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Abstract . Clustering of transactions can find potential useful patterns 1o ituprove the product profit. In this
paper, a two-step clustering algorithm——- CATT) is propased, applicable in large transaction databases. First,
the database is divided into partiticns in which transsctions are partially clustered into a number of subclusters
A hierarchical clustering algorithm is used to control the distance between these subclusters. In the global clus-
tering, @ k-medoids clustering algorithm is performed oo the subclusters to get a set of £ global clusters and iden-
tify noise. The algarithm is feasible for large darabases hecause it only seans the original databases once and the
clustering process can be performed in main memory due to the partitioning scheme and the support vector repre-
sentative of subclusters.

Key words: data mining: clustering: singie linkage

In a given transaction databasce, each transaction contains 2 set of items purchased by the customer. Clusters
of customers with similar purchase parterns can be used to characterize the different customer groups. and these
characterizations are useful in targeted marketing and adverrising such that specific products are directed towards
specific customers based on their profiles. Similarly . Web-based organizations often generate and collect large vol-
umes of data in their daily operstions. Such information is generzlly gathered automatically by Web servers and
collected in access logs. The access log is transformed into & transaction database. Clustering of client transactions
can be used to dynamically present users with customized information or with targeted advertising. Clustering can
also be applied to group weh documents with similar term vector to improve the resource management and search
efficiency.

Recently . clustering has been recognized as a primary data mining method for knowledge discovery in spatial
databases. Various methods have been studied in considerable detail. Most previous work in clustering focused on
numeric data whose inherent geometric propertics can be exploited to naturally define distance [unctivas between
points. But seldom was it focused on transaction databases in which the attributes are binary type. A simple

spproach of transforming the tramsaction dawabase into a high-dimensional data space is rot feasible because 2
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transaction database always comtains hundreds even thousands of itlems su thai the dimensionality of the truns-
formed database is very large. As we know, most clustering algorithms for low-dimensional databases do not work
well for high-dimensional database due ta the curse of dimensicnality™’. In reality, transaction databases usually
coRtain gigabyies, iembytes, or petabyies of daia. The huge size of databascs requires efficient and effective data
access. It also ohligates methods to seale up clustering. Clusteting algorithms should he fast. scale well with the
database growth. Partitioning is an effective method for large databases. T'he partitioning scheme is employec to
ensure that the input set to clustering algorithm is always in main memory though the databasc cannot fit in memo-
ry. If the partition size is chosen to be smaller than the main memory size, then the input data for clustering zre al-
ways main memory resident.

Reference [2] discusses the similarity measures for large transaction databases. Rederence [3] maps the rela-
tionship among items into a weighed hypergraph. Although the item clustering result can be used to cluster trans-
actions, it is based on the results of the former. It makes an assumption that the item clusters have no overlap a-
mong them. This may not be true in practice since transactions in different clusters may have a few common items.
Reference [ 4] first proposes the idea of partially clustering with each partition achieving a set of preclustering
schemes. The preclustering algorithm is incremental and scans the entire data set. CURE™ [irst partitions the
sample into p partitions. then partially clusters each partition until the final namber of clusrers in each partition re-
duces to a given value. A cluslering pass is run on the partial clusters for all the partitions resulted from the first
pass. The problem is the suitable sumber of clusters in each partition may be much diverse because of the different
distributions of different partitions. Tf a partition eontains points from all clusters, the suitable value of partal
clusters should be large. On tae contrary, if & partition contains points from limited clusters, the suitable value of
partial clusters should be smal.. We must ensure that the number of partial clusters for cach partition is sufficient
ly large compared with the number of desired clusters so that even though each partiticn contains fewer points from
each cluster, the closest points merged in each partition generally belong 10 the same cluster and do not span across
clusters. Thus, it can ensure that partitioning does not adversely impact clustering quality. To avoid storing all the
points in clusters for the second pass, CURE stores only the representative points for cach cluster input to the sec-
ond pass hecause it relies on the representative points for each cluster. Thus it reduces the input size for the second
clustering pess and ensures that it fits in the main memory. However, the generation of representative points relies
cn veetor operations and therefore cannot be used in transaction databases.

