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Abstract: The Fork-Join structure is one of the basic modeling structures for parallel processing. Although some
algorithms are able to find an optimal schedule under certain conditions, they ignore to economize processors and
minimize the total completion time. This paper presents a Task Duplication based Balance Scheduling(TDBS)
algorithm which can generate an optimal schedule for fork-join task graph with a complexity of O(vg+vlogv), where
v and ¢q are the number of tasks and processors respectively. By considering workload and idle time slots of the used
processors, TDBS algorithm tries to assign tasks to scheduled processors and maximize their utilization. Simulation
results show that TDBS algorithm has better speedup and efficiency than other compared algorithms. Therefore,
TDBS algorithm is a viable option for practical high performance applications.
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1 Introduction

Efficient scheduling of parallel programs onto processors is extremely difficult and important. The goals of a
scheduling algorithm are to efficiently utilize resources and to achieve performance objectives of the application.
Since it has been shown that the multiprocessor scheduling problem is NP-complete, many researchers have

U9 Tt is well known that the complexity and quality of a

proposed scheduling algorithms based on heuristics
scheduling algorithm largely depend on task graph structure®*. In this paper, we consider the scheduling of a class
of fork-join task graphs. The fork-join structure is one of the basic modeling structures for parallel processing.
Many parallel programs exhibit in the fork-join structure, and this type of parallel program paradigm arises in many
application areas.

The task duplication based scheduling is a new approach to the scheduling problems. Since the communication
time between tasks assigned to the same processor is considered to be negligible, task duplication is one way of
reducing the interprocessor communication overhead. By using this approach, some of the more critical tasks of a
parallel program are duplicated on more than one processor. This can potentially reduce the start time of the waiting
tasks and eventually improve the overall completion time of the entire program. It has been shown that task
duplication based scheduling algorithms always perform better than any other scheduling algorithms with no task
duplication!*®!.

There are several task duplication based scheduling schemes. Although TDS algorithm! is able to find an
optimal schedule under certain conditions, it ignores to economize the processors so that the speedup of parallel
programs is decreased. Task Scheduling Algorithm(TSA-FJ)!"! only tries to utilize the idle time slot of the first
processor, but the workloads of other processors are not considered. TSA-OT algorithm™ assigns the task nodes of
the critical paths to processors at first, and allocates the rest nodes to the used processors if possible without
changing the scheduling length. However its complexity is very high. A low-complexity algorithm ELS!! is an
extension of the list scheduling, and its performance fluctuates with task graph and cannot be guaranteed.

A Task Duplication based Balance Scheduling (TDBS) algorithm is introduced in this paper. It is proven that
the proposed algorithm can generate an optimal schedule for fork-join task graphs with high speedup and efficiency.
The rest of the paper is organized as follows. Section 2 describes the system model and the problem definition.
Section 3 presents the design principles of our approach, followed by a description of the proposed algorithm and
some of its properties. Finally, we present an example to demonstrate the operation of the algorithm. Section 4
includes the performance results and comparisons with other algorithms. We provide concluding remarks in the last

section.

2 System Model and Problem Statement

A parallel program usually represented by a Directed Acyclic Graph(DAG), which is also called a task graph. A
DAG consists of a tuple (V,E,w,c), where V,E,w,c are the set of tasks nodes, the set of communication edges, the set
of computation costs associated with the task nodes, and the set of communication costs associated with the edges
respectively. w(n;) is the computation cost for task n; and c(n;,n,) is the communication cost for edge e(n;,n;)€E that
connects task n; and task n;. The edge e(n;,n;) represents the precedence constraint between task n; and task #;. In

other words, task #; can start only after the completion of task n;. For task n;, st(n;) and ct(n;) denote the start time
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and finish time of task node n; respectively. Therefore, the schedule length is defined as the finish time of exit node
N The major objective of scheduling algorithm is to minimize c#(71,,).

