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Abstract: In order to solve switching regression problems, many approaches have been investigated. In this 
paper, an integrated fuzzy clustering algorithm GFC that combines gravity-based clustering algorithm GC with 
fuzzy clustering is presented. GC, as a new hard clustering algorithm presented here, is based on the well-known 
Newton’s Gravity Law. The theoretic analysis shows that GFC can converge to a local minimum of the object 
function. Experimental results show that GFC for switching regression problems has better performance than 
standard fuzzy clustering algorithms, especially in terms of convergence speed. 
Key words: switching regression; fuzzy clustering; gravity-based clustering 

Switching regression models have been extensively used in economics[1~3] and data mining in databases. Many 
scholars[2~9] discussed switching regression models in varying details. Let S={(x1,y1),…,(xN,yN)} be a set of data 
where each independent observation xk∈Rt has a corresponding dependent observation yk∈R. In switching 
regression models, we assume the data to be drawn from C models: 

 CixfyRE iiii ≤≤+= 1,),(: εβ  (1) 

where  is a polynomial function about , each ),( ii xf β x ik
i R⊂∈Ωβ , nki ≤ , and iε  is a random vector with 

mean vector ui=0 and covariance is iδ . When C=1, switching regression models become single regression model 

problem, in which we assume that a single functional relationship between x and y holds for all the data in S. In a 

single regression model problem, the vector  can be well estimated using classical statistical method. However, 

when C>1, this problem becomes very subtle, that is, for a given datum 

β

),( kk yx , it is unknown which regression 

model from (1) applies. 
At present, there exist three approaches for switching regression model problems. One is based on 

mathematical statistics, such as EM algorithm[10,11]. The second approach presented by Hathaway and Bezdek[6] is 
based on fuzzy clustering and the third approach is based on hard partition algorithms[1]. 

The work initiated by our questioning shows that the best way to solve switching regression problems may not 
be by using either fuzzy clustering or hard clustering only. The following example gives a very good illustration for 
our suspicion. In this example, we assume that all the data are generated from either of the two regression models 

                                                             

 WANG Shi-tong was born in 1964. He is a professor and doctorial supervisor. His research interests include AI, fuzzy systems, 
neural networks, pattern recognition and knowledge discovering. JIANG Hai-feng is a Ph.D. candidate. His research interests include 
pattern recognition and knowledge discovering. LU Hong-jun is a professor and doctorial supervisor at HKUST. His research interests 
include database/data warehousing, knowledge discovering and data mining, pattern recognition. 

 



 1906 Journal of Software  软件学报  2002,13(10)    

(of course, we do not know the optimal regression models for real world data): 

11211111 ),( εβββ ++== xxfy , 

22322
2

21222 ),( εββββ +++== xxxfy . 

The data points and the optimal switching regression models are shown in Fig.1. 

Zone borers 

Regression model 2

Regression model 1

Data points

Fig.1  An example of a switching regression problem 
 

According to Fig.1, it is obvious that data points in zones 1 and 3 should preferably be hard clustered while 
data points in zone 2 is better to be fuzzy clustered in order to reach the optimal state more quickly. Similar cases 
exist in most switching regression problems. However, if we use fuzzy clustering, then the data points in zones 1 
and 3 will be unnecessarily assigned membership )(µ  to the regression models that they indeed do not belong to. 

On the other hand, if only the hard clustering is applied, then data points in zone 2 will be hard clustered either to 
regression model 1 or 2 when indeed they are better off fuzzily clustered to both regression models. Therefore, in 
order to effectively solve switching regression problems, we should integrate hard/fuzzy clustering approaches. 

The purpose of this paper is to present a new integrated approach for switching regression problems, based on 
gravity-based clustering and fuzzy clustering. 

Our approach here keeps the advantages of Hathaway’s approach[6], that is, this approach will produce 

estimates of  and at the same time assign a fuzzy label vector to each datum in S. Besides these, our 

approach has the following advantages over other fuzzy clustering approaches for switching regression problems: 

},...,,{ 21 cβββ

• Gravity-Based clustering approach (GC) here is a new hard clustering one, based on well-known Newton’s 
gravity law. It is very suitable for curve/shell clustering. 

• The integrated clustering algorithm (GFC) can converge and minimize the objective function simultaneously. 
To best of our knowledge, to date, no one gives a clustering algorithm that combines both hard clustering and fuzzy 
clustering, although fuzzy clustering comes from hard clustering and their numerous variants have been presented. 

• Our experiments show that GFC require fewer iterations than other fuzzy clustering approaches. It is well 
known that other approaches, such as EM clustering algorithm, need even more iterations than fuzzy clustering. So, 
our approach is superior in terms of convergence speed. 
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1   A Gravity-Based Clustering Algorithm (GC) 

Consider a regression model: 

 }.,...,2,1{,),( Cixfy iii ∈+= εβ  (2) 

In general, we take y as a line or ellipse or other curves, as shown in Fig.2. We regard curve 1 as object 1 and curve 
2 as object 2. These two objects will produce gravity force for data point A. As the result of gravity force acting on 
A, data point A will obviously be clustered into curve 1. 
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Fig.2  An example of GC clustering 

It is well-known that Newton’s gravity law can be formulated as: 

 2
21

d
mmk

F
⋅⋅

=  (3) 

where F denotes the gravity force between object 1 with mass m1 and object 2 with mass m2, d denotes the distance 
between object 1 and object 2, k is a coefficient and k=2. In order to effectively apply Newton’s gravity law in our 
gravity-based clustering problem, we make the following assumptions: 

• The quality of each data point is 1. 

