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Abstract: Recently various evolutionary approaches have been developed for multi-objective optimization. Most 
of them take Pareto dominance as their selection strategy and do not require any preference information. However 
these algorithms cannot perform well on problems involving many objectives. By introducing preferences among 
different criteria, a multi-objective concordance genetic algorithm (MOCGA) is proposed to deal with the problems 
in the paper. As the number of objectives to be simultaneously optimized increases, the weak dominance is used to 
compare among the individuals with decision-maker’s information. It is proven that the algorithm can guarantee the 
convergence towards the global optimum. Experimental results of the multi-objective optimization benchmark 
problems demonstrate the validity of the new algorithm. 
Key words: genetic algorithm; multi-objective optimization; preferences information; multi-criterion 

decision-making 

摘  要: 最近涌现了各种进化方法来解决多目标优化问题,多数方法使用 Pareto 优胜关系作为选择策略而没有采

用偏好信息.这些算法不能有效处理目标数目许多时的优化问题.通过在不同准则之间引入偏好来解决该问题,提出

一种多目标调和遗传算法 MOCGA(multi-objective concordance genetic algorithm).当同时待优化的目标数目增加时,
根据决策者提供的信息使用弱优胜关系进行个体优劣的比较.这种算法被证明为能收敛至全局最优.对于目标数目
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为很多的优化问题,测试实验结果表明了这种新算法的有效性. 
关键词: 遗传算法;多目标优化;偏好信息;多准则决策 
中图法分类号: TP18  文献标识码: A  

1   Introduction 

Many real-world problems are multi-objective in nature, because they consider several objectives that are to be 
optimized simultaneously. There is no a single optimal solution, but rather a set of alternative solutions for the kind 
of problems. These solutions are optimal in the wider sense that no other solutions in the search space are superior 
to them when all objectives are considered[1]. Multi-objective optimization problems (MOPs) have received 
considerable attention in the field of Operation Research. Classical optimization methods such as multi-criterion 
decision-making methods suggest converting an MOP to a single-objective optimization problem by emphasizing 
one particular Pareto-optimal solution. When such a method is used for finding multiple solutions, it has to be 
applied many times and results in obtaining a different and even incompatible solution at each run. Finally a 
decision-maker is difficult to select optimal alternatives from them using those methods. 

Recently MOPs have become a popular area of research within evolutionary computation that is normally 
called Evolutionary Multi-objective Optimization. Over the past decade, a number of multi-objective evolutionary 
algorithms (MOEAs) have been proposed[2]. EAs are well suited for MOPs because they process a set of solutions in 
parallel. Some researchers suggest that MOPs seem to belong to an area where EAs do better than other blind search 
strategies[3]. Although this statement might be qualified with regard to the “No Free Lunch” (NFL) theorems[4], up 
to now there are few other alternatives solving MOPs good like EAs. In most cases these EAs are modifications of 
the genetic algorithms, so genetic algorithm is the most important evolutionary approach among MOEAs. 

Selection is the key mechanism in evolutionary computation. In the case of multiple objectives, the selection 
operator steers the search in direction of the nondominated front, and is controlled by the individual’s fitness that 
reflects its utility of Pareto-optimality. Therefore fitness assignment is the main issue in multi-objective 
optimization. Many MOEAs use Pareto-based fitness assignment, which directly bases on Pareto dominance and 
assigns all nondominated solutions equal reproduction probabilities. A scheme was introduced by Fonseca and 
Fleming, where an individual’s rank corresponds to the number of solutions in the population by which it is 
dominated[5]. Other Pareto-based approaches include the Strength Pareto Evolutionary Algorithm[6] and the 
Nondominated Sorting Genetic Algorithm[7]. Although they do not require any preference information, the 
dimensionality of the search space influences their performance. Fonseca and Fleming pointed out that pure Pareto 
EAs cannot be expected to perform well on problems involving many competing objectives, and may simply fail to 
produce satisfactory solutions due to the large dimensionality and size of the trade-off surface[3]. 

Aiming at the problem, preferences have been integrated with a multi-objective environment. By introducing 
preference information among different objectives, evolutionary population is weakly ranked as the selection 
strategy according to the theory of multicriterion decision-making. The advantage of the algorithm lies on that it can 
solve optimization problems with many objectives. Other work in the literatures reported the use of preferences[8], 
and recently Dragan and Parmee proposed a fuzzy preference method where these preferences were developed with 
a goal to reduce the cognitive overload[9]. But they were used in the different circumstances and for the different 
purposes. A survey on the use of preference in a multi-objective context was provided by Coello[10]. 