A few terms are defined in the following for a more clear presentation. For each processor p, ct(p) denotes the
finish time of last task node n,,, assigned to p, that is c#(p)=ct(n.,,). For each task, indegree is the number of input
edges and outdegree is the number of output edges. For example, in Fig.1, the indegree of node ng is 4 and the
outdegree of node n, is 4.

Definition 1. A node is called a fork node if its outdegree is greater than 1.

Definition 2. A node is called a join node if its indegree is greater than 1.

Note that a node can be neither a fork nor a join node, i.e., both of the
node’s indegree and outdegree are one, such as nodes n,, n3, ny, and ns shown
in Fig.1. The fork-join structure is one of the basic modeling structures for
parallel processing. A fork-join task graph is a hybrid of an in-tree task graph
and an out-tree task graph, which is shown in Fig.1. It has a fork node that

spawns a number of children nodes. The output edges of the children nodes are

connected to a join node. An out-tree task graph is a connected graph in which
every node has only one parent node. An in-tree task graph is a connected Fig.l Anexample of the fork-join
graph in which every node has only one child node. Both of them can represent task graph

some divide-and-conquer algorithms.
3 The Proposed Algorithm

Although the main performance measure of a scheduling algorithm is the schedule length, speedup and
efficiency are also important. The main drawback of TDS algorithm is that it does not allow two or more parent
tasks of a join task to be scheduled in the same processor, which only merge one parent task without considering
other parent tasks, thus losing more chances of finding shorter schedule and wasting many processors. TSA_ FJ
algorithm only tries to utilize the idle time slot of the first processor, but the workloads of other processors are not
considered. Although TSA-OT algorithm allocates no critical nodes to the used processors if possible without
changing the scheduling length, its complexity is very high. On the contrary, ELS algorithm is the extension of the
list scheduling, which has low-complexity, but its performance fluctuates with task graph and cannot be guaranteed.
Therefore, the purpose of the proposed algorithm is to improve speedup and efficiency with low-complexity by
combining advantages of the above algorithms. So, we propose an efficient algorithm whose schedule length and
processors are minimized. By considering workloads and idle time slots of each used processor, it tries to assign
tasks to the scheduled processors and maximize their utilization while minimizing the number of processors used.

The following is the steps of the proposed algorithm.
Input: DAG(V,E,w,c)
Output: Schedule
Begin:
1. Sort the tasks from n; to n,_;, then find the critical tasks.
2. Compute st#(n;) and ct(n;) for all tasks (n;e V)
3. Assign tasks to processors (refer to Fig.3)
End

Fig.2 Pseudocode of scheduling the algorithm

The pseudocode in Fig.2 shows the steps involved in the algorithm. In step one, sort the tasks from n, to n,,_; in
descending order by the sum of computation cost w(#n;) and communication cost c¢(n;,n,,). As we show below:

w(n,)+c(ny,n,)2wny)+c(ny,n,)=...2wn, )+cn,_,n,)
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then find out the most critical task s(1<s<m) for generating the optimal schedule.
s s+l

where z w(n,)<w(n,)+c(n,,n,) and Zw(n,.) >w(ng,)+c(ng,,n,).
i=2 i=2

In Step 2, the task graph is traversed to compute the sz and ct of each task that in performed using (1) and (2).
The computation of the start and completion times proceeds in a top-down fashion, starting with the entry task and

terminating at the exit task.

0 if i=1

ct(n;_y) if i<s
t(n;) = 1
st(n,) ct(n,) if s<i<m )

max{ct(n,),ct(n,,)+c(n,,n,)} if i=m
ct(n;) = st(n;) + w(n;) 2
According to the st and ct, each task should be inserted into a used processor if possible in step 3 as shown in
Fig.3. If inserting decreases the st of the task, it means that the inserting condition is satisfied. If the inserting
condition cannot be satisfied, the task must be assigned to a new processor with the entry task ;. If all tasks are

assigned to processors, then the algorithm terminates.

