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Abstract ; The capacity of dealing with mixed numeric and categorical valued data is undoubtedly important
for clustering algorithms because there is usually a mixture of numeric and categorical valued attributes in real
databases. The use of fuzzy techniques makes clustering algorithms robust against noise and missing values in the
databases. In this paper, a fuzzy k-prototypes algorithm integrating k-means and k-modes algorithm is presented
and is used to mixed databases. Experiments on several real databases demonstrate that fuzzy algoriﬂmm can get
better result than the corresponding hard algorithm. Some properties of fuzzy k-prototypes algorithm are also
discussed.

Key words: numeric attribute; categorical attribute; hard clustering; fuzzy clustering

Clustering has been discussed extensively in many areas such as similarity search, customer segmentation,
pattern recognition and trend analysis. The capacity to deal with both numeric and categorical valued attributes is
undoubtedly important for clustering algorithms owing to the fact that there is usually a mixture of numeric and
categorical valued attributes in real databases. Although many clustering algorithms have been proposed so far.,
most clustering algorithms are focused on numeric data in which the distance between two objects is defined based
on the inherent geometric properties of data. However, those algorithms that use distances or vector product
methods are not appropriate for non-numeric valued data.

K-means algorithm is very popular and well known for clustering because of its efficiency and effectiveness. It
randomly selects £ objects as the initial centers (means) and assignments for each remaining object to its closest
center. [n the next step., the centers of each cluster are updated and objects are reassigned. If the clustering quality
increases, the current clustering is replaced by the new clustering. This process iterates until no more quality im-
provement is possible. The basic k-means algorithm has many variations, such as alternate methods of choosing

the initial centers and updating the centers. Since means only exist for numeric attributes, this clustering algorithm
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is not applicable to domains with non-numeric attributes. Huang™'*! presents two algorithms, k-modes and £-pro-
totypes, which extend &-means paradigm to categarical domains and demains with mixed numeric znd categorical
values whilst preserving its efficiency. The 2-modes algorithm uses a simple matching dissimilarity measure 1o dezl
with categorical data replacing the means of clusters with modes, and uses s [requency-based method to update
modes in the clustering process. The k-prototypes algorithm integrates the £-means and 2-modes algorithms
through the definition of a combined dissimilarity measure 10 allow for clustering objects described by mixed at
tributes.

Hard (crisp, exclusive) clustering dues no! allow the overlap of clusters and scparates the data inte disjoint
groups. However, in practical situations there are many cases in which hard ¢lustering is not suitable for natural
subgroups. For example, a spatial object intersects the arca of two clusters at the same time or two cbjects have
the same distance from two clusrers. In such cases, fuzzy clustering. admitting varying degrees of data member-
ship in muliple clusters, is more appropriate than heard clustering. The membership matrix genersted by fuzzy
clustering can provide more information than a simple cluster identifier produced by hard clustering, which helps
users to make multiple decisions such as identifying those boundary objects helonging to multiple clusters with sim-
ilar degree. A pioneering work for applying the concept of fuzzy sets 10 a cluster analysis was done by Ruspini®®-,
Since fuzzy k means clustering algorithm was proposed by Bezedek-!, several methods of fuzzy clustering have
rapidly developed and many applicetions have been suggested in the literature’®). These studies mainly foeus vu
the mathematieal recearch of optimality and convergence, A fuzzy 2-modes algorithm as an extension of fuzzy £-
means algorithm for clustering categorical data is described in Ref, [7]. It uses a simple matching dissimilarity
measure for objects of categorical attributes. allowing the fuzzy #-means paradigm applicable or discrete, un-
ordered categorical data. In this paper, we integrate the fuzzy paradigm on numeric and caegorical attributes pro-
posed in previous work and present a fuzzy A-prototype algorithm for mixed data. Fuzzy paradigm helps 1o improve
the rchustness of clustering against noise and terminare at a better result. Experimental results on some well-
known real databases show that the accuracy of fuzzy clustering is better than that of the corresponding hard clus-
tering in most cases. We give a detailed discussion abour the impact of parameters on clustering aceuracy and izera-
tion number. We also discuss the evaluation of clustering quality and use it es 2 criterion for choosing cluster num-
ber.