Tu this paper, we focus un transactivn clustering fur transzction databases. We present a two-step algerithm
for clustering trznsactions of similar purchase patterns. We first divide the original database into a number of parti-
tions each of which can be stored in memory, Oune partition is read onee a time and the transactions in the partition
are partially clustered into a variety of subclusters using a hierarchiczal agglomerative clustering algorithm. The dis-
tance between transactions is defined as the Jaccard coefficient and the distance between clusters is definad as single
linkage. A maximum distance threshold is used as the termination condition and different numbers of subclusters
can be obtained from different partitions. In the procedure s the statistical information of subclusters is acoumulated
simulraneously. A support vector can e generated from every subcluster at the end of the partial clustering. It
contains the support values of all items and represents the distribution of items in the subset. In the multidimen-
sional space of the support vectors, a global clustering puss is performed on the subclusrers and a set of & clusters
is generated. As the suppart vectar space is non-coordinate, some operations such as addition, subtraction of vec-
tors ., and getting mezn of a cluster to form condensed representations of clusters and o reduce the rime and space
requirements of clustering problem lose their meaning. We adopt a #-medoids algorithm on the subclusters in
which only distance operation is used. Experiments demonstrate that our algorithm is feasible for large databases.

The rest of the paper is orgauized as lollows: In Section 1, we present a two-step algorithm for clustering
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transactions. Some experimental results are shown in Section 2 and Section 3 concludes the paper.
1 Algorithm Description

In this section, we propose a two-step clustering on transactions. We first introduce the overview of our algo-
rithm,s alter that a detailed description of each step and the time and space complexity analysis are given. The
overview of our algorithm is seen in Fig. 1.

Problem Statement : Input trensaction data

Input: A transaction database D=1{T1,Tz,... T~} and a setof items /' [[5vide the databise into partifions |

={i|siyser. i) present in D.

Assipn a maximum distance

Output; A clustering of C={C,,C;,...,Cs, Noise’, where C; is a set threshold between subclusters

. . - , . . _
of transactions, satisiving C, U ... UC:UNoise=0 and ¥ C,.C, 2 C,C [ Readygnc pertition onee time |
ne,—2.

1.1 Overview: clustering algorithm for large transaction databases (CATD)

i Perferm partiel clustering |

Step 1. Partitioning: Divide the transaction database I into p parti- ] Generate support vectors |

tions: {Dy:D;s... 200, ). A large number of partitions need more time on da- /{//ﬁ““?\‘
) 3 . L. = s there unread partitiong >~

ta reading and too small number will make some partitions not fit in meme- ——
ry. In general, the more transactions are contained in the datzbase and aver- No | Yes :

i s . i [ Data transformation |
age 1tems in transactions, the more partitions are necessary. We can deter-
mine a suitable threshold for partitions aceording to the sizc of datebases and | Perform_global_clustering I
main memory. Qutput clusters and noise

Step 2. Partial clustering: Read each partitien D, GG=1,... ,1) ia turn Fig. 1 Okerview of CATD

and perform partial clustering for the partition. The support vector of each
subcluster is also calculated as its representative. Assuming the number of subclusters in D.is n, the result of lo-
cal clustering in I} is a set of subclusterss {7,050 0.0 100

Step 3. Data transformation; After every partition 1s processeds the whele database D) is primarily partitioned

-3
into a set of subclusters {I,.1.... 1.} where n= %}]n;. Each subcluster is mapped into a vector in the trans-
formed database with the items as the set of atiributes.

Step 4. Global clustering ; The distance between two subclusters is defined as the metric distance of their sup-
port vectors. We use a modified CLARANS algorithm on the subclusters and get a set of & clusters. Each cluster
can be characterized as the support vector of the medoid.

1.2 Partial clustering

Definition 1. Diven two transactions 7', and 7",, the distance between them is defined as the Jaccard coeffi-

N7,
|7, U7,

The definition has the following properties .

