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Abstract: Randomized algorithms are playing a more and more important role in computation because of
their simplicity and fastness. But sometimes the gooc performance of randomized algorithms does nat require
cumpletely independent random variables as their input. In this paper, a new randem algorithm is introduced
for the classical problem of estimating the cardinality of a union of sets, which only needs pair-wise indepen-
dent randowm input. This approach helps to reduce the random bits used in the algorithm. For fixed sccuracy
parameter € and conlidence parameter 8, the algorichm needs (3(:*?) random bits, much fewer than those of a
standard randomized algorithm O Glog M), And the running time bounds of the algorithm do not increase es-
sentially (G(flog M)+ where ¢ is thie nunber of sets and M is the maximal cardinality of an individual set),
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In reeent years,s the role of randomness in computation has become more and more dominant. Randomized
algorithms are often preferred for their somplicity and fastness. Generally, we can view a randomized algorithm
as a deterministic algorithm with two inputs: “true input” and “random input ™. As the “true input? is just the
same az any deterministic algorithm , randomized algori-hms need “real” random inputs to achicve good perfor-
mance. Also for this sake, it is commonly suggested that different executions of a randomized algorithm have
mutually independent random inputs, However, sometimes rendomized algorithms “behzve as well” if only “cer-
tain ” rather than “full” independence is satisfied, In such situations, we can gencrate random inputs from a
much smaller sample space which yields a saving in the number of the rendom bits uscd (we suppose random in-
puts are represented in binary form). This is imporrant because “real” random bits are hard (if not impessihle)
ta generate in actual machines. So the number of random bits uysed in an algorithm should be regarded as a kind
of cost ]ike time anel space which we expect to use as less as possible. In fact. there is a trade-off hetween ran-
domness and time in a randomized algorithm just as be:ween time and space. The problem was first raised by
Karp and Pippengert'l.

Reference [2] demonstrated a general method for constructing small sample space that satisfies certain
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rather than complete independence. And especially for & kind of so_called £_wise independence sample space,
we have explicit constructions in Refs. [ 3,4]. All these constructions play an important role in derandomization.

A series of random variables is said to be 2_wise independent if any £ of them are mutually independent.
An important special casc is pair- wise {#=2) independence, which has found many applications in computer
science, Ref. [5] is a comprehensive survey on this approach. Among them. Lubyl® showed a good example
that took advantage of pair_wise independence in converting parallel Monte Carlo algorithms into deterministic
ones.

Reference [7] presents another simple approach to generate pair_wise independent variables. In this paper,
we generalize the approach a bit to extract long pair_wisz independent random variables from a few completely
independent ones. Applying this to the Union of Sets problem, we get a random a.gorithm that has as good per-

formance but uses much fewer randem bits than those in Ref. [8].
1 A Simple Random Algorithm for the US Problem

In this section, we first present the US problem, Then we give a simple rancom algorithm for US problem
due to Ref. [8].

The US problem is to find the cardinality of a union of sets, which is a classical cornbinatorial enumeration
problem. There are a number of conerete problems which can be expressed as computing the cardinality™l. The

US problem’s classical solution is given by the principle of inclusion and exclusion:

5:US\U. .. US| = 27180 = 218081+ 25 108,085 .
where §,{(;=1,2,....t) are a series of sets.

When ¢ is very large the direct evaluation of the inclusior-exclusion sum is not practical since the number of
terms is 2—1. Now let us consider z randomized algorithm which produces an estimate of the cardinality of a
union of sets. This method requires three assumptions:

(1) Tt is “casy” to determine the cardinality of each set §;(which we suppose will be done in O(1) time);

(%) An element can be drawn at random from the uniform distribution over any vne of the sets {which we
suppose will be done in O{1) time);

€3> It is “emsy” to test whether a given element lies in a given set § (which we suppose will be done in
O¢log|S 1) time).

These conditions are often fulfilled in concrete examples of the US problem, like in DNF problem™,

Algorithm 1.