Output: Schedule
Begin

k=1; ct[k]=0;

for(i=1; i<=s; i++) assign n; to Py;

ctlk]=ct]ns];

for(i=s+1; i<m; i++)

{success=false;
for(j=1; j<=k; j++)
{if ((=1) and (w(n)<=st[nm|-ct[p])) or ((/<>1) and (st[nm]-ct[p]>=w(ni)*+c(ni,nm)))

{st[ni]=ctlp]; ct[ni]=st[n;]+w(n);
ct[p]=ct[n;]; success=true; break;

}

if (success) {assign n;to Pj; ct[j]=ct[n;];}
else {k++; assign ny, n; to Py; ct[k]=ct[n;];}

assign n,, to Py;
End

Fig.3 Details of step 3 of TDBS algorithm
3.1 Complexity analysis

In the first step, the tasks from 7, to n,,_; can be sorted by the merging algorithm whose complexity would be
O(vlogv), where v is the number of tasks. The second step of the proposed algorithm is to traverse each task of the
task graph and compute its start and completion times. Thus, the complexity of the step would be O(v). In the last
step, for each task, all the used processors may be examined. Thus, the worst case complexity of the step would be
O(gv), where g is the number of the used processors. O(v) is negligible
compared to O(qv) and O(vlogv). Thus, the overall time complexity of the
TDBS algorithm is O(vlogvt+gv). If logv>q, the time complexity is O(vlogv),

otherwise is O(gv).
3.2 An example

In this section, we use an example of fork-join task graph (see Fig.1) to

illustrate the effectiveness of the proposed algorithm.
1) By sorting, results of the first step are shown in Fig.4. Fig.4 Fork-join task graph
2) For each task n;, the st(n;) and ct(n;) can be computed by using (1) and after sorting

(2). The st and ct of all tasks of the DAG are shown in Table 1.
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3) At first, assign task n; (1<i<s=2) to processor 1. For the following each task n;(2<i<m), the algorithm
searches the scheduled processors to select which processor suits for inserting the task. If the inserting condition is
satisfied, the algorithm would modify s#(n;) and c#(n;) of the task and assign the task to the suited processor, such as
tasks n, and ns. Otherwise, it assigns both entry task #;, and the task #;to a new processor, such as task 7.

4) When all tasks are assigned to processors, the final start and completion times of each task obtained by the

proposed algorithm are also shown in Table 1.

Table 1 The first and final start and completion times for the tasks

Task st(first) ct(first) st(final) ct(final)
1 0 5 0 5
2 5 17 5 17
3 5 15 5 15
4 5 10 17 22
5 5 7 15 17
6 23 24 23 27

In the end, the processor allocation and the schedule times obtained by TDBS algorithm are shown in Fig.5.
For this example, it can be obtained that the schedule length is equal to ct of the exit task ng. (shadow denotes the
idle time slot)

5 17 22 23 27

Pl ‘ n ‘ ny ‘ Ny Ng

Fig.5 Results of scheduling

4 Performance and Comparison

The proposed algorithm can be applied to any fork-join task graph and generate an optimal schedule. We can

prove that the TDBS algorithm generates an optimal schedule whose length is equal to

i=2

w(n,)+ max{i w(n;),w(n,,,,n,, )} +w(n,,)

s s+1
where " w(n,) < w(n,)+c(n,.n,) and Y win)>w(n,)+c(n,,.n,)
i=2 i=2
Proof. When n, is considered for scheduling, task n, is the critical task that will be considered for
duplication. After duplication, the start time of #,, will be reduced because c(n,,n,,) is zeroed. The start time of n,, is

2
now constrained by data from n; i.e. st(n,,) = w(n,)+ max{z w(n,),w(ny)+c(ny,n,, )} =w(n)+{w(ny)+c(ny,n,).
i=2

st(n,)=w(n)+ max{zzl w(n,; ), w(ny)+c(ny,n,, } =w(n,)+w(ny)+c(ny,n,) because of iw(n,) <w(ny)+c(ny,n,) .
i=2 i=2

Thus, n3 becomes the new critical task for considering and is also duplicated. This process is repeated until ng; is
considered. At that point, the start time of n, will increase if n,; is duplicated. So, st(n,)=w(n)+

S
max{z w(n,),w(n,,,)+c(ng,,,n, } . Thus, the schedule length is optimal because 7, cannot start any earlier.
i=2

In the following, the fork-join task graph shown in Fig.1 is used to compare the TDBS algorithm with other
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algorithms. The schedule length generated by each of the algorithms and their complexities and number of required

processors are shown in Table 2.