The rest of the paper is organized as follows. In Secticn 1, we present a fuzzy k-prototype clustering algo-

rithm fur mized data. Some experimental results are shown in Section 2 and Section 3 egncludes the paper.
1 Problem Statement and Solution

Attributes can be categorized into two classes: categorical atrribute and numeric attribute. Categorical zt-
tributes are fields that 1ake on values from a limited and predetermined set of values. Usually, there is no particu-
lar order to the categories. Post code, car model, marerial status are examples of categorical attribures. Categori-
cal atwributes only represent 1o which of categories a thing belongs. Binary attributes can be regarded as special
cases of categorical attributes having only two values. Numerie attributes that can be summed and sorted are very
farniliar in databases. Age, price, salary and temperature are examples of numeric atiributes. A numeric datahase
containg only numeric valued artributes, a categorical database contains only categorical valued attributes and a
mixed database contains both numeric and categorice! valued attributes.

1. 1 Basic concepts
1l D i the universal set from which values of a crisp set € are taken, then we can represent (' as C=/[r|2€

Dy and Charc(x)=1}, where Char¢—1{0,1} is the characteristic function of C. For a fuzey set F, its characteristic
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function (or membership function) Chary—[0,1] takes values between 0 and 1 instead of the discrete values
Oor 1.

K-hard clustering partitions D into % disjoint groupe, Each clustering corresponds to a k X » matrix U, satisfy-
ing;

(1) wi€ {0,1}, i.e., the element of matrix is 0 or 1

I
2) :EW:,;I. i.e., only one 1-valued element in each column:
=1

1
(3 Lw;,>0, i.e. , at least one non-zern element in each row.
i=1
Since each hard clustering corresponds 1o 2 {0,1} matrix, and each matrix satisfying the above conditions cor-
responds to @ clustering, then

& "
My={UEV.L..lwi€ 0.1}, ¥ iy Dwou=1. D10y >0, ¥ 1€ [1.61, ¥ i€ [1,u]} is called k-hard clustering

=1 =1
space an [.

K-tuzzy clustering partitions L2 inte £ clusters, each of which is a fuzzy ser of D). Every clustering corresponds
to a membership matrix [/, satislying:

(1) 2w, €[0,1], i.e. . the element of matrix is a value between 9 and 1,

I3
S

(23 Lw,,= 1+ t.e. » the sum of elements in each column equals 1;
f-1

(33 Ziwn>0s l.c. » at least one non-zero element exists in each row.

=1
Since each fuzzy clustering corresponds to a [0,1 ] matrix. and each matrix satisfying the above conditions cor-

responds to a fuzzy clustering, then
&

My = {Uevbmlwue 10,10, ¥ 4hr; Ewh=l’ Ew:.>0- VIE[1,4]. ¥ i€ [1.!!]} is called k-fuzzy clustering
=1

=1

space on ),

In general, the process of fuzzy clustering can be divided into four phases

I Data normalization;

Nezrualization maps all the attributes to a common range {ofren [0,1]3 te deal with the problem that different
variables are measured in different units, After normalization, all attsibutes contribule equally to the distance be-
tween two objects. Some common ways of normalization include:

(1) Subtract the mean value from each atiribute and then divide by the standerd deviation;

(23 Divide each actribute by the mean of 21l the values it takes on;

(3) Divide each attribute by the range (the difference hetween the lowest and highest values it tekes on) after
subtracting the lowest value.

2 Define the dissimilarity between objects;

3 Use a clustering method to group similar objects;

1 Analyze the resulr.

Since the result of fuzzy clustering is a set of fuzzy sets, we usually transform them into crisp sets using some

approaches such as A-level cut and nearest maximum membership principle. The A-level cut (0<I1=<I1) of a fuzzy

: . _ . 1 wyd
set is @ crisp set whose elements have a membership grade greater than or equal ta A. that is @', = o Ferwice”
otherwise