(1) Value region: dist(7,,T,;)€ [0,1]

(2) Reflexive: dist(T;,7;)=0i{ T"="T,

(3) Symmetric: dist(T%, 7Ty =dist(T;,T})

(4) Maximum value: dist (7., 7)=1if T\NT,=&

(5) Triangle property s dist (T, ,T;Y<dist (T, T ) +dist (T, T "

cient: dist{T;,T,3=1—

* A similar inequality is seen in Ref. [6].
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Definition 2. In a set of n transactions, 7', is called a nearest neighbor of T denoted as T,=NN{TH,if¥ ke
(17, dist (T, . T,0<dist (7, . T'4).

Definition 3. In a set of transections, T' and 7T ure called a nearest neighbor pair (NINP) if T:= NN (1 i)y and
Ti=NN(T,), thatis. ¥ £€ [1n_. dist (T, 7)< dist (7., 7)) and dise (T, 7T, )<Cdist (7, , 7% ).

Definition 4. Let C, and C; be two clusters of transactions, the distance hetween them is defined as the single
linkage distance, that is the minimum distance of the pair of individuals, where all pairs consisting of one individual
from each cluster are cansidered, i.e. , dist(C. YOy =mini{dist(r, 3| 7€, vE€C,}. Then Definition 2 and Defini.
tion 3 can be extended w clusters.

Definition 5. Tn a set of » clusters, ;s called a ncaresr neighbor of C; dencted as C;=NN{C), if ¥V 2€ 71,
n)s dist (C,C, ) <dist (C; 0D

Definition 6. In a set of clusters. C; and C; are cailed a nearest neighbor pair (INNPY HC=NN(C,), and C,=
NN(C:), thatis, ¥ A€ [1an]. dist (0 )50 dist (0, .€) and dist (C:, Ciosdist (G, C).

Ia this step, we use a hierarchical agglomerative clustering algonithm cn transactions in a partition. Consider-
ing the different distributions of transactions in different partitions, it is more reasonale o set the maximum dis-
tance as the common threshold then the number of subclusters for all partitions. The maximum diszznce of che
mrerged clusters is used as the terminetion condition and different numbers of subclusters can be obtained from dif-
ferent partitions. Thus, we obtain a small aumber of subclusters if the transactions are close Lo each other in a
partition, otherwise we get a large number of subclusters. We start with a disjained ser o clusters, placing each
transaction in an individual cluster. A heap @ is used to keep each cluster, its nearest neighbor, the minimum dis-
tance between them, the number of transactions. and the support vector in one entry (shown in Fig, 2). The en-
tries are arranged in the heap in the increasing order of the minimura distances. Fairs of clusters are then sicees.
sively merged until the distance of all clustwrs is more than a given maximum distance threshold; max_distance,
According to the definition of distance between rlusters, the nearest neighbor search is efficient. Assuming two
clusters » and © are merged, fot a non-merged cluster z. if its nearest neighbor is not w or v. it does not change.
Otherwise, its nearest neighbor changes to w while other information does not change. The nearest neighbor of
the new merged cluster can be got by comparing the distances hetween all other clusters. We stop merging sub-
clusters in a pactition if the distance between the nearest pairs of clusters to be merged next increases above max._
distance. In partial clustering, the statistical information such as the number of transactions and Lhe support count
of items . is accumulated in the process of merge. The support of an item is its support count divided by the number
of transactions. Thus, the support vector of each subcluster is gencrated at the end of local clustering procedure.
The choice of 2 suitable vaiue for max_ distance is important because a big value probably causes objects from dif-
terent clusters to belong to the same subcluster. On the contrary, a small vafue results in toc many subclusters to
be stared in the memory. At the beginning, « small value for max_distance threshold is used. If too many subclus-
ters are generated at the end, partial clustering will be repeated with a bigger max-distance until the number of
subclusters is small enough :har the global clustering can be processed in memory.

Struct CluatecInfo{
Clusterld: cluster number
Nearest; the nearest neighbor cluster
Minodist; the distance between the cluster and its nesrest neighbor
Number; the number of transactions in the cluster
Vector; the support vector
i
Fig-2 Duta structure of entry in heap

In traditional agglomerative clustering. the pair of clusters merged at each step i1s the ones between whick the

© HEFRES AT http:/ www. jos. org. cn



BT F A gt #Aa kit 479

distance is the minimum. Since only two clusters are merged in esch iteration, the number of clusters decreases by
one after each iteration. In our algorithm, the clusters merged at each step are the nearest neighbor pairs il the dis-
tance between them is no more than max_distance, Sinece each partition can be stored in memory , partial clustering
is processed very efficienily. The detail of the algc}rithlﬂl is given in Fig. 3.