The next section introduces some concepts used in the field of evolutionary multi-objective optimization and 
preference relationship. Section 3 presents MOCGA. Section 4 gives the performances for high dimensionality 
optimization problems. The convergence property is discussed in Section 5. The paper concludes with Section 6. 
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2   Main MOP Concepts 

2.1   Multi-objective optimization 

A general multi-objective problem can be described as a vector function f that maps a tuple of m decision 
variables to a tuple of n objectives (criteria). Formally: 
 Min/Max y=f(x)=(f1(x),f2(x),...,fn(x)) (1) 

Subject to x=(x1,x2,...,xm)∈X, y=(y1,y2,...,ym)∈Y. 
where x is called decision vector, X parameter space, y objective vector, and Y objective space.  

If the set of solutions consists of all decision vectors for which the corresponding objective vectors cannot be 
improved in any dimension without degradation in another, these vectors are known as Pareto optimal. Several 
concepts are mathematically defined as follows: 

Definition 1. (Pareto Dominance): In a minimum problem, a vector u=(u1,u2,...,un) is said to dominate v=(v1, 
v2,...,vn) iff u is partially less than v, i.e., iiii vunivuni <∈∃∧≤∈∀ :},...,1{},,...,1{ . 

Definition 2. (Pareto Optimality): A solution x∈X is said to be Pareto optimal with respect to X iff there is no 
x′∈X for which v=f(x′)=(f1(x′),...,fn(x′)) dominates u=f(x)=(f1(x),...,fn(x)). 

2.2   Semantics of preference 

For a multi-objective preference system, the initial set of atomic propositions is given by a fundamental binary 
relation R, defined on a finite set A of alternatives with the following general semantics:  

Definition 3. (Outranking Relation): ≡∈∀ )(:, bRaAba “ ” boutrankslessormorea

On the basis of the general outranking relation R, we can define adequate preference, indifference and 
incomparability relations, denoted respectively as P, I and J. The semantics of each relation is given as follows: 

:  (i P j)≡“i is more or less preferred to j” Aji ∈∀ ,

(i I j)≡“i is more or less indifferent to j” 
(i J j)≡“i is more or less incomparable to j” 

The three relations are different from the ordinary multi-objective optimization and provide a complicated 
comparison relation between any two alternatives. They elicit two concepts: concordance index and discordance 
index, which are used in MOCGA. 

The concordance index between any two alternatives i and j is a weighted measure of a criterion, for which 
alternative i is preferred to alternative j (denoted if j) or for which i is equal to j (denoted i~j). It is given as:  
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where ω(k) is the weight of criterion k, k=1,…,n, and A(i,j)={k|i f j},0≤C(i,j)≤1. Concordance is considered as the 

weighted percentage of criteria for which one alternative is preferred to another.  
Determination of the discordance between i and j requires that an interval scale common to each criterion be 

defined. The scale is used to compare the discomfort caused between the worst and the best criterion values for each 
pair of alternatives. A range may be chosen where the best rating would be assigned the highest value of the range, 
and the worst rating would receive the lowest value of the one. Each criterion can have a different range to reflect 
the leeway available for that criterion. The discordance index is defined as: 
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where r(j,k) is the evaluation of alternative j with respect to criterion k, and R* is the largest of the n criterion scales 

  



 764 Journal of Software  软件学报  2005,16(5)    

by construction existing 0≤D(i,j)≤1. 

3   MOCGA 

3.1   Multi-objective model 

The advantage of outranking relation is that it can handle intransitivity and contradictions in a local manner 
and allow incomparable relation J. Typical technique is the ELECTRE method proposed by Roy[11], which includes 
versions I and II. The abbreviation “ELECTRE” is the abbreviated form of Elimination et Choice Translating 
Reality which is derived from French. The method provides a partial and weak ordering of the nondominated 
alternatives. The ordering is accomplished by the construction of outranking relationships with the preferences. 
Version I of ELECTRE will be embedded in the selection process of MOCGA. Its character is to choose those 
alternatives, which are preferred for at least a plurality of the criteria and yet do not cause an unacceptable level of 
discontent for any one criterion. ELECTRE I operates as follows: 

i) A set of m alternatives (R) and a set of n objectives (criteria) are first given. From the decision matrix, a 
normalized one is constructed to take each criterion value as the same unit vector: 
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Ifωj denotes the weight of criterion j, a weighted normalized decision matrix is then formed whose elements 
are given by: 

ii) Weak outranking relation is constructed with threshold values from the concordance and discordance 
matrices. Then an ELECTRE’s relation graph is designed where each node corresponds to a nondominated 
alternative and the arrows indicate preference dominances between any two nodes. 

