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Abstract . In this paper, based 02 :he mass-assignment theory proposed by J. F. Baldwin e al. , the new
mass-assignment-based fuzzy CMAC is presented. Accordingly, i1s learning rules are also investigated. The the-
oretical research results reveal that this new mass-assignment-bascd fuzzy CMAC is a universal epproximator.,
and has its learning convergence. Therefore . this new fuzzy CMAC has very important potentizls nl applications.
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Fuzzy CMAC, as the extension of CMAC presented by Dr. Albus, has been absrracting more and more schol-
ars and obtaining more and mare applications!' ™" In Ref. [37, based on fr. fyv. we presented a generalized fuzay
CMAC, and then proved its learning convergence, Generalized fuzay CMAC is so far the most general extension of
fuzzy CMAC.

Recently, }. F. Baldwin ¢z of. developed mass-assignment theoryl), and obtained many excellent applications.

- This theory is a very effective tool for processing uncertainties. When we attempt 1o combine it with multilayer
fuzzy neural networks, some difficulties oscur due to 1he exislence of the reordering procedures in least premdiced
distributions of this theory. However, can we combine this theory with fuzey CMACY The answer is certain., In
this paper, we will extead the theory to fuzzy CMAC naturally and firther present the new mass-assignment-hased
fuzzy CMAC. In this new fuzzy CMAC. it adopts a new overall mapping funetion which is cornpletely differem
from that w generalized fuzzy CMAC. Thus, this new fuzzy CMAC represents another family of fuzay CMACS.
that is 10 say. it cannot be included in generalized fuzzy CMACs. Decause of its universal approximation capability

and its learning convergenee. it will have very good application potentials.
1 Mass-Assignment-Based Fuzzy CMAC

Mass-assignment theory-'* consists of many concepts including the definition of mass assignment, voting wod-
ely support pairs. point/interval value semantic unifications, and least prejudiced distribution. Here, we give tha

fullowing conceprs which will be used in this paper.
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Suppose A is a fuzzy set defined on the discrete domain {a sdas». .. a.}:
A=A/ e A a1 . .0 | A,
where A carresponds to the membership value of the element g and A A4, then the corresponding mass assign-
ment i ;
Haivownb A=A 0 1—0 ) with Ay =0

By redistributing the mass assignment with 2 group of elements equally among those elaments, we get its least
prejudiced distribution which is a probability distribution;

ar: =i+ (=AY 2 (L—AN/3 1 .. 4 A e (1= )/n

i (A~ a3 )/ 2+ (A—A0/3+.., +Am+ (1= /n

as: (=40 /3. .+ 4 /mt (=4 /R

Zuida/nt (1—A) /n
For example, suppose fuzzy set A=0.8/2+0, 7/0—0. 3/c+ then its mass assignment is; {a}:0. 4. {2.6}:0.4,
{aebsct:0.3. 27.0.2, thus, we may ger its lzast prejudiced distribution;
;0. 1-40.24-0.14+0.2/3—0. 4-+0. 2/3
6:0024+0.110.2/3=0.3 . 2/3
¢:0.140.2/3
Now, let us describe the new mass-assignment-based fuzzy CMAC as follows, The architecture of this new
fuzzy CMAL is shown in Fig. 1. In Fig. 1, all the membership functions take the form of Gaussian functions exp
(—(x—m)*/e). Asshownin Fig. 1, this new fuzzy CMAC inherits the preferred feamres of learning and parallel
processing fram conventional CMAC, and the capability of acquiring and incorporating human knowledge into a
system and the capability of processing information based on lussy icferences from fuzzy logic. The combination of

CMAC, fuzzy logic and mass-assignment theory yields an advanced intelligent system architecture.,
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Fig. 1

At the input stage, the fuzay CMAC uses the same fuzzification method as that ir fuzzy logic controller to zet
its input encoding scheme. Fuzzy rules can be assigned 10 each associative memory cell, Thesc rules may not neess-
sarlly have a crisp consequent part. The output generation uses the overall mapping function which is based on
mass-assigrment theory. Suppose i, is the number of knot points (I'ig. 1) on the ith input dimension, j, =1,
Zy..ovmmys Then there are M weights v, (p=1,2,. ... , ) which will be chosen ta get the overall ourput. M= jy, if
N—=1i M= dor N>1./=1,24...,]N. From Fig. 1, we know thal suppose g {2} is & Gaussian membership

function, we can define ¢, () =g () ¥ poplan) % .. % g Cirn) as a fuzzy basis function, where j (includ-

