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Abstract: A simple method in the approximation of ellipsoid by bicubic polynomials is given in this paper, the 
error is approximately 273×10–6 for ellipse and 545×10–6 for ellipsoid. 
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As well known, Bézier curves and surfaces play a great role in the representation and design of free form 
curves and surfaces, but they could not denote circle, sphere and the like exactly. Hence in geometric modeling 
applications, the need of approximation of them arises when conic sections or rational curves, respectively, are not 
available or are not recommended. 

On the other hand, CAD systems and the like always seem to offer some representation of cubic polynomials, 
no matter whether they use B-splines, Bézier or the plain canonical base for curves and surfaces. 

Many authors have worked with the approximation of circle by Bézier polynomial[1~3]. In this paper, we 
consider the approximation of ellipsoid by bicubic polynomials, the error is approximately 273×10–6 for ellipse and 
545×10–6 for ellipsoid. 

1   The Approximation of Ellipse 

An ellipse is defined as 
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We intend to use a piecewise cubic polynomial planar curve joining with continuous tangent directions in 
Bézier form to approximate the ellipse. 

In order to approximate quadrant ellipse, we suppose that polynomial piece curve has the form: 

 . (1.2) ]1,0[,)(
)(
)(

)(
3

0

3 ∈=







= ∑

=

ttBP
ty
tx

tp
i

ii

                                                             

 Supported by the National Grand Fundamental Research 973 Program of China on Mathematic Mechanics under Grant 
No.G1998030600 (国家重点基础研究发展规划 973项目“数学机械化及其自动推理平台”); the National Research Foundation for the 

Doctoral Program of Higher Education of China (国家教育部博士点基金); an Intramural Youth Science Foundation of USTC (中国科技

大学校内青年基金) 
FENG Yu-yu was born in 1940. He is a professor and doctoral supervisor of the USTC. His research interests include CAGD, 

applied approximation theory and computer graphics. ZENG Fang-ling was born in 1970. She is a Ph.D. candidate at Department of 
Mathematics in the USTC. Her research areas are CAGD and applied approximation theory. DENG Jian-song was born in 1971. He 
received a Ph.D. degree in USTC in 1998. His research areas are CAGD, computer graphics and applied approximation theory. 

 



 冯玉瑜 等:椭球的高精度多项式逼近 527 

with 

,
00 







=

a
P   ,

3
1
















=

σ
b

a
P   ,32
















=

b

a
P

σ    (1.3) 







=

b
P

0
3

where 

  ii
i tt

i
tB −−








= 33 )1(

3
)(

is Bernstein basic function and δ∈R will be determined. 
Simple calculation from (1.2) and (1.3) show that  
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where fi(t), gi(t), i=0,1 are Hermite interpolant basic functions at point 0 and 1, so they are  
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Thus they satisfy 

iji jf δ=)( , ( ) 0if j′ = ; 

               ( )ig j ijδ′ = , g i (j)=0,     i,j=0,1.  (1.6) 

Obviously Bézier curve p(t) defined as (1.2) interpolates ellipse at point (a,0) and (0,b), and also has the same 
tangent direction at these two points. 

We select δ so that 
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This means that the point (x(1/2),y(1/2)) corresponding to t=1/2 is on the ellipse. It is easy to get 

 )12(4 −=σ . (1.8) 

In order to estimate the error between ellipse (1.1) and Bézier curve (1.2), we introduce auxiliary function, 
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or 
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for convenience. 

