judge table

QC\QL —4 -3 -2 -1 0 1 2 3 4 5 6 7 8
-4 -1 =1 -0.75 -6.75 -0.5 0.5 0.5 -0.5 0 0.25 0.38 0.5 0.5
-3 -1 ~0.75 -0.5 -0.5 -025 -0.25 0 0 0.13 0.25 0.38 0.5 0.5
-2 -1 -0.75 -0.38 -0.38 0 -0.13 0 0 0.25 0.38 0.5 0.63 0.63
-1 -0.88 -0.63 -0.25 -0.25 0 0 0 0 0.25 0.5 0.63 0.75 0.75
0 -0.75 =05 0 0 0 0 0 0 0.25 0.5 0.63 0.75 0.75
1 -0.75 -0.5 0 0 0 0 0.13 0.5 0.38 0.63 0.75 0.75 0.75
2 -0.63 -0.38 0 0 0 0.13 0.38 0.38 0.5 0.75 075 0.88 0.88
3 -0.5 -0.25 0 0 0.25 0.25 0.5 0.5 0.63 0.75 0.75 0.88 1
4 -0.5 025 0.25 0.25 0.5 0.5 0.75 0.75 0.75 0.75 0.75 1 1
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All of the above steps are performed in off-line state, hence we can ignore the computing overhead due to the
fact that only the fuzzy judge Table is used in the algorithm. The principle of the algorithm is that at every sampling
the queue length QL and the change of queue length QC. After
they are quantified with the respective quantifying factor, we can obtain a congestion indicator from the fuzzy judge

time, the algorithm calculates two parameters

table by using the two variables as indexes. Then by comparing the congestion indicator with the threshold, we can
determine whether the packet is dropped or not. The whole process is simple and the computing overhead is very
small while the simulation result is fairly good. The core routine of the FIPD algorithm is shown in Fig.1.

At every sampling time:
QL = current_queue_length — expected queue_length;
QC = current_queue_length — old_queue_length;
old_queue_length = current_queue_length;
index_ql = round(index_ql*kl),
index_gc = round(index_gc*kc);
congestion_index = lookup(FuzzyJudgeTable, index_ql, index_qc);
Where
The kI and kc are the two quantifying factors respectively;
The lookup is the table lookup operation
At every packet arriving:
If (congestion_index > congestion_threshold)
drop the packet;

Fig.1 The core routine of FIPD algorithm

The FIPD algorithm, however, has its own defects. Due to the dependence on packet dropping in notifying the
network congestion, it has a very high packet loss rate, which is not according to the original objective of AQMUL 1t
is important that quite a few packets are dropped unnecessarily (which is used to notify the congestion in advance
but the congestion is not certain to happen). So, we just think whether or not the notification is fulfilled via other

way and the unnecessary packet dropping should be avoided. The ECN mechanism meets our requirements exactly.
2.2 ECN mechanism

The ECN (Explicit Congestion Notification) mechanism itself is not a novel idea and it is not proposed for IP
network. Originally, Ramakrishnan and R. Jain brought forward a Binary Feedback Mechanism (DEC bit) for DNA
(Digital’s (proprietary) Network Architecture)'®. Afterward, the Forward Explicit Congestion Notification
mechanism (FECN) is defined for Frame Relay and ATM!'7), All of them have been used as reference in designing
the ECN mechanism in IP network!'®).

The ECN mechanism in IP network aims at providing an alternative manner for TCP to detect the network
congestion. That is to say, the TCP sender can apperceive the network congestion, not relying on the packet
dropping. The IETF has promoted the ECN on IP network as a recommended standard!'®). It is expected that the
network devices with ECN support will come forth in recent future. Actually, the ECN mechanism is supported in
Linux Kernel 2.4 or higher. Moreover, ECN also needs the support of Router, and Cisco has made it into their
product IOS Release 12(8)T.