The nearest £-hard clustering of a 2-fuzzy clustering is obtained by assigning each object to the cluster associated
1 = max {w; }

with maximum membership, that is w', = pepsd . For ¥ X, €N, if max (w;), 1s;=lk. is not
0  otherwise
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unigue, X, is arbitrarily assigned to one cluster achieving the maximum. Thus, a fuzzy cluster ¢, is transformed to
a crisp cluster C, =X, |X. €D, w', =1, 1=irsin}. Since the first and last phases are simp ¢, we facus on the soc.
ond and third phases in this paper.
1.2 Dissimilarity measure

Let Aj24;s. . +Aube a set of attributes in a mixed catabase £ in which A4,,1,.... 1, are numeric attribures
and A,15A4, 5.. .. . A, are categorical attributes. The domzin of A;is cenated as Dom (A,). The number of values
for categorical attributes A,(p— 15 75im) is denuted as n,. For sireplicity, we assign an order to the values of car-
egarical attributes, An object X; € D can be represented as an m-dimersional veciar Cayvrans. . s )y where r, . €
Dom(4;).

Definition 1. Let X, X,€ D), the dissimilarity between X, and X, is defined as

# o
il 1

diX X =d (X X)) | P X X )= D Conmieg 347 2 8Caasza) s
e 1 f=ptl

0 if oy,
where 8oy ;)= o
[ otherwise

In the above definition, &, (X, ,X;) 1s the squared Euclidean distance on the numeric attributes hetween X, and
X;v (X, X} is the simple matching dissimilarity on the categnrical attributes hetween X, and X, and 7 is the
weight parameter to avoid favoring either type of attributes. The dissimilarity satisfies the lollowing properties.
(1) Reflex: ¥ X., X,eD. d(X, . X, =0d und only if =2z, 1</<m;

»

- ‘.f.'1‘
Proof.  d(X. X, =08 (X0 X,) =00 d (X, X)) =0 20 (ry—ag =0, 2
£

epdl

Bl sa, ) — Desay: —ajp 160
I<5m.

(2) Symmetry: ¥ X, X, € 1.d (X, X, )=d (X, X,},

(3% Merric Property (p=03: ¥ X X, - KXo Do d (XX, 0 4d (X X 2d0X,, X0,

Proof.  Assume zy,ap.00 € Dom (AD L and A is @ categorieal atribute. 1f Sl 2 ) — 0y oy )8 Gy
xu)y then §r,ry) =0, 6oz au) =0, and 6{a, s ay) =1 because the dissimilarity between two categorical values
is either O or 1. That ise sy —aa2, — oy and 4o+= 0. On the onher hand . the first twe equalities mply xy, —.ry in
contradiction to oy Fay. S0, we have G ay ) 6apr) 286 Uraay). Thus, & (X, X)) - & (X; X024 (X,
X,). Since p=0, i ¢, 5 all attribures are carcgorical attributes, (X, X)) | (X, Xo=d (X, . X 1d (X, X3
d AKX =e{X, X,

1.3 Fuzzy K-protolypes algorithm

Definition 2. Given a set of objects X,.X,.. .. X, described by numerie attributes A, A,, ... A, and categor

wal attributes Ay yadpvge s s A and the cluster number 44 the problem of fuzzy clustering can be deseribed as a

mathematical program :

Fooa
Y
Minimize F{V, 2 = :L LZ:J.'F,-ri(XJ 2D QD]
1 et
Subject to 1w, € [0, 1], 155 (2}
I
s
w1, 1<i<n (3)
i
Al
(= L‘ch;Ji:’.,;rrg 150504 (4)
ol

where 23221 is a fuzzy parameter. W= lw,} is 2 & X »n membership matrix. and Z=1{Z, Z.,.. . Z.} is a se: of
4 m-dimensional prototypes.
The state of clustering is expressed by the membership matrix W. implying the degree of belongingness of

each object to a cluster. The fuzzy parameter « plays a role in determining the degree of fuzziness of the clusters.
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1 i X;=2Z2r
0 if X,=2;!, j#i
I =>1: wi= .
4 o 1 otherwise

o

i: ( d(X,,Z}) ) =

HNdXLZ0)

Theorem 3 can be proved using the similar method as that in Refs. [9,10] because the cost function only depends
on Was Z° is fixed.