Procedure Partial-Clustering ()
Input: L0 = {T Tis... T} a pactition of 17,
max -distance; the maximum distance between two merged subclusters;

Chugput: a set of subalusters, {7, 7.,. .. 7.}

{Initialize ; C'={€3|1<i=in}, C.=~{#}; // place each transaction in a cluster
Fur each ;€ do

{FindNearest(C;); // find the nearest neighhor for each eluster in
Assign €., vector: {v.mpe. . . v Du b ={0,0....,0);
For each item coniained iz C; do
Add 1 to the corresponding bit of (. vector;
Insert Q(C;. C: nearest, ;. mindist, 1. C;. vector):

}
u: =extract-first{Q3; // extract the pair of clusters with the minimum distance
mergedist ; =u, mindist;
While mergesimsitax . distance do {
// I the wminimumn distance is above the given threshold. the algorithm terminates.
For each € C da
v: = nearest(u);
I nearest (v} =2z and . mindistsimax_ distance then // exiract the nearest neighbor pairs
{w;=merge(u,v);

FindNearest(w); // calculate the nearest neighbor of the new cluster

w. number =€, number+ ;. number;

w. vector = Ci. vector+Cj. vector ;

Insert @ (w, tw. nearest, w. mindist, w. number, w. vector);

For all «&€C—{u, e} do

If x. nearest is either « or v then

Update Q(xr). nearest to w;

H
wr=extract first{Q); // extract the pair of clusters with the minimura distance
mergedist; =, mindist;

!
For each C. € C da Ci. vectar = . vector /€. number,

i
Procedure FindNearesi{C,u} // Find the nesrest neighbor of u in a set of clusters €
{mindizt; = +Infmity;
For all y€ C—u do |
dist: = +Infinity
Forall t€u, ¢ €v de

I dist (1,1 )<C dist then dist =dist(#,4' ),

h

I dist<Cmindist then {mincist; =dist; nearest,=uv; }

Return nearest, mindist;

?

Fig.3 Algerithm of partial clustering

Lemma 1. Assuming C and C; become NNP clusters at step k of partial clustering ana dist (T, ,C,) <Zmin_ dis-
tance . they will be merged at some step before the partisl clustering terminates.
Proof. First, the pair of clusters in the first entry of the heap @ is always NNP. If ., becomes the first en-

try of the heap Q at step &, that is the distance between €, and its nearest neighbor €, is minimuru, 1hen they must
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be NNP. Otherwise, we assume NN {C;)#C,, there exists a cluster (4, and £, satisfying dist (., ;) <dist
(C:,C,). Thus, C:should not be the first entry of @ at step % because dist{C;,C;) is not the minimum.

Next, we prove NNP is still NNP after some merge of other clusters. Assume C, and C, become NNP at step
%, that is L, is the nearest neighbor of C,, and C, is the ncarest neighbor of C,. Let B be a cluster merged by two
clusters B, and B; at step j, j=>k. Because we use single linkage as the distance measure between two clusters,
dist(C;» B)=min (dist(C;+8,), dist (., B2)). Since dist(C,»C)<dist (C,, By) and dist (C1.C,)<<dist(C.,B,) . then
dist (C;,C;)="dist (C:» BY. Thatis. C;=NN(C.). we also have C;=NN(C;). That is, C;and C,are still YNP clus-
ters in later steps. Because dist (C,,C;)<min. distance, C; and C; will be merged at a step. [l

Lemma 1 implies that we cen merge NNP clusters at the step in which thev appear no matter whether they are
the first entry of Q.

1.3 Glabal clustering

Definition 7. Let the support vector of subcluster I be V.= {v; svise. .. +7im )+ the distance between two clus-
ters I;and I;is defined as the metric distance between their support vectors. d(I:,1,)=d{V..V,), where the metric
distance satisfies .