As mentioned early, the ECN mechanism requires the support of both the end systems and the core routers. The
end systems obtain the congestion information via the ECN mechanism and then adjust their sending rate according
to the end-to-end congestion control mechanism. The routers take the duty of monitoring the network state and
marking the packet for notifying the end system when the congestion comes forth. It is obvious that the ECN
mechanism relies on the capability of the router detects the potential congestion. Although there is no AQM

mechanism designated in the last ECN criterion®”), the RED algorithm is often used in practice.
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When a TCP connection begins to establish, the end system and the router inquire each other whether the ECN
mechanism is supported. If they both support, the TCP sender will set the ECT (ECN-Capable Transport) bit in the
outgoing IP packet. Once the router captures the network congestion, it will set CE (Congestion Experienced) bit in
packet header before forwarding the IP packet. Thus, when the TCP receiver takes in the marked packet, it knows
that the network is in congestion. Then the receiver will notify the sender of the congestion by setting the ECE
(ECN-Echo) bit in the ACK packet header before forwarding it. When the sender receives the ACK packet, it will
start the congestion control algorithm to decrease the sending rate. In this way, we can achieve the objective of
congestion control. In addition, the sender will set the CWR (Congestion Window Reduced) bit in the next data
packet. Because the ACK packet may be discarded in transmission, the congestion notification mechanism may be
of no effect. In order to prevent the situation, the receiver will set the ECE bit in the subsequent ACK packet until
receiving the data packet with CWR bit set which indicates that the sender has reduced the sending window.

The researches in Ref.[18] show that when the ECN mechanism is employed, the failure overhead of TCP
transmission decreases greatly and the traffic block decreases too. But only the ECN mechanism itself couldn’t
improve the throughput of TCP effectively. The ECN mechanism should be combined with AQM to fully exert its
effectiveness.

2.3 The combination of FIPD algorithm and ECN mechanism

In the intelligent packet dropping mechanism proposed in Ref.[15], it is by the simple packet dropping that the
routers notify the traffic sources of the network congestion. The mechanism is a brand-new AQM technique. But it
has many restrictions due to the simple packet dropping. Firstly, although the overhead of packet dropping in router
is quite small, it is a waste of network resource. When a packet is dropped at a router, the network resources that are
occupied before, such as network bandwidth and memory, will go to waste. So we should reduce the unnecessary
packet dropping. Secondly, the packet dropping is not the best way to notify the end system of the congestion. There
are two passages for the packet dropping mechanism to do the notification, Fast Retransmission and Overtime
Retransmission. In the two passages, neither of them can be as quick and direct as the ECN manner.

The ECN mechanism is simple. It doesn’t need the state information of each flow and therefore is well scalable.
After the ECN mechanism is introduced, we can reduce the dispensable packet dropping. Furthermore, the ECN
mechanism can notify the traffic source of the congestion in network as soon as it happens. For FIPD algorithm, it is
quite necessary to introduce the ECN mechanism. As it is by the packet dropping that the FIPD algorithm itself can
control the packet queue length, when the congestion appears in network, it may lead to the high packet loss rate.
For the FIPD algorithm, the feature is a very adverse factor.

We combine the FIPD algorithm and the ECN mechanism together and build a new algorithm FIPE. The FIPE
algorithm has many favorable characteristics. At first, it gets over the most severe defect and avoids the unnecessary
packet dropping. Secondly, it inherits the almost overall virtues of FIPD, which will be seen in later simulations.
The shortage is that, the queue length graph disperses a little more than that of FIPD, which is caused by the ECN
mechanism. When the ECN mechanism is added to RED algorithm, the queue length graph disperses too.

3 FIPE Algorithm

Actually, it is a difficult process to add the ECN mechanism to FIPD algorithm and build the new algorithm
FIPE. If the ECN mechanism is just simply introduced, the graph of queue length will disperse greatly. As is shown
in Fig.2. Here is the network simulation configuration: the classical Dumbbell topology; 100 fip traffic source; the
bottleneck link bandwidth 10Mb/s, delay 20ms; the other links bandwidth 2Mb/s, delay 10ms; the key router’s
queue length is 200 packets and the queue management algorithm is FIPE. Unless otherwise specified, the later
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simulations adopt the previous simulation configuration,
It is known that in the original FIPD algorithm, we

use the two parameters, queue length QL and its change
QC, to indicate the network congestion. The FIPD
algorithm calculates the two parameters every sampling
period and quantifies them as indexes of the fuzzy judge
table. Then we can get a congestion indicator.