 ijjij rv ω=  (5) 

① Concordance index 
If a criterion in an alternative xk is better than the same criterion in another alternative xl, it is said to be 

preferred in terms of that criterion. If xk is preferred to xl (xkPxl), any normalized criterion value in support of the 
assumption is said to be concordant with xkPxl, where P denotes an adequate preference relation defined before. A 
concordance set and a discordance set are built with the weighted normalized decision matrix: 
 Concordance set: Ckl= {j |rkj≥rlj} (6) 
 Discordance set: Dkl={j|rkj<rlj}=M−Ckl (7) 
where M is the set of {1,2,...,n}, and the expression significations of Ckl and Dkl are different from the above C(i,j) 
and D(i,j). If C′kl={j|rkj=rlj}, two concordance indexes αk1 and α̂ kl are defined respectively, 
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If αk1≥α0 and α̂ kl≥1, the concordance check is passed. α0 denotes the lowest concordance threshold value 
determined by a decision maker. For example, α0 can be taken as the average of concordance index αk1: 
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② Discordance index 
The discordance index is defined as follows: 

 

Mj

ljkj

Dj

ljkj

kl vv

vv

kl

∈

∈

−

−

=
||max

||max

β  (11) 

If βkl≤β0, the discordance check is passed. β0 denotes the highest discordance threshold value determined by a 
decision maker. The weights, α0  and β0 reflect the preference of the decision maker. For example, β0 can be taken 
as the average of discordance index βkl: 
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iii) A minimal dominance subset RD is obtained from R. 
iv) If the number of designs in RD is small enough to be chosen as preference alternatives from them, the 

iteration process ends; Otherwise, repeat (i) to (iv) after the concordance level is adjusted. 

3.2   Detailed description of MOCGA 

The subsection describes the details of MOCGA, whose emphasis is laid on integrating preference model with 
population evolution. In a finite population, each individual is weakly sorted (ranked) by the ELECTRE method, 
and avoids being difficult to be sorted for several objectives with usually strict Pareto-based comparison. The main 
procedure of MOCGA is described as follows. 

(1) Initialize control parameters: population size N, the size of external nondominated set N ′ , number of 
evolutionary iteration gen, crossover probability Pc, mutation probability Pm, the weight of every objectiveωi, the 
lowest concordance threshold value α0, and the highest discordance threshold value β0; 

(2) Generate an initial population P and an empty external nondominated set P’ when gen=0; 
(3) Sort individuals in P with ELECTRE and copy the produced members in the minimal dominance set to P′ ; 
(4) Remove solutions in P′  which are covered by any other member of P′  (the step is ignored for the first copy, 

as now there is no dominated solutions in P′ ); 
(5) If the number of externally stored nondominated solutions exceeds a given maximum value, prune P′  by 

means of averagely correlative clustering; 
(6) Calculate the fitness of each individual in P and P′ ; 
(7) Select individuals from P+P′  with binary tournament rule whose constraints satisfy constraint values, until 

the mating pool is filled, then gen:=gen+1; 
(8) Apply crossover and mutation operators related with a solving problem; 
(9) If the maximum number of generations is reached, stop algorithm, else go to (3); 
(10) Users adjust α0 and β0 values according to their needs, then go to step (1). 
The fitness assignment in (6) includes two stages, which uses strength concept proposed by Zitzler and 

Thiele[6]: 
Step 1: Each solution i∈P′  is assigned a real value si∈[0,1] as its strength; si is proportional to the number of 

population members j∈P for which i f j. Let k denote the number of individuals in P that are covered by i, and 

assume N is the size of P. Then si is defined as si=k/(N+1). The fitness fi of i is equal to its strength: fi=si. 
Step 2: The fitness of an individual j∈P is calculated by summing the si value of all external nondominated 

solution i∈P′  that cover j. Fitness is to be minimized (where fj∈[1,N]): 
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The method of fitness assignment and clustering in step (5) avoids the phenomenon of genetic drift, which 
would influence the population diversity. Note that as the fitness is calculated during the algorithm execution, the 
dominated or nondominated relation between any two individuals means an absolutely Pareto dominated or 
nondominated one. Step (7) practically eliminates the unqualified individuals whose constraints exceed the bounds. 