N N

ing the following similar representations) denotes j, and . is the sth input vector. Since there ate NV * Em,nm

=1 FEY
M

fusey membership functions in fuzey encoding, as shown in Fig. 1, we can get Nh= H m; fuzsy basis funcrions . i.
=1
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e p—1.2.... . Nh.
Let a/=|a.1+2.20. - - 1a,.v ] denote a selection vector of fuzzy basis functions which has M 1’s, and we define
tke possibility of taking v as a..c.(x.), i.e.,
vy tiks, 101 (o)
T sty nCe (T,)
U+ s, NAC 4 25 )
Thus, we can construct a fuzzy set;
as e () /oy tran e () vt o 0 Fa v () fo,
For simplicity, we assume a,..¢,(5,) > =a, 05 (£, )7>=. .. > =a, yucan(2,). As stated previously, we may get the
carresponding lezst prejudiced distribution .
v spr=aam {r ) — a0 () Capges () —an oy (21 /24 (a0, (e ) —
a1 /3t s —an e S Ny — a0 (e ) 3N,
vrepe== (a, 002 () —a, a0 Ca ) M 24 Ca, aes ) —ae el (e )V /34 .0+
aomnem () /Ny + (1 —a,,0,(x))/ Nh
Vst pa= Caeacs () — a0 (2 1/ 34 0 Facvem () INEH(1—a.160(2) ) /Nh-

Own: s =, macm (2, ) INR+H (1 —a, 10, Ca )Y/ NA
MNote; p1+pz- ... | prn=1. Sos the overall mapping function of this new fuzzy CMAC can be defired as
i—1
Nl
= %: bithi (1

We should note that in generslized fuzey CMAC, the overall mapping function is
Hiy

Y= Ea,,‘ci(x,)v;/a,.;c; (x.) 23

i1
Hence, Eq. (1) is different from Eq. {2). Thus, mass-assignment-based fuzzy CMAC is a new model of CMAC.
When implementing this new fuzzy CMAC. we should note, since the value a..c:{z,) is indeterministic, we must

reorder them every time to get p.. It can easily be done.
2  Mass-Assignment-Based Fuzzy CMAC as a Universal Approximator

In this section, we will prove a very good characteristic of mass-assignment-based CMAC, thet is, it is a uni-
versal approximator, namely, it can approximate any given real continuous function on & compact domain to arbi-
trary accuracy.

Theorem 1), If the basis functions f;(x) are differentiable in arbitrary order, then their linear combination

N h . . . -
Zaw: f,(x)is a universal approximator, where w, is a real coetficient.
Now, let us apply the above theorem to prove Theorem 2.
Theorem 2. Mass-assignment-based fuzzy CMAC is a universal approximator.

Proof. In terms of Eq. (1), the overall outpur of mass-assignment-based fuzzy CMAC is

i
= Z; bivi

where p; is the probability in the least prejudiced dismribution, and g, is the linear combination of a0, () (G=1,

2.... NA). Because ¢, (x,?} is the multiplication of Gaussian membership functions, then

o ifa,,=0

ty k) = { )
o) if e, =1
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Nk
thus, = le,v,- is also the linear combination of the multiplications of Gaussian membership functions. Because
the multiplication function of Gaussian membership funcuiuns can easily be proved to be differentiable in arbitrary

order, in terms of Theorem 1, this theorem vbviously holds, i.e., this fuzey CMAC is a universal approximator.
3 The Learning Rule and Its Convergence of Mass- Assignment-Based Fuzzy CMAC

In this section, we will first derive the learning rule of mass-assignment-based fuzzy CMAC, Uzen prove that
it has the learning convergence.
Suppose given input x,,Y, is the actual output. we choose the least square error function
e=(Y.—y,)/2
then the learning rule of this new fuzzy CMAC is as follows :
i
Au= Ya/d =T (Y~ y)inda =TV sdp=? (Y. Dpe) p (3)
pry
where ¥ is the learning rate,
In the following, we investigate the convergence problem of the sbove learning rule. In terms of Eq. (1), we
can re-express it into y=Buv, where B=(5,), x which is bounded, i. e. , all elements are bounded in terms of the

definitions of p;; v="_(2y,0z,... voss?". Given the real cutpur ¥ for inpur vector x, rthe learning rule is

Nk
Av=Y(y" (@)= D buv.) by (4
=t
where ¥ is the learning rate.
Cumpaniug (4) with (3}, we have
Y.=x3"(x,)
bie=pa

MA
yr)= ;: b
From the above analysis, we derive that in order to prove that the learning rule (3) has the learning convergence,
we only need to prove that (4) has the learning convergence,

We define v as the vector of weights before the sth sample is presented in the ith iteration of learningy N, de-
notes the number of samples. We consider the case that a set of IV, training data is repeatedly presented to the
learning rule.

