
 Vol.16, No.5 ©2005 Journal of Software  软 件 学 报 1000-9825/2005/16(05)0684 

一个调度 Fork-Join 任务图的最优算法
∗
  

李庆华 1,  阮幼林 1+,  刘  干 2,  蒋盛益 1,  杨世达 1 
1(华中科技大学 计算机科学与技术学院,湖北 武汉  430074) 
2(华中科技大学 电子与信息工程系,湖北 武汉  430074) 

An Optimal Scheduling Algorithm for Fork-Join Task Graphs 

LI Qing-Hua1,  RUAN You-Lin1+,  LIU Gan2,  JIANG Sheng-Yi1,  YANG Shi-Da1 

1(Department of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China) 
2(Department of Electronics and Information, Huazhong University of Science and Technology, Wuhan 430074, China) 

+ Corresponding author: Phn: +86-27-62711038, Fax: +86-27-87544471, E-mail: ruanyl@263.net, http://www.hust.edu.cn 

Received 2003-07-07; Accepted 2004-07-21 

Li QH, Ruan YL, Liu G, Jiang SY, Yang SD. An optimal scheduling algorithm for fork-join task graphs. 
Journal of Software, 2005,16(5):684−690. DOI: 10.1360/jos160684 

Abstract: The Fork-Join structure is one of the basic modeling structures for parallel processing. Although some 
algorithms are able to find an optimal schedule under certain conditions, they ignore to economize processors and 
minimize the total completion time. This paper presents a Task Duplication based Balance Scheduling(TDBS) 
algorithm which can generate an optimal schedule for fork-join task graph with a complexity of O(vq+vlogv), where 
v and q are the number of tasks and processors respectively. By considering workload and idle time slots of the used 
processors, TDBS algorithm tries to assign tasks to scheduled processors and maximize their utilization. Simulation 
results show that TDBS algorithm has better speedup and efficiency than other compared algorithms. Therefore, 
TDBS algorithm is a viable option for practical high performance applications. 
Key words: task scheduling; task duplication; fork-join task graph; speedup 

摘  要: Fork-Join 任务图是一种并行处理的基本结构.虽然许多算法在任务满足某些条件时能产生最优调度,但
往往没有考虑节省处理器个数和减少任务集的总完成时间,从而降低算法的加速比和效率.因此,提出一种基于任务

复制的平衡调度算法,其时间复杂度为 O(vq+vlogv),v 和 q 分别表示任务集中任务的个数和使用的处理器个数.通过

分析已用处理器的负载和空闲时间段,把任务尽量分配到已用的处理器上以均衡负载,从而提高其利用率.实验结果

表明,该算法的加速比和总体效率优于其他算法.因此,该算法对于高性能应用程序的调度是一个较好的选择. 
                                                             

∗ Supported by the National Natural Science Foundation of China under Grant No.60273075 (国家自然科学基金) 
 LI Qing-Hua was born in 1940. He is a professor and doctoral supervisor at the Huazhong University of Science and Technology. 

His research areas are parallel and grid computing. RUAN You-Lin was born in 1972. He is a Ph.D. candidate at the Huazhong University 
of Science and Technology. His current research areas are data mining and parallel computing. LIU Gan was born in 1969. He is a Ph.D. 
candidate at the Huazhong University of Science and Technology. His current research areas are quality of service (QoS) sensitive 
computing in broadband wireless networks, multimedia communications systems. JIANG Sheng-Yi was born in 1963. He is an associate 
professor and Ph.D. candidate at the Huazhong University of Science and Technology. His current research areas are data mining and 
algorithm design. YANG Shi-Da was born in 1969. He is a Ph.D. candidate at the Huazhong University of Science and Technology. His 
current research areas are genetic algorithm and parallel computing. 

 



 李庆华 等:一个调度 Fork-Join 任务图的最优算法 685 

关键词: 任务调度;任务复制;Fork-Join 任务图;加速比 
中图法分类号: TP301  文献标识码: A  

1   Introduction 

Efficient scheduling of parallel programs onto processors is extremely difficult and important. The goals of a 
scheduling algorithm are to efficiently utilize resources and to achieve performance objectives of the application. 
Since it has been shown that the multiprocessor scheduling problem is NP-complete, many researchers have 
proposed scheduling algorithms based on heuristics[1−9]. It is well known that the complexity and quality of a 
scheduling algorithm largely depend on task graph structure[3,4]. In this paper, we consider the scheduling of a class 
of fork-join task graphs[4]. The fork-join structure is one of the basic modeling structures for parallel processing. 
Many parallel programs exhibit in the fork-join structure, and this type of parallel program paradigm arises in many 
application areas. 