4   Performance Evaluation and Analysis 

4.1   Multi-Objective optimization problem 

4.1.1   4-D objective problem 
In order to verify the effectiveness of MOCGA, a 4-D problem is tested in which one dimension is more than 

the usual benchmark problems. The paper designs a four-objective functional optimization problem of a single 
variable without constraints: 

 Min F(x)=(f1(x),f2(x),f3(x),f4(x)) (14) 
f1(x)=x2, f2(x)=(x−2)2, f3(x)=(x−1)2, f4(x)=0.5*(x−1)2 

The decision variable x is taken as a real value between [−10, 10]. When the weight of every sub-objective is 
equal, i.e. 0.25, the optimal solution is obtained as x=1.0, which is solved by linear weighted method of 
multi-objective programming in advance. In the paper the famous Strength Pareto Evolutionary Algorithm (SPEA)[6] 

is compared with MOCGA for the problem. The main difference between the two algorithms lies on that MOCGA 
uses a weakly outranking to sort an individual, while SPEA uses Pareto-based purely superior relation to do it. 

Here N=100, N ′=30, Pc=0.75, Pm=0.01. The values ofα0 and β0 in MOCGA are assigned by the related 
averages, i.e.α0 taken as the average of concordance index, β0 taken as the average of discordance index. 
Comparative results cannot be visually shown in graphical form for four-objective problem, indicating who 
performs better. The evaluation for comparing their performances is adopted by the statistical number of optimal 
solutions produced. The maximal generation is taken as 50, 100, 200, 500, respectively. Each time ten experiments 
were done while the two algorithms use the same initial population. The produced results are provided in Table 1. In 
Table the numbers before and after commas represent the number of optimal solutions in an external set created by 
MOCGA and SPGA, respectively.  

Table 1  Results of a 4-D objective problem by MOCGA and SPEA 

   No. 
Gen. 1 2 3 4 5 6 7 8 9 10 

50 
100 
200 
500 

11, 3
13, 4
5, 2
8, 3

6, 2 
11, 5 
8, 4 
7, 2 

5, 1 
11, 6 
5, 2 
8, 2 

5, 2 
6, 3 
7, 3 

14, 3 

6, 3 
14, 2 
17, 4 
11, 4 

12, 5
15, 4
10, 2
20, 2

4, 2 
7, 2 

14, 3
12, 3

8, 2 
19, 4 
6, 2 

16, 4 

12, 3 
11, 2 
9, 3 

12, 2 

9, 4 
15, 3 
5, 2 
7, 4 

In addition during each experiment the optimal solutions were mixed, which were done at the end of an 
evolution process of MOCGA and SPEA. The dominance relation among them was assessed to determinate whether 
there exist some dominated solutions. It was found out that most of these optimal solutions were nondominated by 
others with a few exceptions. The fact shows that MOCGA creates an evolutionary optimal set along the Pareto 
front as SPEA, although it adopts rather weak ranking than strictly Pareto-based dominance relation. Due to the 
reason, the two algorithms could be compared with the number of the last optimal solutions generated by them. 

It is found from Table 1 that the number of optimal solutions from SPEA is much smaller than that from 
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MOGA. The trend behaves more and more evidently when the evolutionary generation is higher. As the 
dimensionality of optimization objectives is high, SPEA is difficult to sort individuals in a finite genetic population 
by Pareto-based rank, even existing a situation where all individuals are Pareto-optimal to each other in a 
population. Thus the normal iteration process might be interrupted using pure Pareto selection strategy; whereas 
MOCGA has not the disadvantage. 
4.1.2   10-D objective problem 

How does MOCGA deal with many competing objectives more efficiently? It would greatly convince people if 
it could be revealed that MOCGA can deal with more objectives. This paper gives a test with ten objectives of 
DTLZ2 problem proposed by Deb[12]. It can be scalable to more objectives. This is a really challenging problem and 
naturally enough to judge the performance of MOCGA on the high dimensional objective space. The optimization 
task considers a real-parameter function and investigates the EA′s ability to scale up its performance in a large 
number of objectives, which is defined as follows.  

