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Perfect Approximation of Ellipsoid by Polynomials
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Abstract: A simple method in the approximation of ellipsoid by bicubic polynomialsis given in this paper, the

error is approximately 273x107® for ellipse and 545x107 for ellipsoid.
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As well known, Bézier curves and surfaces play a great role in the representation and design of free form
curves and surfaces, but they could not denote circle, sphere and the like exactly. Hence in geometric modeling
applications, the need of approximation of them arises when conic sections or rational curves, respectively, are not
available or are not recommended.

On the other hand, CAD systems and the like always seem to offer some representation of cubic polynomials,
no matter whether they use B-splines, Bézier or the plain canonical base for curves and surfaces.

Many authors have worked with the approximation of circle by Bézier polynomia*™. In this paper, we
consider the approximation of ellipsoid by bicubic polynomials, the error is approximately 273x107° for ellipse and
545x107 for ellipsoid.

1 TheApproximation of Ellipse

An ellipseis defined as

2 2
X
¥+§:1, abeR. (1.1)
We intend to use a piecewise cubic polynomial planar curve joining with continuous tangent directions in
Bézier form to approximate the ellipse.

In order to approximate quadrant ellipse, we suppose that polynomial piece curve has the form:

D(t) = @8} - 23:0 PB3(t), te[0]]. (12)
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is Bernstein basic function and seR will be determined.
Simple calculation from (1.2) and (1.3) show that

where

x(t) = a(f, (1) - 09, (1) = a(B; (1) + B (1) + %0323 ®,

1
Y(®) = b(F(t) + oG (1) = b(B3 (1) + B3 (1) + 5 0B (1), (14)
where fi(t), gi(t), i=0,1 are Hermite interpolant basic functions at point 0 and 1, so they are

fo(t) = B3 (1) + BY(t) = (1-1)° + 3t(1-1)°,
fi(t) = B3(t)+ B3(t) = 32 (1-t) +t°,
6ol = 3 BED =t 1*, (1.5)

1
6,(t) = -3 B3 () =°A-1),
Thus they satisfy
fi()=0;, f(i)=0;

9i()=0;, 9; (=0, 1Lj=0,1 (16)

Obviously Bézier curve p(t) defined as (1.2) interpolates ellipse at point (a,0) and (0,b), and also has the same
tangent direction at these two points.

We select § so that

Lway=tyara =32 (L7)
a b 2
This means that the point (x(1/2),y(1/2)) corresponding to t=1/2 is on the ellipse. It is easy to get
o=42-1). (19)

In order to estimate the error between ellipse (1.1) and Bézier curve (1.2), we introduce auxiliary function,
XM, Yo
t) = - 1.9
pt) v +b2(t) 1 (1.9)

£(t) = % + y;@ 1 (1.10)

or

for convenience.
Because€ (t) isapolynomial of degree six, we writeit in Bézier form:
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0= (0 -8 (11

Using (1.4) and (1.6), it is easy to get by = bg=1, b;=bs=1. From (1.5), we know
fi(t) = f(1-1),
gl(t) = 790(17 t), (1-12)
9,'(t) = go'@-1).
These ensure that
e(t) =e(@-t). (1.13)
Hence b,=b, since the symmetry.£ (t) can be rewritten as

&(t) = ¢, (BS(t) + BS (1)) + ¢, BS(t) (1.14)

with ¢,=b,—1 and c,=bs-1.
From (1.11), a simple calculation shows that
£"(0) = 30(b, - 20, + ) = 30(b, - 1).
On the other hand, from (1.4) and (1.14), we aso have
£"(0)=20%+4(c -3
where § is defined asin (1.8). Therefore,

2 2
=b, -1=—(0? + 20 —6) =—(17 -12+/2). 1.15
6 =b,~1=(07 +20 - 6)=-(17-1242) (1.15)
Because the point (x(1/2), y(1/2)) is on the ellipse, we get the relation
3, +2¢, =0,
that is
3
¢, =—=c,. (1.16)
2
From (1.14), (1.15) and (1.16), we get
&(t) = 207 -12J2)t2 (1-1)*(1- 21)2. (1.17)

It is easy to verify that the function f(t)=t*(1-t)%(1-2t)% on [0,1] at point t=1/2—-1/63 obtains maximum, i.e.,

m%tz(l—t)z(l— 2t)? = f(%—%\@) :518. (1.18)
Finally, we have
0<e(t) < é(l? ~124/2) <545x10°¢, (1.19)
and
0< p(t) < 273x10°°. (1.20)

Theerrore (t) and p (t) are the same with the result in Refs.[2,3] for the circle case (a=b=1).