Theorem 4. (Prototype update method) Consider the problem F.(W*,Z) where W~ is fixed. then F.(W",

Z)= 2 Ew;. *d(X;,Z)) is minimized if end only if Z,(1</<Tm) is assigned as follows :

i=1 i=|
"
.
}_/IU&GXU

i
2 |

"

S

i=]

For categorical attribute A;(p+1<j<m), Z;=¢"" € Dom(4;) where

For numeric attribute 4;(1<I;<Ip), Z;,=

" !
A} 1
(_' -n' e (r))> ( v'ol — (l)) ]< <
2.1] wy |xi=a; _/2_{ W | Xi;=a; )y 1tsn,.
re =
Praof.

. .szwa:"d(X,.zu T‘;w”u (X ZD+7d, (X1 Z00) =

=1

Z Ewﬁ“d,f?s. .z.’)-f-?‘e Lw.n, UK 21D

We denute F,.(W*,Z)= >_: /_nu;,"d (X, Z) and F.(W™ ., Z)= z 2}'1’2)! ‘d(X.vZ;). Thus, FAW",Z)=F.

fusy i=1 f=1 i=1

(W, Z)+FAW~,2). Since F.(W*.,Z), ¥ (W",Z) are nonnegative and independent of each other. minimizing
FAW" ,Z} is equivalent 1o minimizing #,(W*,Z) and F.(W" ,Z) simultaneously. According to Theorem 2 and
Theorem 471, the result is obvious.

If there is more than one value for a catcgorical artribute A, having the maximum membership sum, we set Z,;
as the first one according to the order we assign to the domain of A;. In general, fuzzy k-prototypes algorithm
could be described as follows ;

{1) Choose a set of initial cluster prototypes Z°'’ and a controller of iteration e;

(2) Determine W' that minimizes F(W,7Z9). Set i=

(3) Determine Z“*" that minimizes F(W,Z). If |F(W",Z2¥0) (W ,Z9) | <le, then stop.

Otherwise set (W*, 2" )= (W, 2",
(4) Determine W"“*" that minimizes F(W,Z0 D) If [F(WYEHD Z9 0y (W™, Z971) [ <e, then stop.
Otherwise set (W' ,Z" )= (WY, Z% 1) Increase i by 1 and go to (3).

Let # be the number of clusters, m the number of attributes, znd »n the number of objects. The space com-

plexity of fuzzy k-prototypes algorithm is O (mn+km +kn+kM) to store n Xm object matrix, 43X n membership

matrix, &< prototype matrix and the sum of numeric values ar membership sum of categorical values in memo-

ry, where M=p+ Z n;. Hence, [uzzy k-prototypes algorithm is feasible for moderate databases with small num-
=ped ]

ber of diverse values on categorical attributes. If memory space is enough, the time complexity of tuzzy £-proto-
types algorithm is O (&mn) which is much faster than other clustering algorithms.
Theorem §. Hard 4-prototypes algorithm converges to a partial optimal solution mn a finite number of

iterations.
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Proof. Assume W iz the membership matrix in iteration r, and Z” %"’ is the optimal sofuticn obtained
iteration 7=+ 1. Sitnilarly, 2V (¢ is the optimal sclution obtained in /=1 iteration at fixed W™, If W& =w"",
then Z¢+0 = ZY*1 accarding to the prototype update method in Theorem 4 Henge, F (W2, "My =F (W,
Z"*™), On the other hand, the sequence F(W,Z)} genersted by the algorithm is strictly decreasing. Hence, the al-
gorithm tests each membership matrix at most once. In hard algorithm, there is a finite number of W since each el-
ement of W is either 0 or 1. Then the algorithm will reach a partial solution in a finite number of it¢rarions.

Theorem 6. Assume (W* ,Z*), (W' ,Z') are the global optimal soluticn of F., (W .Z) and F,(W.Z) respec-
tively, H ay>ap=1, then FolW 2> F (W™ ,Z20 ).

Proof.  Since ¥ 1€k, 15/, we© [6:1]s wipewl for o, a221 and 3 wwn € (0,10, such that wi™>

H " k "
Wi F,,E(W" W)= ;: ;w'?ﬁd(X,;Z',)) g}: ;:w'ﬁld(X;‘Z’;)LFnl(W' »Z"). Since (W ,Z" ) is the global oprti-
mal of Fal(W.Z). FCK(W'.Z'),EF.,.(H‘” %" ). Hence, 1".,2('W' Z! VFE, (W20 b

Lemma. If &, >q,321, then ¥ (W, Z), ¥, (W, Z)2>F. (W™ .27 3y where (W7 ,£7 ) 15 the global optimal so-
lutior: of ¥, (W,2Z).