Minimize f1(x)=(1+g(Xn))cos(x1π/2)cos(x2π/2)…cos(xn−2π/2)cos(xn−1π/2) 
Minimize f2(x)=(1+g(Xn))cos(x1π/2)cos(x2π/2)…cos(xn−2π/2)sin(xn−1π/2) 

…… 

 Minimize fn(x)=(1+g(Xn))sin(x1π/2) (15) 

where g(Xn)= , with X∑ ∈
−

ni Xx ix 2)5.0( n=[xn,…,xm], and 0≤xi≤1, for i=1,2,…,m, with m=n+k−1. 

As the above definitions, here n is the number of objectives, m is the number of variable, and k is a difficulty 
parameter. In this study n=10, m=11, and k=2. The function code design is followed in C language: 

    Pi=4.0*atan(1.0); 
    for(j=n, xkk=0.0; j<m; j++)  xkk+ =(x[j]−0.5) * (x[j]−0.5); 

  for(j=n−1; j>=0; j--)   
{  temp=1.0; 

for(i=0; i<n−j−1; i++)  temp* = (i>=0)? cos(x[i] *Pi/2.0): 1.0; 
f[j]=(1.0+xkk)*temp* ((j>0) ?sin(x[n−j−1]*Pi/2.0): 1.0); 

 } 

The Pareto-optimal solutions correspond to xi
*=0.5 (xi

*∈xn) and all objective function values must satisfy the 

. MOCGA was compared with the important NSGA-II proposed by Deb∑=
=n

i if1
2 1)( * [7]. According to the 

viewpoint of Deb, the distribution of solutions (n=10) obtained with NSGA-II is poor in the problem[12]. His 
viewpoint was validated, whereas MOCGA got a good approximation set. If Nds denotes the size of nondominated 

set (N') and the theoretical value of is taken as 1.0, an evaluation measure is constructed based on the 

average deviation: 

∑=

n
i if1

2)( *

  (16) dsNj
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The benchmark problem was tested using the same genetic parameters as those in the 4-D experiment. Table 2 
shows the 10 comparison results (Δ) after 100 generations. From the results of Table 2, the Pareto-optimal 
solutions of MOCGA have a little deviation. However they have a big deviation in NSGA-II which did not work 
well on the problem as Deb said[12]. It is well known that NSGA-II is a famous algorithm for solving search and 
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optimization problems involving multiple conflicting objectives used in many studies. Its selection mechanism is 
not well fit for high dimensional objective optimization problems according to the paper. This result also proves the 
points of Fonseca and Fleming, i.e. pure Pareto EAs cannot perform well on problems involving many objectives[3]. 
MOCGA uses a weak dominance to sort individuals in which preference information is integrated. Some individuals 
are selected as local Pareto-optimal solutions in current population after all individuals are compared with weak 
dominance. Thus after a finite generations many Pareto-based solution points are successfully obtained to 
approximate the front of optimal set. 

4.2   Analysis 

It should be emphasized that the total performance of MOCGA is not very good for all MOPs, although 
MOCGA has its success in the numeric problems. Any algorithmic approach is bound to have some advantages and 
shortfalls when applied to certain problems, as proved by the NFL theorems[4]. Because many concordance and 
discordance checks need to be done in determining outranking relations, the computational complexity of MOCGA 
is increased. Thus MOCGA could be well suited for high dimensionality optimization problems and might not be 
good at MOPs of low dimensionality. The kind of multi-objective problems has an increased complexity introduced 
by large dimensionalities as more objectives are added. The excess computational capacity of MOCGA is 
counteracted by the difficulty of a multi-objective problem, and therefore the significance of MOCGA is obvious. 
Moreover, while the computation time is not important without considering real-time requirement, the computation 
complexity of MOCGA could be accepted by users. 

5   Convergence Property 

5.1   Regular MOEA theory 

During a genetic process the local set of Pareto optimal solutions is determined at the tth generation and termed 
Pcurrent(t), which is with respect to the current population. The solutions are added to a secondary population termed 
Pknown(t), and the process continued until the process termination. Pknown(0) is always an empty set. Some MOEAs 
including MOCGA use an extern set to store known optimal solutions. All corresponding vectors of Pknown(t) are 
tested at each generation, and the dominated solutions are removed. The mixture of Pcurrent(t)∪Pknown(t) creates 
optimal solutions Pknown(t+1) of the next generation. The result is a final set of Pareto optimal solution found by an 
algorithm that is denoted as Pknown without t symbol. The actual Pareto optimal solution set (termed Ptrue) is not 
usually known for problems. Ptrue is fixed and does not change with generation change.  

