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Abstract . Tn this paper the searching problem for an object in a set of N locations is considered. The goal i
to allocate the resources so as to maximize the probability of locating the objec:. By using Lagrangian operator
method the problem of optimal search with the unknown target distribution is studied. Some selection eriteria

and error estimate results are derived.
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Optima. search problem involves computing how 10 allocate resources (for example, searching time) so as ta
maximize the probability of detection. or to minimize the axpected consumption (cost) of rescurces used for
detecting the targett?. One example is searching for a record X in a distributed database located at one of N
storage sites, denoted by {C,...,Cx}. The probahility that we will find X when searching € given that X is
indeed in 7 is (ypically called the detecrion function, denoted by b(7,¢). T.et K denote the total time that is
assigned for searching. the optimal search problem invelves allocating time & (Zk =K for each site 7 such that
cither the probability of detzeting target X is maximum. or the expected cost (lime consumed) to find rarger X is
minimum, This allocation of time is called the optimal search strategy. The optimal search theary has many
applications s including developing military and straregic policy ),

The study of the optimal sezrch for a stationary target was pioneered by B. . Koopman**!. Since then many
authors!!~*Thave generalized the Koopman®s work, but all of these resulrs were obtained under the assumption that
the target distribution is known in advance. obviously it is not true in many cases, In Refs. [5,6] we investigated
the problem of optimal search when the target distribution is unknown, to our knowledge these were the first

available results in this aspect. In Ref. | 7] we considered an optimal search problem with non-regular detection
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function. Tn this paper we shall further derive the selection crireria and error estimate results for the aprimal search
preblem with the unknown target distribution. Although these results are obtained for discrete systems, they can

be easily extended to the continuous case,
1 Upper and Lower Bounds of Optimal Search Strategies

First we derive the upper and lower bounds of optimal strategics when the detection funciion is exponential.
Theorem 1. Suppose an object is located in one of N cells with an arbitrary probability distribution gy, G=
1,2,...,N), Assume that the detection function is exponential ;
Bliz)=1—e"7, (1=/=_N).
Then the detection probahility P[ /" ] of the optimal scarch stretegy f* satisfies the following inequality:
1= B¥PI ] Cve 57,
where Cx=N[p(1)... p(NI Y and K>>0 is the total cost constraint.

Proof. Without loss of generality we may assume that
N

P30, §p<n=1.
Consider rhe Tagrangian
(G A z)=p )k L2)—A(2),
Soive A/ =0 to vizld the aptimal search plan:

N
w=f1 () =In P—SAQ D<K,
That is

N
\ . o
2in pfyf){é!{, [ p (L), p (N NN K08

=1

The cquality is achicved in the boundary. Thus we can easily derive the upper and lower bounds for P[F* L.
This completes the proof of the theorem. L

Similarly we can generalize the above result 1o the case of general regular detection function G .25, That is,
#(i z) is continucusly differentiable and the derivative ' (i, » ) 1s a decreasing function with # (:,0)>>0 and # (i,
coy=0,

Theorem 2 {Bounds of optimal strategies for regular detection functions). Supposc an obect is lecated in one
of N cells with an arbitrary probability distribution pGY. GG=1,2,...,N). Assume that the detection funetion is
regular with &' (/, « ) decreasing and satisfying 6" G, 0)>>0 and &' (§,2)=0. Then the detection probability PLS ]
of the optimal search strategy f* satisfies the following inequality -
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2 Selection Criteria and Error Estimates

Suppose an object is hidden in one of N locations, bui the probability distribution is unknown. The [lirst issue
to be considered in designing a search strategy is to make a good guess for the target distribution g (i), (i —1,
24....N), which wil. maximize the detection probability.

Suppose that the target distribution is Caysaes. .« san) but the searcher chooses (41854, .. 4hy ) as the approxi-
matior. of the target distribution. Intuitively we would think that the optimal search pian which is based on the true
distribution should have & superior detection probability than that of the search plan which is based on the guessed
one. This intuition is justified below.

Theorem 3. In searching N cells with an exponential detection function, suppose that the true target
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distribution is @a=(a),azs.. . say) and that the searcher assumes the target distribution is &#— (& ybrs. .. sy ). Let
P[f:] denote the detection probability of the optimal search plan /' based on the distribution & and P[fi ] be the
detection probability of the optimal search plan £ based on the distribution &, then PLFy J<=PLf2 ).

We omit the proof of Theorem 3 here. The interested readers may contact the first author for a strict and
complete proof of this thecrem.

From the proof of Theorem 3 we have the following corollaries .

Corollary 4 (First criterion for choosing target distributions). In the scarch of N cells with the exponential
detection function, one criteria for choosing the rarget distribution #={&,,4,.... ,6y) is to minimize the following
expression

N N
Dasy=e 0 { [[ 5] 2 &

i=1

for all possible values of a= {a,  ass. .. saw).

Corollary 5 (Error estimates),

In the search of N cells with the exponential detection Tunction, if the real rarger distribution is o= {a.
azs.. . san) and the chosen distribution is &= (&, 8;4... 6y, then the error in the detection probability of the
optimal search plan is given by

i 'NW o 1N L.
Fla,by=e & .le |:{ ,-]:I;&J a.—{ Ha, | b;]/b;.

i—1
The following two examples give some numerical results.
Example 1. In a two-cell search problem, suppose that the true target distribution is 4 =102/3,1/3}, and the
detection function 1s 6(s)=1—¢""
is PLf]=0.872.

Suppose that the target distribution is unknown to the searcher., and the searcher chooses (5.1—5). (0<h<

, and the total search time K =4 minutes. Then the optimal detection probability

1>. Then the detection probability
PLF]=1— (00867 0.3330)e 7 LA(1—5) ]2
From this expression we can draw the graph of deteetion probability sehich illustrates the result of Theorem 3.
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Fig. 1 Graph ol the detection probability
Example 2. In the case of two cells and the exponential detection {unction, assutne that the target distsibution
is again a random variable with the distributions;
Plpi=ai=Plp,~1—al—q. G—1.2.... .00
Let z,{k=1,2) denote the time spent to search cell & in the optimal search plan. and PLF* ] denote the detec-

tion probability of the optimal search plan. Suppoese the cost is bounded by K =1, We can tabulate the value of
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PLf*] as follows :

q 2/ b 21/ PLF ]
0.1 0.5/0.5 2.0/2.0 0.86
015 0.6/0.4 2.2/1.8 0. 87
0. 20 0.7/0.3 2.42/1.58 0. 88
9,35 0.8/0.2 2.69/1.31 0, 89
015 0.8/0.1 3.1/0.9 0.92
0. 05 1.0/0,0 4.0/0.0 0. 99

Frem the above table we see that £ p J=0. 745 but E[P (/" )]=0. 892. The detection probability corre-
sponding to E[ £, ] is only 0. 8779, which is less than E[P(f*>]. In fact, P[f* Jis independent of ¢,, and thus the
mean value of E[ g, | is not related to ELP{S")] too.
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