Proof.  let {W'.Z') be the global optimal solution of ¥, (W,2Z). We have F. (W'.Z")>F, (W™ ,2" ) ac-
cording to Theorem 6. Since (W', Z") is the global eptimal of F, (W.Z3}, we have Fo (W Z)yz2F., (W20,
Hence, FGE(W’-Z)>F,,1('W’ AR

2 Experimental Results

To evaluate the effectiveness of fuzzy A-prototypes algorithm and diseuss the impact of parameters. we per-
form some experiments on severaj real darabases including cne numeric database . one categorical datahase and twa
mixed databasest',

2.1 Reul databases

Soyhean datahase (DS1) has 35 categorical-velued attribates and 47 instances. The insrances are dividad into 4
classes, contsining 10, 10, 10, and 17 members respectively, Protein localization database (DDS2) consists of 336
instances and 7 numeric valued artributes. 8 classes are labeled containing 113,77,52,35,20.4.2, 2 instances re-
spectively, Flag database (DS3) contains details of various nativns and their ilags. With these dara we can try o
predicr the religion of a country from its size and the colors in its flag. There are 194 instences and 30 attribures
10 attributes are numeric valucd. and the remainder is categorical valued. Credic approval database (IDS4) con-
cerns credit card applications, described by » good mixture of attributes—— numetic with small number of values,
and categorical with large number of values. The database has 15 attributes and 69¢ instances classified into two
classes. There are also 5% missing values on both numeric and categorical attributes in the database. D31 and DS54
have been used in Refs. [1.2]. The characteristic of these databases is listed in Table 1.

Tahle 1 Description of datasets

Number of attributes Niumher of Nuriher of Missiny
Type Categorical Nurmeric sbjects clusters data
D3s1 Categorical 3] ) Y 4 Ne
DS2 Numeric 0 7 136 8 No
DS2 Mixed 20 10 154 8 No
54 Mixed o 5 630 2 Yes

2.2 Accuracy of clustering results
Result table is used to test the accuracy of clustering with respect to datzbases in which the classifier of each

chiect is predetermined. Assume the set of input clusters is {C,,Cyr. ..+t and the set of output clusters is
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{C"14C'zs. .. »C'4 ). In result table, each row corresponds to one input cluster, and each column corresponds to one
output cluster. The element a,, corresponding to the ith row and the jth column represents the number of objects
of C; which are classified as C';. For the ith row, if a;; is clearly much larger than a,,,» m3£j, it indicates that most
objects of C, get into C’,, with limited number of exceptions distributed to other output clusters. Then we map C,

to ('}, denoted as f(i)=j. After mapping all input and output clusters one by one, the accuracy of clustering re-

.

sult is defined as the fraction of correctly clustered points: (2:?“‘“")/"‘ The larger the value is, the fitter the
clustering result is with respect 1o the database.
2.3 Effectiveness

In the first experiment, we carry out a group of tests on DS1 using different values of a. For each value of a,
the algorithm is run for 100 times, each randomly choosing # initial prototypes. The results demonstrate that fuzzy
k-prototypes algorithm is better than hard algorithm in 67 runs. The results of 28 runs have no improvement and
only 5% are worse than those of hard algorithm result. In the second case, the accuracy of 23 runs is at least 95%
using hard algorithm so that fuzzy paradigm has no improvement on them. We also notice the decrease of accuracy
in the third case is limited while the improvement in the first case is significant especially at bad initial choice. We
list 5 examples belonging to three cases respectively in Table 2. It is obvious that fuzzy algorithm is superior to
corresponding hard algorithm on clustering accuracy.