Pcurrent(t) and Pknown(t) are sets of EA genotypes. The fitness is judged via phenotypes that is a Pareto front. The 
associated Pareto front for each of the above sets are denoted as PFcurrent(t), PFknown(t), and PFtrue, respectively. The 
global optimum for an MOP is a set of vectors. Thus the Pareto front PFtrue determined by evaluating the Pareto 
optimal set Ptrue is the global optimum of an MOP. 

5.2   MOCGA convergence 

Assumption 1: When using an EA to solve MOPs, the implicit qualification is that one of the following holds: 
Pknown=Ptrue, Pknown⊂ Ptrue, or PFknown∈ [PFtrue-ε, PFtrue] over some norm. 

Lemma 1. Under the condition of Assumption 1, given any non-empty solution set, at least one Pareto optimal 
solution exists within that set. 

The proof of the lemma was presented by Van Veldhuizen and Lamont in Ref.[13]. 
Theorem 1 (MOCGA convergence). MOCGA with an infinite population converges to the global optimal of 

an MOP with probability one. Namely, for a Pareto front F*, which is composed of at most an infinite number of 
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vectors V1
*, V2

*,…,Vn
* such that: 

 P{ )(t*lim curren tPF
t

∈
∞→

}＝1 (17) 

Proof.  It was proved that an EA would converge with probability one if it could fulfill the following two 
conditions[13]: (1) F, F'∈I, F' is reachable from F by means of mutation and recombination; (2) the population 
sequence P(0), P(1), ... is monotone, i.e.,∀ t: 

∀

 Min{Φ(F(t+1))|F(t+1)∈P(t+1)}≤Min{Φ (F(t))|F(t)∈P(t)} (18) 
MOCGA is assumed with infinite precision only provided that it operates on real value, a minimization MOP, 

an infinite population size, and appropriate mutation and crossover operators allowing every point in a search space 
to be visited. Thus ∀F, F'∈I, F' is reachable from F. MOCGA satisfies Bäck’s condition 1. 

In order to prove the monotone character of the population sequence in MOCGA, both the fitness function and 
selection in it should be guaranteed monotone. When using Pareto-based fitness assignment, any given pair of 
Pareto optimal solutions receives identical fitness values; they also receive better fitness than dominated solutions. 
Therefore any fitness function assigning fitness in this way like MOCGA is monotonic. 

Idealistically MOCGA sorts individuals in the current population of an infinite size. The produced minimal 
dominance set by ELECTRE method forms Pcurrent(t), which is at least composed by local Pareto-optimal solutions 
and always a not-empty set. After Pcurrent(t)∪Pknown(t) is mixed and dominated solutions in the compound are 
removed, the new Pknown(t+1) can be considered as a part of Ptrue, i.e. Pknown(t+1)⊂Ptrue. Thus MOCGA satisfies 
Assumption 1. 

The selection of MOCGA is naturally classified as (μ+λ) selection strategy. In the plus strategy an elitist 
selection strategy is applied, which choosesμbest individuals fromλchildren and μparents together as parents for 
the next generation. According to Lemma 1, at least one Pareto optimal solution exists within Pknown(t). The solution 
is held to Pknown(t+1) so that the best fitness at the (t+1)th generation is at least equal to the one at the tth generation. 
Moreover the better solutions would be appeared in Pcurrent(t) because of crossover and mutation, which obtain 
better fitness in Pknown(t+1) after Pcurrent(t)∪Pknown(t). The evolutionary results at (t+1)th generation are not at least 
inferior to the ones at the tth generation. Consequently, selection strategy in MOCGA satisfies monotone. 

MOCGA are qualified for the above two conditions; therefore, it converges to the global optimum of an MOP 
with probability one. Theorem 1 holds. 

6   Conclusions 

The paper proposes a feasible multi-objective evolutionary algorithm based on preferences for multi-objective 
optimization problems. The algorithm differs from the existing MOEAs as it uses a different selection strategy by 
the weak dominance comparison between any two individuals. From the results of test problems in the literature, the 
proposed MOCGA has the ability to scale up its performance in a large number of objectives. Property of MOCGA 
about stochastic convergence is analyzed. Experimental results of the multi-objective optimization benchmark 
problems demonstrate the validity of the new algorithm. 
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