•  data points have been clustered into curve )(t
im )2,1( =ii  at time t, as shown in Fig.3. 

• Each data point belonging to a cluster has the same potential. Based on this, when calculating the gravity 
force, we assume all data points flow into a point and its mass is the number of all current data points in this curve, 
as shown in Fig.3. 
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Fig.3  A cluster with m points is regarded as a cluster with one point with mass m 

Curve C

Based on the above assumptions, the gravity force F(t) between point A=(xk,yk) and a curve, say 
, can be calculated as: 0),( == yxfc
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Let us define the objective function JGC as: 

 [∑ ∑
= ∈

=
C

i Syx
ikkGC

ikk

REyxdJ
1 ),(

2 ),,( ]  (5) 

where Si denotes the set of data points clustered to ith regression model , iRE ),( ik RExd  is the square distance 
between  and the regression model . In terms of (1), we have ),( kk yx iRE

 ∑ ∑
= ∈

−=
C

i Syx
ikikGC

ikk

xfyJ
1 ),(

2)),(( β . (6) 

 Now we present the following gravity-based clustering algorithm GC for finding the approximation minimum 
of JGC. 

Algorithm 1. Gravity-Based clustering algorithm (GC). 
1. Given data set )},(),...,,(),,{( 2211 NN yxyxyxS =  
2. Fix C  and set sensitivity parameter )2( NC ≤≤ γ , which must be determined by experts/users 

3. Initialize (β 0,),...,,( )0()0(
2

)0(
1

)0 == tT
Cβββ  

4. Initialize S i= CiREyxdREyxdyx ikkkiiiii ,...,2,1)},),,((min)),,((|),{( 2**2** ==  
5. for j=1 to N do 
6.   for k=1 to C do 
7.     if  then γ<]),,[(2

kjj REyxd
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10. end for 
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15. if εββ <−+ )()1( tt  then 

16.   Stop. 
17. else  
18.   ←t , goto Line 4. 1+t
19. end if 

The GC Algorithm shown above is quite reasonable from the following intuitive viewpoints: 
• It uses Newton’s Gravity Law to cluster data points while this famous law seems to be suitable for such 

clustering according to the discussion above. 

• In order to minimize , all GCJ
j

GCJ
β∂

∂  should be zero. Once  is determined, (7) can be solved, i.e.  

can be calculated. 

iS )1( +tβ

• If REi and REj are intersected, the sensitivity parameter γ, which is very small, can make sure that a data 
point very close to REi and REj can be simultaneously classified into REi and REj. The circled data points in Fig.4 
would be simultaneously “hard” clustered to both the clusters. 

Data points   × 
Regression models    

Fig.4  Points in a circle will be clustered to both clusters due to the sensitivity parameter γ 
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2   Integrated Fuzzy Clustering Algorithm GFC 

Since Bezdek presented fuzzy c-means clustering algorithm[6], many of its variants have been proposed to 
improve its performance to satisfy different requirements. However, to date, no one has integrated it with the hard 
clustering algorithm. In this section, we will present the new algorithm GFC that integrates fuzzy c-means 
clustering with hard clustering. As shown in the previous analysis, GFC algorithm seems to be very rational and 
efficient for switching regression problems. 
 It is easy to extend standard fuzzy c-means clustering to make it suitable for switching regression problems. 
According to standard fuzzy c-means algorithm, the objective function JCM, for a switching regression problem, is 
defined as: 

 ∑∑
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In GFC, we define the new objective function: 
 CMGCGFC JJJ ⋅= . (10) 

Based on (10), we present the new integrated fuzzy clustering algorithm GFC as Algorithm 2. 
Algorithm 2. An integrated clustering algorithm GFC. 

1. Given data set )},(),...,,(),,{( 2211 NN yxyxyxS =  
2. Fix C  and set sensitivity parameter )2( NC ≤≤ γ  

3. Initialize β 0,),...,,( )0()0(
2
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13. end for 
14. Compute JGC using (5) 
15. for i=1 to C do 
16.   for j=1 to N do 
17.     Compute ijµ  using (9) 
18.   end for 
19. end for 
20. Compute JCM using (8) 
21. Compute  by solving the following linear systems: )1( +tβ
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22. if εββ <−+ )()1( tt  then 

23.   Stop. 
24. else 
25.   t , goto Line 4. 1+← t
26. end if 

In GFC, the definition of the objective function J is rational since a clustering algorithm should minimize JGC 
and JCM simultaneously in order to solve the switching regression problem efficiently. Now we investigate the 
convergence properties of this new integrated clustering algorithm. 