Table 2 Accuracy comparison

Decrease cases Improvement cases No-change cases
Hard Fuzzy Hard Fuzzy Hard Fuzzy

1 96% 64 % 94% | 1
98 9694 30% 87% 96 % 96 14
55% 51% 55% 91% 98% 98
0% 6840 51% 2% 682 6894
74% 68% 34% 89% 72% 72%

250 p — — e
100

90

i W T 60
W : 50
100 - —_
: T i 40
i o i 30
50 il il

y 0 Rt i S A R
10 20 30 40 50 60 7.0 80 90 100 | 3 S 10 20 30 40 S0 60 70 80 90 lin
Fuzzy parameter Fuzzy parameter

Cost function
n

Accuracy (%)

Fig. 1 Cost {function vs fuzzy parameter (DS1) Fig. 2 Accuracy vs fuzzy parameter (DS1)
As proved in Theorem 6 and shown in Fig. 1, the cost function decreases dramatically as a increases. Figure 2
shows the average accuracy of clustering results with respect to variant a from 1. 0 to 100, The average accuracy of
clustering results increases as @ increases at {irst until it reaches a peak point and then begins to decrease, but still

remaining superior to hard algorithm. There is a dramatic drop at =50 and reaches the lowest point at a=60 after

which it remains unchanged. The reason is that lim Erl—]=0 then lim w;,-=%. i.e. » the difference of member-
g p o @ a-st
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ship of an object 1o all clusters tends to become zero when a is large enough unless it is equal to one of the proto-
types. In fact we find the maximum membership of most objects is very close to 1/ when @ is more than 20. In
such case, most objects have similar membership to all prototypes so that the dissimilarity loses its meaning. At
large a, the algorithm converges rapidly to a local optimal solution and has no opportunity to find a better solution.
An enlargement of Fig. 2 for @ changing from 1.0 to 8. 0 is shown in Fig. 3. It shows fuzzy algorithm reaches the
best average accuracy at a=4. 0. We also notice from Fig. 4 the iteration number decreases as « increases. Fig. 5
depicts the distribution of accuracy at different fuzzy parameters for 100 runs on DS1. Fig. 5 describes the details of

aceuracy at different fuzzy parameters for 100 runs on DS3.

90

=3
o

=

Accuracy (%)
®

;
b

Iteration number

70 F - s : - :

65 B . ] | \¢ .o é

60 LR P L 0 i i i i L A PR R, S ier S |
LO 1L 15 1.8 20 25 30 3.5 4.0 50 60 7.0 &0 1O 11 15 1.8 20 3.0 40 50 60 7.0 80 90 100

Fuszy pan Fuzzy paramete

Fig. 1 Iteration number vs fuzzy parameter (DS1)

Run umes

Accuracy (%)
O1T@E110203@40O5@6 07 M8 @I O00O11 W12 W13

Fig. 5 Accuracy vs fuzzy parameter (DS3)

2.4 Effect of cluster size

As we know, k-means algorithms work well on clusters of spherical shape and similar size because they repre-
sent a cluster as its mean and assign an object to its nearest mean. For clusters of variant sizes. they may not dis-
tinguish small and big clusters by splitting the bigger one while merging the smaller ones, which decreases the ac-
curacy of clustering. Is fuzzy &-prototypes algorithm sensitive to the variance of cluster size as £-means algorithms?
In order to test the impact of cluster sizes on the accuracy of clustering, we generate a subset database by extract-
ing 20 instances from 5 big clusters respectively from DS2. As the first experiment, we run 100 times on the origi-
nal database and subset database, using a set of random initia! prototypes in cach run. The results in Fig. 6 show
that the average accuracy of clustering on subset database is better than that of the original database at each param-

eter. Figure 7 shows the change of iteration number with respect to a.
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Effect of weight parameter

e of fuzzy k-prototypes algorithm is the ability of dealing with mixed numeric and cate-

gorical valued data. We perform the algorithm on DS3 and DS4 using different wvalues of 7. For the two databases,

(

we first normalize the numeric attributes 1o the range of [0,1

best accuracy when 7

From Figs. 8 and 9,

1. 1 for both databases.