Queue Ier;gth (packets)

Comparing the indicator with the threshold, we can

determine whether the packet is dropped or not. Now, we
introduce the ECN mechanism into the FIPD algorithm.
That is to determine whether the packet is marked (set
the ECN bit, not dropped) or not. The method can also
achieve the objective of notifying the traffic source of

Time (s)

Fig.2 ECN added to FIPD directly

the network congestion. Furthermore, it can reduce the unnecessary packet loss.

However this causes a new problem. As you can suppose, the marked packet is also left in queue. This will
make the calculation of queue length and its change deviate from the original intention of the algorithm. The FIPE
algorithm captures the congestion in the network at a sampling time, and then it will mark all the packets arriving in
the next sampling period. Due to the marking but not dropping operation, the packets are left in the queue. The
queue length will go bigger than that of FIPD and the change of queue length too. This will make the probability of
the congestion detected at the next sampling time increase greatly, which will result in that more packets are marked.
Thus, the global synchronization of all traffic in the network is brought on. At the meantime, the packet queue in the
router oscillates severely and the graph of queue length disperses seriously. It will induce the indeterminacy and
oscillation of the delay, which contravene the original intention of AQM (low delay and high throughput). The
simulation result shown in Fig.2 verifies the analysis above.

3.1 Introducing the non-ECN queue length

In order to solve the problem, we introduce a new concept to FIPE algorithm——non-ECN queue length. In the
router, we have three choices when a new packet arrives. The first adds it to the queue directly; the second drops
directly; and the third sets the ECN bit before adding to queue. Although the packet adopting either of the two
queuing manners is entering the same queue, we separate them logically. That is, the number of the packets not
marked in the queue is called non-ECN queue length. Correspondingly, the number of the packets marked in the
queue is called ECN queue length. In the quondam FIPD algorithm, there is no marked packet and naturally there is
no conceptive differentiation between the non-ECN queue and the ECN queue. The non-ECN queue length is
calculated in the way shown in Fig.3.

Now, we introduce the ECN mechanism into the FIPD algorithm and substitute the non-ECN queue length for
the original queue length. Thus we get the FIPE algorithm. The corresponding change in the routine is shown in Fig.
4. Via the simulation experiment, we get the evolvement of queue length shown in Fig.5. After the improvement, as
you can image, the calculation of the congestion indicator may differs little from the FIPD algorithm. A little
difference is that the ECN marked packets will occupy some bandwidth, which equals to tuning the available
bandwidth a little lower. But the occupied bandwidth is not wasted. It is used to transmit the marked packet, thus the
throughput of the packets is enhanced.

© PEEREE

http:/ www. jos. org. cn




1642

Journal of Software 2005,16(9)

Queue length (packets)

3.2

In the enque function:
If (the packet is not marked) {
non_ecn_queue_length++;
}else {
ecn_queue_length++;

In the deque function:
If (the packet is not marked) {
non_ecn_queue_length--;
} else {
ecn_queue_length--;
}

Fig.3 Introduction of the non_ecn_queue

200~
180 1
160

Time (s)

Fig.5 Non-ECN queue introduced FIPE

Tuning the queue excursion

At every sampling time:
QL = non_ecn_queue_length
- expected_queue_length;
QC = current_queue_length
- old_queue_length;
old_queue_length = current_queue_length

Where

The expected_queue_length is a constant that is
initialized at the start

The current_queue_length is the sum of the
non_ecn_queue_length and ecn_queue_length

Fig.4 Non_ecn_queue introduced algorithm

~— FIPEDZ

Queue length (packets)

Time (s)
Fig.6 Excursion reserved FIPE

Another noticeable fact is that the marked packet is left in the queue and the queue length is augmented. The

only difference is that the marked packet is not taken into account when computing the congestion indicator.

Accordingly, the real queue is certainly longer than that of the original algorithm. Fortunately, the increase is almost
a whole shift of the queue length curve, which provides a favorable convenience for us to control the queue length.
For this problem, we have two methods to adjust the algorithm.