Table 2 Comparison with other algorithms for DAG in Fig.1

Parameter TDBS TDS TSA_FJ TSA-OT ELS
Schedule Length 27 27 27 27 27
Number of processors 2 4 3 3 3
Complexity O(gv+vlogy) ) o®) o(ev?) O(vlog(p)+e)

Next, we present the comparative evaluation of the proposed algorithm, TDS algorithm, TSA_FJ algorithm,
TSA-OT algorithm and ELS algorithm. We consider the randomly generated application graphs as the workload for
testing the algorithms. In each graph, the computation costs of the individual nodes are randomly selected from a
uniform distribution with mean equal to the chosen average computation cost. Similarly, the communication costs of
the edges are randomly selected from a uniform distribution with mean equal to the average communication cost.

As shown in Table 3, for the randomly generated fork-join task graphs, the schedule results of TDBS are
compared with those of other four algorithms for the generated task graphs. TDS algorithm assigns parents tasks of
a join task to different processors, which not only loses the chance of finding shorter schedules but also ignores to
economize the processors. TSA FJ algorithm only considers the workload of the first processor. Thus, the NoP and
TCCT of both algorithms are more than other algorithms, especially the number of task is very large. Because of
allocating the rest nodes to the used processors as possible, TSA-OT algorithm has a better performance than other
algorithms except TDBS algorithm. ELS algorithm is a kind of list scheduling, its performances vary with task
graphs. From the comparison in Table 3, we can see that TDBS algorithm has the shortest schedule length, much
less processors and total completion time, and has low complexity. Based on these experiments, the TDBS
algorithm outperforms the other four algorithms for any graph size in terms of the schedule length and used
processors. Thus, the speedup and efficiency of the TDBS algorithm are better than other algorithms. By
considering workload and idle time slots of processors, TDBS algorithm tries to assign tasks to the scheduled
processors and maximize their utilization while minimizing the number of processor used. Thus, when the number
of tasks is larger, the used processors are fewer, and the advantage of TDBS algorithm is more evident. Therefore,
the TDBS algorithm is more practical than other compared algorithms. (SL denotes the schedule length; NoP

denotes the number of processor; TCCT denotes the total computation and communication times)

Table 3 Comparison of schedule results with other algorithms

m Parameter TDBS TSA FJ TDS TSA-OT ELS
SL 48 53 58 48 50
20 TCCT 253 299 342 268 284
NoP 12 15 18 13 14
SL 54 58 66 56 60
50 TCCT 568 778 843 644 678
NoP 28 44 48 32 34
SL 60 62 68 60 62
100 TCCT 1206 1628 1724 1328 1420
NoP 54 94 98 58 62
SL 64 68 74 68 72
200 TCCT 2248 3446 3620 2542 2746
NoP 82 194 198 92 102
SL 70 76 80 74 76
400 TCCT 4284 6928 7468 4926 5334
NoP 132 392 398 144 158

5 Conclusions

This paper presents an optimal algorithm to schedule tasks of fork-join graph onto processors, which is based
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on task duplication and load balancing of processors. TDBS algorithm has a complexity of O(vg+vlogv), where v
and g are the number of tasks and processors respectively. The performance of TDBS has been compared with other
algorithms in terms of its complexity, the schedule length, total computation and communication times, and the
number of used processors. Simulation results showed that TDBS algorithm has better speedup and efficiency than
other compared algorithms. Therefore, TDBS algorithm is a viable option for practical high performance

applications.
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