(1) Value region: &(I,,1;)2=0

(2) Reflexive: (1, I;}=0iff for 1<i<m, vi=y,

(3) Symmerric: d(/;,1,)=dist(I;, 1)

Definition 8. Given two clusters Cpand C,(7¢), the intra-distance within €, is defined as the maximum dis-
tance between chjects and the medoid of C,. and inter-distance hetween (7, and (7, is defined as the distance hetween
two medoids. That is,

Intra-dist{(C,)= I;;é(d Cxiam,)

Inter diet (C, 0 Cy) — o Grray sy
A clustering C is perfectly clusterable if ¥ €, C,{p7¢). Inter-dist ((7,.C,) > Intra-dist ({7, and Inter-dist (C,.
Cy) 2> Intra-dist (). It means the distance between different clusters is always larger than maximum distance be-
tween cbjects within a cluster.

At the end of partial clustering, we calculate the support of items for subclusters. Thus, each subcluster is

represented by its support vector. The distance between subelusters is defined as the metric distance of the support
- Lip

vectors, The most popular metric distance is Minkowski metrics, defined as o, (v, v,) = [ Z Iﬂc.,.fv,ﬂ") ,
=

where »,. v, are two m-dimensional vectors. Its special forms include Euclidean distance (p=2) and Manhattan
distance (p=1). We perform a modified CLARANS algorithm on the subclusters and get & clusters. Inidally, an
arbitrary set of £ objects is set 10 be the current medaid-set and a fixed number of iterations are performed. In each
iteration . 2 random neighbor of the current medoid-set is got by changing one medoid to a non-medoid. The new
medoid-set is set to be the current node if it results in better clustering and the proecss is started agein. If the cur-
rent medoid-set has already been compared with the maximum number of the neighbors and is still of the lowest
cost, the current clustering produces a local optimum. If the local optimum is found, it starts with the new ran-
domly selected medoid-set in search for a new local optimum. Our algorithm is based on perfectly clusterable crite-
rion: if the inter-distance between two clusters is no more than the intra-distance within a cluster, the two clusters
should be merged. That is, if the distance between an object and its nearest medoid is no less than the minimum in-

ter-distance between the medoid and any other medoid . the object is identified as noise. The most commonly used

. . . Al
cost function is 2 2_4 d{x;ym:). The detall of the algorithm is given in Fig. <.

i=] .1"Eml
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Procedure Global-Clustering ()
Input: a set of subclusters; {f1,z2,... ;Jn} represented by their support vectors
Qutput; & clusters and noise
{
Initial numlocal and maxneighbors
i=1;: j=1;3
mincost = -+ Infinity ;
Select a random set of & medoids: {m,,mz,. . ;i from I to current;
For i=1 to nmmlocal do {
While js<imaxneighbor do {
Get a new set of medoids by changiag ore medoid of current to a non-medoid ;
If Cost (new)<(Cost (current) ther {set current to new; j=1;}
'
If j>>maxneighbor then
If Cost (current] < mincost then {mincost=cost; best=current;}
'
}
Procedure Costis)
Input: $: a set of medoids
Output: the cost of 5
{For p:=1 to k do{
max_dist (e, ; =+ Infiniry :
For g: =1 to % do
H dmgomg)<Zmax_diet(myp) then max_disi(m,) ; =dGmprmy);
}
Cost;=0;
For all objects x do
{Find the nearest medoid s, of «;
It d(x22:)<mna . dist (o, ) then
Assign x to
Else assign x 1o Noise;
Cost: =Cost+d{x,m;); [/calenlate the cast of clusters;
i
Return Cost,
H
Fig.4  Algorithm of glebal clustering
1.4 Compiexity analysis
Ler the number of transactions in database [} he N, the numbar of items be m and the partition number of 4
be p. Partial clustering algorithm is based on the nter-object distances and on finding the nearest neighbors o- ob-

jects, The time complexity is O(N?) at worst, and G(logN X N?) on the average if the number of data is NV, 3o
. - / N 2 N*

the average time complexity and the worst time complexity of one partition are Oi log % X ( %) ] and O( ;5—3)

respectively., Thus, the average tirme complexity and the worst time complexity of partial clustering are