The task duplication based scheduling is a new approach to the scheduling problems. Since the communication 
time between tasks assigned to the same processor is considered to be negligible, task duplication is one way of 
reducing the interprocessor communication overhead. By using this approach, some of the more critical tasks of a 
parallel program are duplicated on more than one processor. This can potentially reduce the start time of the waiting 
tasks and eventually improve the overall completion time of the entire program. It has been shown that task 
duplication based scheduling algorithms always perform better than any other scheduling algorithms with no task 
duplication[4,6]. 

There are several task duplication based scheduling schemes. Although TDS algorithm[5] is able to find an 
optimal schedule under certain conditions, it ignores to economize the processors so that the speedup of parallel 
programs is decreased. Task Scheduling Algorithm(TSA-FJ)[7] only tries to utilize the idle time slot of the first 
processor, but the workloads of other processors are not considered. TSA-OT algorithm[8] assigns the task nodes of 
the critical paths to processors at first, and allocates the rest nodes to the used processors if possible without 
changing the scheduling length. However its complexity is very high. A low-complexity algorithm ELS[9] is an 
extension of the list scheduling, and its performance fluctuates with task graph and cannot be guaranteed. 

A Task Duplication based Balance Scheduling (TDBS) algorithm is introduced in this paper. It is proven that 
the proposed algorithm can generate an optimal schedule for fork-join task graphs with high speedup and efficiency. 
The rest of the paper is organized as follows. Section 2 describes the system model and the problem definition. 
Section 3 presents the design principles of our approach, followed by a description of the proposed algorithm and 
some of its properties. Finally, we present an example to demonstrate the operation of the algorithm. Section 4 
includes the performance results and comparisons with other algorithms. We provide concluding remarks in the last 
section. 

2   System Model and Problem Statement  

A parallel program usually represented by a Directed Acyclic Graph(DAG), which is also called a task graph. A 
DAG consists of a tuple (V,E,w,c), where V,E,w,c are the set of tasks nodes, the set of communication edges, the set 
of computation costs associated with the task nodes, and the set of communication costs associated with the edges 
respectively. w(ni) is the computation cost for task ni and c(ni,nj) is the communication cost for edge e(ni,nj)∈E that 
connects task ni and task nj. The edge e(ni,nj) represents the precedence constraint between task ni and task nj. In 
other words, task nj can start only after the completion of task ni. For task ni, st(ni) and ct(ni) denote the start time 
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and finish time of task node ni respectively. Therefore, the schedule length is defined as the finish time of exit node 
nexit. The major objective of scheduling algorithm is to minimize ct(nexit).  

A few terms are defined in the following for a more clear presentation. For each processor p, ct(p) denotes the 
finish time of last task node nend assigned to p, that is ct(p)=ct(nend). For each task, indegree is the number of input 
edges and outdegree is the number of output edges. For example, in Fig.1, the indegree of node n6 is 4 and the 
outdegree of node n1 is 4. 

Definition 1. A node is called a fork node if its outdegree is greater than 1. 
Definition 2. A node is called a join node if its indegree is greater than 1.  
Note that a node can be neither a fork nor a join node, i.e., both of the 

node’s indegree and outdegree are one, such as nodes n2, n3, n4, and n5 shown 
in Fig.1. The fork-join structure is one of the basic modeling structures for 
parallel processing. A fork-join task graph is a hybrid of an in-tree task graph 
and an out-tree task graph, which is shown in Fig.1. It has a fork node that 
spawns a number of children nodes. The output edges of the children nodes are 
connected to a join node. An out-tree task graph is a connected graph in which 
every node has only one parent node. An in-tree task graph is a connected 
graph in which every node has only one child node. Both of them can represent 
some divide-and-conquer algorithms.  
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Fig.1   An example of  the fork-join 
task graph

3   The Proposed Algorithm 

Although the main performance measure of a scheduling algorithm is the schedule length, speedup and 
efficiency are also important. The main drawback of TDS algorithm is that it does not allow two or more parent 
tasks of a join task to be scheduled in the same processor, which only merge one parent task without considering 
other parent tasks, thus losing more chances of finding shorter schedule and wasting many processors. TSA_FJ 
algorithm only tries to utilize the idle time slot of the first processor, but the workloads of other processors are not 
considered. Although TSA-OT algorithm allocates no critical nodes to the used processors if possible without 
changing the scheduling length, its complexity is very high. On the contrary, ELS algorithm is the extension of the 
list scheduling, which has low-complexity, but its performance fluctuates with task graph and cannot be guaranteed. 
Therefore, the purpose of the proposed algorithm is to improve speedup and efficiency with low-complexity by 
combining advantages of the above algorithms. So, we propose an efficient algorithm whose schedule length and 
processors are minimized. By considering workloads and idle time slots of each used processor, it tries to assign 
tasks to the scheduled processors and maximize their utilization while minimizing the number of processors used. 
The following is the steps of the proposed algorithm. 