With (4), we have

vl =vl + ey :v-sl—)] +y(_)’i'~1—3‘—17-’!“—)1)(57‘n REPI 1!7‘1?\‘1‘!:)7‘
='L':i)l+7(y;'71—B._,v,('_)1)R,.‘l )
where R = (5 1. .. &5}, With (5), the difference in the vector = between two consecutive iterations i and
i+1is calculated as
Dol =g+ =gl +Aﬂfﬁﬁl:v— (2A2 4 Awil,
=D’U,"—)1 +7(y:'_1~8‘,,1t'f'_'1” )er 1 T(yri 1 7Br—1z/‘;i?1)R;—l =(F— YBfflR,_ 1)D’UEB1

where I is the identity matrix. We define Duf” =D, J(xy) — [ (xn,). For simplicity, we define £,_, = (E—

(&)

YB, |R.. ), which is a bounded function about z,. Thus, wc have
Dui?=E,_ By o . E\Dvl = (E._\E,y. . . E\Enee . ENDeE™Y
=, E s  E Ey o B D0
Define F, - (E_1Eg .. E\Enee -« E,) then Fi—(E, Ly oo E\Enee .+ E,)'. Pleuse note that Do’ is the sccumula-

(7

tion of Am. nzmely
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DZ [03] _A,Ufu) _|_A,U(0) +AUU”+A'U(U) + 7A,v(t) (8)
Theorem 3. The learning rule (4} (i, e, , (3} has the learning convergence if the number of iterations ap-
proaches infinity and the learning rate approaches 0.

Proof. 1In terms of (6), we have

‘
-y

,{,u- ”S=DJ,")+U,“):D‘L'_;(')‘l’DU;(HD+'lr';"_l)=DUf”+D'Uf'_“+. . +D'U,(U+.D'U§m: ZJDUEk'Ff+U§u)
k=0

Because v} — Avi" 4. | + A0 +0f, in rerms of (8), we further have
‘.1
B = 20 (A A, AP O+ L Fr
=0

11
= YL — B MR (i Bt B .+ Gt Bl R
(v~ B IR .+ — B o R DAV L At ol

e L)’F‘ [ Z}; Ri—Bv"R,—B vy R_ | —Byvi’ Ry, —B,v\"R,—. .. 78,,1'053’}&..1]”

i~o
i+ (=B IR A+ . i B VIR, Y

= ,Z_;YFf[ iyi R—Bo"R,— B, wSR,_,—ByvP Ry~ Biv{"R,—. .. —B,_ v\ R, | =l +0(1) (§)

l.et us observe; -
BwiVR; =8;(vil | AvfV ) R=B (e +av'” +... TAuil + A —... + AP R,
=Bu{"R;+0(Yu)
where 7;is bounded. Similarly, we have
Byi“R, =5, (02 +A*y DR,=RB, !+ A" +.. LAY R,
—BuR, O,

where v, is also bounded. Thus, from (8), we have

+ Ns
limy . olim, .ol =limy dim, .. { 3 YF[ 3 (" — Bl )R A0, )+ 07 |42 +0(0) )
k=0 i=1

N
’ Do — B RO ) + '

=limyelim e YIE—F )71 1 +u 0 Qo)

[olec™™
Because
N
vy )
F,G:E!—IE[—E- - E]EN,- - EJ:E‘“),;{B[RJ+O(YL) (11)

Therefore , substituting (11) into (10), we obtain

Ne N
Litny- ol 2 =limpolim.. { { E BR,) T 3 —BalRAOTu) +000) |+o0 +00) |
=1

-(3

N
Lt . . -1
I'his means that the learning rule has the learning convergence, and converges to ( EB,R;] »' Ry thercfore,
=1

M?

R ) IY‘(J;;R}

L]

this theorem holds,

4 Conclusion

In this paper, we present a novel mass-assignment based fuzzy CMAC scheme. Mass-assigninent theory can

be naturally combined with fuzzy CMAC. We proved that mass-assignment-based fuzzy CMAC is a universal ap-
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proximator and has the learning convergence. These imporiant properties provide a solid foundation for its wide

application potential. Further research work is how to compare this new fuzzy CMAC with other fuzzy CMAC or
other CMAC, etc.
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