N N? N? . . . L N o
Q| log ?X?] and O yo respectively. The space complexity of partial clustering is O[ —F'—ij since we store

the support vector for each cluster.
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In global clustering, the time complexity is (3(n*) where » is the number of subcluters resulted fror the par-
tial clustering. After partial clustering. the number of subclusters taking part in global clustering is much [ess than
that of the otiginal databases, So the efficiency of global clustering on subclusters is much higher than direct clus-
tering on the original database. The space complexity of global clustering is determined by the number of subclus
ters generated in partial clusteriag, By storing the support vector as representative for each cluster, we can ensure
the input data of global clustering fit in the main memory. Table 1 shows the time and space complexities of three
clustering algorithms. Obviouely, CATD has a clear advantage over others on disk 1/0.

Table 1 Complexity comparisan

Algorithrus Titme complexity (average) Space complexity
RINN-CLINK OQllogN X N QLMD
CLARANS OV QN
. 2 ? ;
CATD o[ lug -‘% ® N?+n-” o{‘ % X m ]

2 Performance

In this section, we carry out some experiments to evaluale the performance of CATID). We compare its perfor-
mance with hierarchical and partitional clustering because of the characteristica of transaction data. All the expen-
ments are performed on a Pentium 1T PC with 300MHZ, 2. 0G disk and 64M main memory.

2.1 Synthetic data

We first determine the numbers of transactions || and items |J|. The length of a transaction is derermined

by Poisson distribution with mean u equal to [T'|. The transaction is repeatedly assigned items from the item set
until the length of the transaction satisfies the generated length.

Table 2 Parzmeters

Parameters Description
D Number of transacticns
171 Number of items
|7 Average size of the transactions

2,2 Performance comparison

CATD is motivated by the need to reduce disk [/(). Obviously, it is superior 10 hierarchica. elusteting and
partitionsl clustering in rhis aspect. The larter two types of clustering need multiple iterations over the datzbase,
and the exact number depends on the convergence speed of the criterion function (partitional clustering) or the ter-
mination condition Chierarchical clustering). ln CATD, the partitions are chosen such thar all data structures can
be accommodated in the main memory, We process the entire database as a single partition for small database and
more partitions are chosen to guarantee each partition can be stered in memory as the size of database increases.

We study the performance of three clustering algorithms—— CATD, CLARANS, and RNN CLINK— by
varying the number of transactions from 10,000 te 100,000, The latter two algorithms are performed dirzctly on
original databaces using Jaccard coefficient as similarity measures. The number of partitions of CATD increases
from 1 w 10 with the size of database. The experimental results are shown in Fig..5. For amall datahase
(<Z50,000) CATD is superior to CLINK , but inferior 10 CLARANS. As the number of transactions increases, the
other two algorithms spend mote and more time on disk 1/0, while CATD keeps one scan of database and stores

the data in memory by inctreasing data partitions. Obvicusly, CATD is very suitable for large databases.
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Run time (s) lgg {E}Ln
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0
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—a— CLARANS
—&—RNN-CLINK

10 20 30 40 50 60 70 80 90 100
Number of transaction (000')

Fig. 5 Execution time comparison
3 Conclusion

Due to the very large number of transactions and high-dimensionality, traditional clustering algorithms are not
appropriate for transaction databases. In this paper, we study the problem of clustering in large transaction
databases. We present a two-step algorithm of clustering transactions. It first divides the database into partitions
in which transactions are partially clustered into subclusters in partial clustering. We do not predetermine a con-
stant number of partial clusters for each partition. Instead, we obtain a variety number of subclusters for a parti-
tion depending on the distribution of objects in it. We generate a support vector from every subcluster at the end of
the partial clustering. A support vector contains the support values of all items and represents the distribution of
items in the subset. In global clustering, a k-medoid clustering algorithm is performed on the subclusters. The
partitioning scheme ensures a primary clustering of transactions in main memory using only one scan of databases,
and the global clustering partitions the partial clusters into & clusters and identifies noise. In fact, the two-step
mechanism is not confined to transaction databases. Future work includes adopting the approach to clustering other

type of databases. We also plan to extend the algorithm to parallel and incremental environment.
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