The first method is very simple. That is to tune the threshold of the congestion indicator. But the method has

some restrictions. First, the range for tuning is limited. It will be incapable when the excursion exceeds the tuning

range. Second, the method may induce the bad performance of the algorithm, and the situation is not easy to find.
The second method is a little complex, but it gets over the limitation of the first method. Relatively, it is more

stable and reliable. The method is to reserve some excursion for the shift of the queue. We can estimate the

The first method:
congestion_threshold += regulating_value;
The second method (excursion reservation):

Index_ql += excursion_reservation_value;

Fig.7 Excursion compensation

excursion beforehand by the simulation, which is a useful
method if some error is saved. The simulation result is
shown in Fig. 6. We can also embed the estimating routine
in the algorithm to acclimatize to the dynamical network
state. But if we do so, more detail work needs to be
accomplished. Because the question is not the emphasis of
this paper, we jump it over due to the limited words. The
pseudo-code of the two methods is shown in Fig.7.
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3.3 Reducing the fuzzy judge table

It is supposed that the fuzzy judge Table is relatively bigger, but is the supposition right or not? If it is the case,
can we achieve the same effect when substituting a smaller Table for the current fuzzy judge table? All these will lie
on the result of the experiments.

At first, we trace the whole fuzzy judge table for the utility statistic of every cell, as shown in Table 2. The
statistic result is fairly gratifying. Our supposition is completely right. The whole fuzzy judge table is a 9x13 matrix.
The statistic result indicates that the utility of the Table is almost the focus in a 5x5 region (which is marked with
gray background in the Table). Only a few used cells lie outside of the area and they are hardly be used. So, we have
the full reasons to reduce our fuzzy judge table to a 5x5 matrix.

Table 2 The statistic result of the fuzzy judge table

—

ole|jlecljlo|le|lo|lo|lo|o
ole|jlojlo|lojlo|lo|o]|o
olo|lo|jlo|w|lo|lo|lo|e

ele|le|le|e|e

ole|lcleo|lec|lo|eo|leo|e

ole|jlejlo|le|le|leo|le|e
ole|lojeo|lojojlo|e

Following the process depicted in Ref.[15], we can finally get a 5x5 fuzzy judge table, as shown in Table 3.
When we employ it into the algorithm, the simulation result is fairly satisfying. The new 5x5 fuzzy judge table can
suit for the work of the original 9x13 table and the performance is as good as it is, as shown in Fig.8. Certainly, the
big table has its own advantage. It is more tolerant than the small table. So we don’t expect to see that the
performance of the algorithm is damaged for the sake of memory capacity. In practice, we could make a tradeoff
among all the performance indicators on the basis of the practical requirements.

Table 3 The reduced table

QC\Q | -2 -1 0 1 2
-2 -1.00 -0.75 -0.50 -0.25 0.00
-1 -0.75 -0.50 -0.25 0.00 025

0 -0.50 -025 000 025 0.50
1 -025 000 025 050 0.75
1 000 025 050 075 1.00

4 Simulation Verification

In this section, we will show the advantages against the well-known RED algorithm by simulation. We also
adopt the NS2 (Network Simulator version 2) as the simulation tool. Meanwhile, we will reveal some defects of the
new algorithm.

4.1 Comparing the queue evolvement

The main purpose of AQM is to keep the high link utility while maintaining the low delay. The FIPE algorithm

© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
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achieves the objective by and large. First, as shown in the Fig.7, the queue is hardly empty in the whole simulation,
which is the guarantee of the high link utility. Second, the queue length is controlled into a small range, which is the
key factor to attairi the low queuing delay. The effect owes to the management to the queue range. If the queue range
is quite big, it is impossible for us to control the queue in a low range and hardly empty.

In the same network configuration, we review the performance of the RED algorithm (the ECN mechanism is
launched too). All the configuration parameters are the default values in NS2. The queue evolvement of it is shown
in Fig.9. The RED algorithm can by and large ensure a high throughput while the queue range is quite big. In
controlling the queue range, the RED algorithm behaves unfavorable. Hence, the RED algorithm can hardly keep
high throughput while maintaining low queuing delay.