Theorem 1. In GFC, ),...,2,1,,...,2,1( NjCiij ==µ  and T
C ),...,,( 21 ββββ =  is a local minimum for JGFC 

only if 
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subject to  and 1
1
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=

C
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ijµ β  is a solution of (11). 

Proof.  First, we assume that β  is fixed. Then the problem is to minimize JGFC with respect to ijµ  under 

the constraint . Using Lagrange multiplier method, we find that the problem is equivalent to minimizing 1
1
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without constraints. The necessary condition of this problem is 
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Substituting (16) into (15), we have 
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Substituting (17) into (16), we get (12). 

 In order to show that β  must be a solution of (11), we assume that ijµ  is fixed. Thus this is an 

unconstrained minimizing problem, and the necessary condition is 

 0=
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∂
β
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from which we get (11). The theorem is proved. □ 

Theorem 2. Let CMGC JJU ⋅=)(Φ , where U NCij ×= ][µ , β  is fixed, and , for all 
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where ust is computed from (12). Thus, H(U)=[hst,ij(U)] is a diagonal matrix. Since m>1, and  for all 
nd 1 , and . We know from the above formula that Hessian H(U) is positive definite 

and consequently, (12) is also a sufficient condition for minimizing 

)),,(( stt REyxd
Nt ≤≤1  a Cs ≤≤ 0≥GCJ
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Theorem 3. Let ),()()( βββΦ UJJJJ CMGCCMGC =×= , where NCijU ×= ][µ  is fixed,  

for 1≤ i ≤C and 1≤ j ≤N, and m>1. Then 
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β  is a local minimum of )(βΦ  if and only if β  is computed via (11). 
Proof.  The necessity was proven in Theorem 2. To show the sufficiency, we have, from (18) that 
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Since  is a polynomial function about ),( iki xf β kx , it is very easy to prove: 
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i.e. the Hessian is positive definite and consequently (11) is a sufficient condition for minimizing . )(βΦ
 With Theorems 2 and 3, we can prove that 
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In other words, JGFC is a decreasing function with t. So, the GFC algorithm will finally converge. Since the proof of 
(24) is similar to Bezdek’s proof in Ref.[6], it is omitted here. □ 

3   Simulations 

In this section, we use the numerical simulation results illustrate the effectiveness of algorithm GFC. This 
experiment deals with structure mining involving the mixture of curve and line under three different noise free data 
sets and the same data sets with noise. The data sets named as A, B, and C are shown in Fig.5. The dashed lines in 
Fig.5 are the initialization models. We run both the GFC and FCRM algorithm (fuzzy c-means clustering) with the 
same data and initial models. The two algorithms are nearly equally powerful in terms of finding the terminal 
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regression models while our GFC algorithm always needs less iterations. The experimental result is shown in Fig.5 
and the number of iterations needed by each algorithm for each sub-experiment (totally 6 cases) is illustrated in 
Fig.6. Moreover, as we can see, our GFC algorithm converges to an acceptable result models even in noisy 
situations. 

 

 Data set A Data set A with noise 

 
 Data set B Data set B with noise 

 
 Data set C Data set C with noise 

Fig.5  Initial (dashed lines) and terminal models (solid arcs) for different data sets and initializations 

 In most cases, algorithm GFC detects and characterize the quadratic/linear models generating these data sets 
correctly. Although FCRM algorithm can finally characterize the quadratic/linear models even with almost the same 
effectiveness as GFC does, we can obviously see that GFC prevails over FCRM in terms of the convergence speed, 
which can be seen in Fig.6. 

4   Conclusions 
In this paper, we present a new integrated fuzzy clustering algorithm GFC. GFC combines gravity-based 

clustering algorithm GC with fuzzy clustering. GC as a new hard clustering algorithm is based on the well-known 
Newton’s Gravity Law. Our theoretic analysis shows that GFC can converge to a local minimum of the objective 
function. Simulations are done to show the validity and effectiveness of our GFC algorithm. We find that GFC 
algorithm detects and characterizes the quadratic/linear models generating the data sets used in the examples 
correctly in most cases. We also run the fuzzy c-means algorithm (FCRM) on the same data and find that GFC 
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prevails considerably over FCRM in terms of converge speed. 

Fig.6  Convergence speed of FCRM and GFC 
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关于切换回归的集成模糊聚类算法 GFC 

王士同
1,2
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2
 

1(江南大学 信息学院,江苏 无锡  214036); 
2(香港科技大学 计算机系,香港) 

摘要:  已经有多个方法可用于解决切换回归问题.根据所提出的基于Newton引力定理的引力聚类算法GC,结合模
糊聚类算法,进一步提出了新的集成模糊聚类算法 GFC.理论分析表明 GFC能收敛到局部最小.实验结果表明 GFC
在解决切换回归问题时,比标准模糊聚类算法更有效,特别在收敛速度方面. 
关键词:  切换回归;模糊聚类;引力聚类 
中图法分类号: TP18      文献标识码: A 
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