Input: DAG(V,E,w,c) 
Output: Schedule 

Begin: 
1. Sort the tasks from n2 to nm−1, then find the critical tasks. 
2. Compute st(ni) and ct(ni) for all tasks (ni∈V) 
3. Assign tasks to processors (refer to Fig.3) 

End 

Fig.2  Pseudocode of scheduling the algorithm 

The pseudocode in Fig.2 shows the steps involved in the algorithm. In step one, sort the tasks from n2 to nm−1 in 
descending order by the sum of computation cost w(ni) and communication cost c(ni,nm). As we show below: 
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then find out the most critical task s(1<s<m) for generating the optimal schedule.  
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In Step 2, the task graph is traversed to compute the st and ct of each task that in performed using (1) and (2). 
The computation of the start and completion times proceeds in a top-down fashion, starting with the entry task and 
terminating at the exit task.  
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According to the st and ct, each task should be inserted into a used processor if possible in step 3 as shown in 
Fig.3. If inserting decreases the st of the task, it means that the inserting condition is satisfied. If the inserting 
condition cannot be satisfied, the task must be assigned to a new processor with the entry task n1. If all tasks are 
assigned to processors, then the algorithm terminates. 

Output: Schedule 
Begin 
  k=1; ct[k]=0; 
  for(i=1; i<=s; i++) assign ni to Pk; 
  ct[k]=ct[ns]; 
  for(i=s+1; i<m; i++) 

     {success=false; 
      for(j=1; j<=k; j++) 

         {if ((j=1) and (w(ni)<=st[nm]−ct[p])) or ((j<>1) and (st[nm]−ct[p]>=w(ni)+c(ni,nm))) 
 {st[ni]=ct[p]; ct[ni]=st[ni]+w(ni); 

  ct[p]=ct[ni]; success=true; break; 
       }          

              } 
      if (success) {assign ni to Pj; ct[j]=ct[ni];} 

else {k++; assign n1, ni to Pk; ct[k]=ct[ni];} 
     } 
    assign nm to P1; 

End 
Fig.3  Details of step 3 of TDBS algorithm 

3.1   Complexity analysis 

In the first step, the tasks from n2 to nm−1 can be sorted by the merging algorithm whose complexity would be 
O(vlogv), where v is the number of tasks. The second step of the proposed algorithm is to traverse each task of the 
task graph and compute its start and completion times. Thus, the complexity of the step would be O(v). In the last 
step, for each task, all the used processors may be examined. Thus, the worst case complexity of the step would be 
O(qv), where q is the number of the used processors. O(v) is negligible 
compared to O(qv) and O(vlogv). Thus, the overall time complexity of the 
TDBS algorithm is O(vlogv+qv). If logv>q, the time complexity is O(vlogv), 
otherwise is O(qv).  

1

2 3 4 5

6

5

8
10 12

5

12 10 5

4

Fig.4   Fork-join task graph 
after sorting
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3.2   An example 

In this section, we use an example of fork-join task graph (see Fig.1) to 
illustrate the effectiveness of the proposed algorithm. 

1) By sorting, results of the first step are shown in Fig.4. 
2) For each task ni, the st(ni) and ct(ni) can be computed by using (1) and 

(2). The st and ct of all tasks of the DAG are shown in Table 1. 
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3) At first, assign task ni (1≤i≤s=2) to processor 1. For the following each task ni(2<i<m), the algorithm 
searches the scheduled processors to select which processor suits for inserting the task. If the inserting condition is 
satisfied, the algorithm would modify st(ni) and ct(ni) of the task and assign the task to the suited processor, such as 
tasks n4 and n5. Otherwise, it assigns both entry task n1 and the task ni to a new processor, such as task n3.  

4) When all tasks are assigned to processors, the final start and completion times of each task obtained by the 
proposed algorithm are also shown in Table 1. 