2o, 0o S
|

Queue length (packets)
Queue length (packets)
2

<]

o
~
IS
o
@
=1
I}
=
5
@
5]

o

Time (s)

Time (s)

Fig.8 Fuzzy judge table with reduced FIPE Fig.9 The queue evolvement of RED algorithm

4.2 Comparing the loss rate, equity and converging rate

We can compare the packet loss rate of the two algorithms. After the statistic of various indicators in the
simulation, we obtain a lot of convictive data. In the 20 seconds’ simulation, the statistics of the FIPE and RED
algorithm is shown in Table 4. From the table, we could expressly make out the FIPE algorithm’s advantages in
reducing the unnecessary packet loss. In the simulation, the loss rate of the RED algorithm is above 20 times bigger
than that of FIPE. Actually, the packet loss of FIPE is almost at the beginning of the simulation. At that time, the
network traffic is experiencing a great burst (100 fip traffic start up at the same time). In the common network state,
few packets are dropped. Although the RED algorithm drops a lot of packets at the beginning, the great mass of the
dropped packets occur in the common network state. Viewing from that point, the superiority of FIPE goes without
saying. If the queue capacity is reduced to 100 packets, as you can image, the FIPE algorithm can work
commendably while the RED algorithm will be forced to drop more packets.

Table 4 Comparing the loss rate and equity of FIPE with that of RED

Throughput Lost packets Loss rate (%) Equity index
FIPE 24026 117 0.485 0.965
RED 23985 2846 10.6 0.9267

In the converging rate of the queue, FIPE is also provided with good performance. From the queue evolvement
graph, we could conclude that the queue convergence of FIPE is very fast. The longest converging time is only about
0.5 second, which is less than 1 second. While the converging rate of the RED algorithm is obviously slower and the
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converging process often needs many seconds to be accomplished.
4.3 The robustness of the algorithm

Now let’s review the performance of FIPE interfered with the HTTP and CBR traffic. In the first simulation
below, we add 100 HTTP traffic to the 100 FTP traffic. The queue evolvements of the RED and FIPE are illustrated
in the same figure for the sake of comparison, as shown in Fig.10. In current network research, the HTTP traffic is
also called small mouse traffic and the FTP traffic is called elephant traffic. The effect added by the HTTP traffic is
very small, so the queue evolvements of RED and FIPE have only little change. In the same figure, we could find
the obvious advantage of FIPE against RED. In the second simulation, we substitute 5 CBR traffic for the 100 HTTP
traffic. The CBR traffic is a non-responsive traffic, which can provide a big and smooth network load. After the 5
CBR traffic is added, the performance of RED and FIPE algorithms deteriorate, in some degree, as shown in Fig.11.
The queue oscillation of the RED algorithm goes more violent. The queue evolvement of FIPE not only oscillates
greater but also shifts a great distance. Even though, the performance of FIPE is still much better than that of RED.

Queue length (packets)
Queue length (packets)

Time (s)

Fig.10 FIPE and RED (FTP+HTTP) Fig.11 FIPE and RED (FTP+CBR)

5 Conclusion and Future Work

The paper firstly reviews the FIPD algorithm proposed in Ref.[15]. And then it introduces the ECN mechanism
into the algorithm and builds a new active queue management algorithm FIPE. The new algorithm is mainly
proposed to overcome the high packet loss rate in FIPD. Meanwhile, we also expect that the new algorithm can
inherit the good characters from the FIPD. Due to the introduction of the ECN mechanism, the performance of the
new algorithm FIPE deteriorates in some degree. In resolving all these questions, we bring forward some
extraordinary concepts as well as the corresponding actions. Finally, we verify the new algorithm through a series of
simulations on NS2 platform. The simulation results show that the new algorithm has a lot of better performance
than the classical RED algorithm. !

Certainly, the FIPE algorithm has its own defects. Especially in the light network load, the performance of
FIPE will degrade. In addition, the excursion reservation mechanism is a simple and inaccurate implementation. The
future work is to amend the algorithm to overcome these defects.
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