     Becauseε(t) is a polynomial of degree six, we write it in Bézier form: 
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Using (1.4) and (1.6), it is easy to get b0 = b6=1, b1=b5=1. From (1.5), we know 
                             1 0( ) (1 ),f t f t= −  

                                       1 0( ) (1 ),g t g t= − −  (1.12) 
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These ensure that  
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Hence b2=b4 since the symmetry.ε(t) can be rewritten as  
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with c1=b2−1 and c2=b3−1. 
From (1.11), a simple calculation shows that 

 2 1 0 2(0) 30( 2 ) 30( 1).b b b bε″ = − + = −  

On the other hand, from (1.4) and (1.14), we also have 
         2(0) 2 4( 3)ε σ σ″ = + −

where δ is defined as in (1.8). Therefore, 

 ).21217(
15
2)62(

15
21 2

21 −=−+=−= σσbc  (1.15)  

Because the point (x(1/2), y(1/2)) is on the ellipse, we get the relation 
 1 23 2 0c c ,+ =  
that is 
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From (1.14), (1.15) and (1.16), we get 

 2 2( ) 2(17 12 2) (1 ) (1 2 )t t tε = − − − 2t .   (1.17) 

It is easy to verify that the function f(t)=t2(1−t)2(1−2t)2 on [0,1] at point t=1/2−1/6 3  obtains maximum, i.e.,  
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Finally, we have 
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and  

 .  (1.20) 610273)(0 −×≤≤ tρ

The errorε(t) and ρ(t) are the same with the result in Refs.[2,3] for the circle case (a=b=1). 
We use Bézier curve (x(t),y(t)) defined in (1.2) to approximate a quadrant ellipse perfectly. We depict its 

picture in Fig.1(a), and we show the pictures of error functionsε(t) and ρ(t) in Figs.1 (b) and (c). It is easy to 
verify that the combination of (x(t),y(t)),(x(t),−y(t)),(−x(t),y(t)) and (−x(t),−y(t)) approximate the whole ellipse 
smoothly, see Fig.1(d). 
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                 (d) Smooth combination                             (e) The true ellipse 

                     Fig.1  The approximation of an ellipse with a=3, b=2 
                                

2   The Approximation of Ellipsoid 

The main purpose of this paper is to generalize the above method to surface case. An ellipsoid is defined as 
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We define parametric polynomial surface Q(s,t) using also Hermite interpolant as  
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where  
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and fi, gi, i=0,1 and δ are defined as before. 
    We want to use surface Q(s,t) to approximate octant ellipsoid. It is easy to check Q(s,t) interpolates ellipsoid at 
points (a,0,0), (0,b,0) and (0,0,c), and has the same tangent plane with ellipsoid at these three points. 

Let 
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Note that from (1.4), (1.10), (2.2) and (2.3), we have 
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Note that from (2.3) and (1.5), we know 
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From (2.8), (2.9) and (1.18), we get 
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We can approximate the whole ellipsoid smoothly by changing the sign of (X(s,t),Y(s,t),Z(s,t)) respectively. For 
example, surface piece 
   (2.12) )),(),,(),,((),(1 tsZtsYtsXtsQ −=

is continuous and has the same tangent plane with surface Q(s,t) at common  boundary curve Q(1,t), and surface 
piece  
  )),(),,(),,((),(2 tsZtsYtsXtsQ −=

is also continuous and has the same tangent plane with surface piece Q(s,t) at common boundary curve Q(0,t). The 
effect of approximation is shown in Fig.2(b). In Fig.2(a), we depict the plot of (X(s,t),Y(s,t),Z(s,t)), and we show the 
pictures of error functions in Fig.2(c) and Fig.2(d). 
 

3   Conclusion 

     In this paper, the approximation of an octant ellipsoid surface by bicubic polynomials is considered and the 
whole ellipsoid surface is also approximated by piecewise bicubic polynomial patch with GC1 continuity. The 
approximation error is about 0.0005. And, the method used in this paper can also be used to approximate an 
ellipsoid or a hyperboloid surface patch. We will discuss the more general situation in other paper. 
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                (a) (X(s,t),Y(s,t),Z(s,t))                                      (b) Smooth combination 

         

                  (c) ε*(s,t)                                               (d) ρ*(s,t)  

Fig.2  The approximation of an ellipsoid as a=3, b=2 and c=2 
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椭球的高精度多项式逼近 
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摘要: 给出了用双三次多项式逼近椭球的一种简明方法.逼近椭圆的误差为 273×10-6,逼近椭球的误差为 545×10-6. 
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