We use Bézier curve (x(t),y(t)) defined in (1.2) to approximate a quadrant ellipse perfectly. We depict its
picture in Fig.1(a), and we show the pictures of error functionse (t) and p (t) in Figs.1 (b) and (c). It is easy to
verify that the combination of (x(t),y(t)),(x(t),=y(t)),(—x(t),y(t)) and (—x(t),—y(t)) approximate the whole ellipse
smoothly, see Fig.1(d).
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Fig.1 The approximation of an ellipse with a=3, b=2

2 TheApproximation of Ellipsoid

The main purpose of this paper is to generalize the above method to surface case. An ellipsoid is defined as

2 2 2
§+§+%=L abceR (21)

We define parametric polynomial surface Q(s,t) using also Hermite interpolant as

X(st) =ar(s)(fo(t) —o g, (1)),
Y(st) =br(s)(f,(t) —ogy(t)), (2.2)
Z(s,t) = c(fo(s) —a9,(9)),

where
r(s) = f1(S) +09(9), (2.3)

and f;, g;, i=0,1 and ¢ are defined as before.
We want to use surface Q(s,t) to approximate octant ellipsoid. It is easy to check Q(s;t) interpolates ellipsoid at
points (a,0,0), (0,b,0) and (0,0,c), and has the same tangent plane with ellipsoid at these three points.

Let
X2(st)  Y%(st) ZZ(st
p*(s,t)z\/ ;f ), t()f ) éf ) (2.4)
and
er sy = XD YA | Z5sY ) (2.5)

a? b? c?
Note that from (1.4), (1.10), (2.2) and (2.3), we have
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X2(s,t) L Y(sh) Y2(s,t)

: = r3(9)(e(t) + 1), (2.6)
a b?
and
(9 +1= 260 (S"t) +r2(s). 2.7)
Hence
£* (s1) = r2(9a(t) + &(s) = 217 -124/2) 2.9)

(292 a-1)2(1- 2t + S*(1- 5)°(1— 25)?)
Note that from (2.3) and (1.5), we know

r'(s)=2s(l-s)(3-o)+o(l-5)?*>0

and
rs)<r@®=1, (2.9)
therefore
r(s) <L

From (2.8), (2.9) and (1.18), we get

£*(s,1)<109x10°°, (2.10)
and

p*(s,t)<545x10°°, (2.11)

We can approximate the whole ellipsoid smoothly by changing the sign of (X(s,t),Y(s,t),Z(s,t)) respectively. For

example, surface piece
Q. (s,t) = (X(s,1),Y(st),-Z(s 1)) (2.12)
is continuous and has the same tangent plane with surface Q(s,t) at common boundary curve Q(1,t), and surface
piece
Q(s,t) = (X(s,1),-Y(s,1), Z(s,1))

is also continuous and has the same tangent plane with surface piece Q(s,t) at common boundary curve Q(0,t). The
effect of approximation is shown in Fig.2(b). In Fig.2(a), we depict the plot of (X(s,t),Y(st),Z(s,t)), and we show the
pictures of error functionsin Fig.2(c) and Fig.2(d).

3 Conclusion

In this paper, the approximation of an octant ellipsoid surface by bicubic polynomials is considered and the
whole ellipsoid surface is also approximated by piecewise bicubic polynomial patch with GC! continuity. The
approximation error is about 0.0005. And, the method used in this paper can also be used to approximate an
ellipsoid or a hyperboloid surface patch. We will discuss the more general situation in other paper.

© PEBREBRELDIGT  hups/www. jos. org. cn



531

(a) (X(S,t),Y(S,t),Z(S,t)) (b) Smooth combination

(c) e*(sh) (d) p*(s)
Fig.2 The approximation of an ellipsoid as a=3, b=2 and c=2
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