Accuracy (%)

70 p-

n " i L L L i " i " " L

1120 30 40 S0 60 70 8O 90 100 110 120 130
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Fig. 8 Accuracy vs fuzzy parameter (DSs)

© hERREEB AR

we find the algorithm gets the

——-05

——11

—+—15
—4—19

http:// www. jos. org. cn



BT F . 8EAFH %A RAHIEGHEM K-Prototypes B £k i 1117

€

Pl

8

3

2 ——0.5
....”......1
— 1.1
s sl )

i i L SRl

10 1.1 20 30 40 50 60 70 80 90 100 11.0 120 13.0
Fuzzy parameter
Fig. 9 Accuracy vs fuzzy parameter (1DS4)
2.6 Dealing with missing data
In real database, there are usually some missing data because some data are not captured or available. In Ref.
[1], the missing data on categorical attributes take part in the computation of membership matrix as a value of the
domain, which is reasonable when the number of missing values on one attribute is much lower than other values.
And it can not deal with missing data on numeric attributes. In our algorithm, we adopt three strategies to deal
with missing data.
Strategy 1. Delete the objects containing missing values on at least one attribute and perform clustering on the
remainder objects.
Strategy 2. Replace missing values on categorical attributes with the value which appears most frequently in
the overall database, and replace missing values on numeric attributes with the average value.
Strategy 3. Regard the missing value as a special value. In the calculation of membership matrix, missing val-
ues represented by ‘27 are regarded as equal to any other value of the attribute, 1. e.,
8(a,?)=0 ¥ x€Dom(A)), p+1
d(x,?)=0, ¥ x€Dom(A)), 1<j="p

—

The objects containing missing values on A, as well as their mem-

berships do not contribute to the computation of prototypes on A,.

The first two strategies can be accomplished in a pre-processing step before the clustering procedure, and the
third strategy is implemented during the clustering procedure. We carry out our algorithm on DS54 using the three
strategies respectively at ¥=1.1 and compare their performances. In the {irst method, we get 653 instances after
deleting the instances containing missing value. As shown in Fig. 10, the third strategy has the best accuracy com-
pared with the other two strategies. Besides, it is the most efficient one because the extra preprocessing is saved.
Strategy 1 gets the worst result because it keeps the objects out of the compuration even if missing data exist in on-
ly one attribute.

2.7 Quality evaluation

The purpose of clustering is to group similar objects into clusters and separate dissimilar objects into different
clusters. We give a criterion to evaluate the quality of clustering.

Definition 3. Let C={C,,C;,....C:} be a clustering of a data set D). The quality of a cluster (; is defined as

the average membership of objects which belong to it with the maximum degree, that is Qua ((,) =

E (rwy; |y =y, 155h<Ch)
i=1

[z [wr Swons 1hk, 1<) | Quality of C is defined as the average quality of all clusters, i.e. Qua (C)=
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Fig. 10 Accuracy vs fuzzy parameter (DS1)

‘nh |+ we have 0<SQua(C)<<1, then 0<C

oy . | S h<k

"
Since Z} Gy | = s 1<Sh<BEY< | {2, 2wy,

;
Qua(C)<C1. The larger the quality of a cluster is, the nearer is an object 1o the cluster prototype it belongs to,
and farther 10 other prototypes. Similarly, the larger the quality of a clustering is. the more compact and separated
the set of clusters is, indicating the better clustering result. The quality can be used as the criteria to determine the

appropriate numbers of clusters.

3 Conclusion

Fuzzy set theory in particular is more and more frequently used in expert systems because of its simplicity and
similarity to human reasoning. In this paper. we introduce a fuzzy %-prototypes algorithm combining the fuzzy
paradigm on both numeric and categorical valued data. Experiments on real databases have shown the fuzzy algo-
rithm is more effective on discovering clusters than hard algorithm. The contributions of the paper include:

* Present a fuzzy algorithm capable of dealing with mixed numeric and categorical valued data;

« Discuss the impact of fuzzy parameter and initial prototypes on clustering accuracy;

+ Evaluate the quality of clustering results and discuss the relation hetween quality and cluster number;
+ Extend the algorithm to handle missing data,

In future work, we will try to give a proof of the convergence in finite iterations for fuzzy A-prototypes algo-
rithm. In our algorithm. ¥ acts equally on all categorical valued attributes. Since attributes in databases usually

have different relevances. we also suggest to give different weights for cach attribute and extend the fuzzy

paradigm to weighted dissimilarity function.
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