Table 1  The first and final start and completion times for the tasks 

Task st(first) ct(first) st(final) ct(final) 
1 0 5 0 5 
2 5 17 5 17 
3 5 15 5 15 
4 5 10 17 22 
5 5 7 15 17 
6 23 27 23 27 

In the end, the processor allocation and the schedule times obtained by TDBS algorithm are shown in Fig.5. 
For this example, it can be obtained that the schedule length is equal to ct of the exit task n6. (shadow denotes the 
idle time slot) 

 n1         n2 n4 n6

 n1     n3 n5

P1

P2

Fig.5   Results of scheduling 
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4   Performance and Comparison 

The proposed algorithm can be applied to any fork-join task graph and generate an optimal schedule. We can 
prove that the TDBS algorithm generates an optimal schedule whose length is equal to 
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Proof.  When nm is considered for scheduling, task n2 is the critical task that will be considered for 
duplication. After duplication, the start time of nm will be reduced because c(n2,nm) is zeroed. The start time of nm is 

now constrained by data from n3, i.e. . ),()({)(),()(),(max)()( 331
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3 becomes the new critical task for considering and is also duplicated. This process is repeated until ns+1 is 
considered. At that point, the start time of nm will increase if ns+1 is duplicated. So,  

. Thus, the schedule length is optimal because nm cannot start any earlier.  

In the following, the fork-join task graph shown in Fig.1 is used to compare the TDBS algorithm with other 
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algorithms. The schedule length generated by each of the algorithms and their complexities and number of required 
processors are shown in Table 2.  

Table 2  Comparison with other algorithms for DAG in Fig.1 

Parameter TDBS TDS TSA_FJ TSA-OT ELS 
Schedule Length 27 27 27 27 27 

Number of processors 2 4 3 3 3 
Complexity O(qv+vlogv) O(v2) O(v) O(ev2) O(vlog(p)+e) 

Next, we present the comparative evaluation of the proposed algorithm, TDS algorithm, TSA_FJ algorithm, 
TSA-OT algorithm and ELS algorithm. We consider the randomly generated application graphs as the workload for 
testing the algorithms. In each graph, the computation costs of the individual nodes are randomly selected from a 
uniform distribution with mean equal to the chosen average computation cost. Similarly, the communication costs of 
the edges are randomly selected from a uniform distribution with mean equal to the average communication cost.  

As shown in Table 3, for the randomly generated fork-join task graphs, the schedule results of TDBS are 
compared with those of other four algorithms for the generated task graphs. TDS algorithm assigns parents tasks of 
a join task to different processors, which not only loses the chance of finding shorter schedules but also ignores to 
economize the processors. TSA_FJ algorithm only considers the workload of the first processor. Thus, the NoP and 
TCCT of both algorithms are more than other algorithms, especially the number of task is very large. Because of 
allocating the rest nodes to the used processors as possible, TSA-OT algorithm has a better performance than other 
algorithms except TDBS algorithm. ELS algorithm is a kind of list scheduling, its performances vary with task 
graphs. From the comparison in Table 3, we can see that TDBS algorithm has the shortest schedule length, much 
less processors and total completion time, and has low complexity. Based on these experiments, the TDBS 
algorithm outperforms the other four algorithms for any graph size in terms of the schedule length and used 
processors. Thus, the speedup and efficiency of the TDBS algorithm are better than other algorithms. By 
considering workload and idle time slots of processors, TDBS algorithm tries to assign tasks to the scheduled 
processors and maximize their utilization while minimizing the number of processor used. Thus, when the number 
of tasks is larger, the used processors are fewer, and the advantage of TDBS algorithm is more evident. Therefore, 
the TDBS algorithm is more practical than other compared algorithms. (SL denotes the schedule length; NoP 
denotes the number of processor; TCCT denotes the total computation and communication times) 

Table 3  Comparison of schedule results with other algorithms 

m Parameter TDBS TSA_FJ TDS TSA-OT ELS 
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5   Conclusions 

This paper presents an optimal algorithm to schedule tasks of fork-join graph onto processors, which is based 
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on task duplication and load balancing of processors. TDBS algorithm has a complexity of O(vq+vlogv), where v 
and q are the number of tasks and processors respectively. The performance of TDBS has been compared with other 
algorithms in terms of its complexity, the schedule length, total computation and communication times, and the 
number of used processors. Simulation results showed that TDBS algorithm has better speedup and efficiency than 
other compared algorithms. Therefore, TDBS algorithm is a viable option for practical high performance 
applications. 
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