(1) Randomly choose a set §; with probability |.S; I/ 2 IS;1s
=1

(23 Uniformly choose an € 8 ;

{3) By testing the membership nf = in §;, determine cov(x)=1{{i|xE S} |;

() X 27 1S, feovCa,
In this al)gorithrn, we can compute covix) by testing x’s membership in each 5;.
And what does the output of this algorithm tell us? We have the followiag theorem:
Theorem'l. Let X be the random variable obtained by the above algorittm. E[XJ and s[X] represent the
expection and variance of X respectively. Then we have ELX]=|US8,| and a X P G—1 | US, 1
Proof.  Suppose LS. has m distinct elements x,+22+. .. +Tn. Then
E[X]= Z}; Prla, is chosenj( 2 |S,|/cov(z,—)) .

i=1
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Since Pr[x, is chesen] is exactly

covis;)

25 (IS, 1/ 18,1 = 1718, | =eovtzd/ 3 Isits

=1 =1

where §; (!=1,2,... ,cov(z)) are the sets which contain z, we obtain E[X]=m=1US:].

Now we consider ¢[ X ]. By the property of variance,

(X =E[X*]—E[XF= 2; [ 2 S, |/cov(r,)} *pr [x is chosen]— | LS, |?

i=1

. , n
2( IS N feoviad ) — 1US1P=( 218,10, Z}]ﬁ«:m(x.)—\us.lz
- - <

SE—-D U8

C

We can see now X is an unbiased estimator of the cardinality of the union of sets. Then we might estimate
[US:| by taking the average of N samples of the estimator X : Y= (X, +X,+... +Xx)/N, But how big would
N be to guarantee ¥ deviates much from | U S;| with “small” probability? To furmalize this, we introduce the
following definition :

A randomized algorithm A for combinatorial enumeration problems is called an ¢, 8-approximation algorithm

if for every instance [,

[leh—Aa]
D1 [ ch >f:|<3, (1

where C(f) is the correct solution and A(J) represents the solution produced by Algorithm A, Oftern, we refer
to such ¢ as accuracy parameter and & as confidence parameter.

With a routine calculation we can determine the least N to satisfy inequality (1).

Theorem 2. ™ Let X;, i=1,2,...,N, be the putputs of the N independent executions of Algorithm 1 znd
Y=(X+X:+... +X,)/N, then N=[4r&€ (2/83/¢* ] is sufficient to guzrantee

Pr (Y= LS/ US| =>NeJ<ld . {z)

To prove this, we need the following lemma, which is a generalization of the Chernoff bound. The proof is

similar to that of the Cherncff bound and the reader may refer to Ref. [$](p. 98).

Lemma 1. Let X,,X;:s... +Xn be independent random variables over interal [0,1], such that, for 1=0i=s

N N
N, E[X,]=p:,» where 0<_p;<_1. Then for X = ZX,-, p=E[X]= Ep,-. and any §2>0,
=1 1

Pr [X>(1+8&p]<F* (p,8),
and Pr [ X<<(1—8)p]<F (g3,

+ e T A —udt
where F' (u,4) |:(l+3)‘”"” » Fo{u,d1==exp 3 }

We note that for 0<C8<2e—1, F* (s, 8)<exp ( TEEY (Rel. [0, p. 7).

FProof (of Theorem 2). We now apply the above lemma to our problem. Let X', =X,/T", where T =

El |S;]. Tt is obvious that X';s are independent random variables over [0,1] and for all 1<<oN, ELX;]=|U
=
SA/Te1/,1].

Without loss of generality, suppose ¢<(1, then by Lemma 1

N
Pr [|Y— US| 1>l US| T=Pr [ | 23X, =NIUS /T | > (N|US|/T)]
i—1

KFHN|US /T O+F (N|US | /T,e<2 exp( % . LTS‘]
e
=2 exp( i-\t/( ]
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Since N=[4z1ln (2/8)/¢] is sufficient 1o guarantee Zexpl — Ne?/4t]< &, the proof is complete. 3
From here on, we will use Algorithm 1* to denote the algorithm whick just runs Algorithm 1 N={4tTn (2/
&3 /¢" ] times and takes the mean of the N outputs as its outpui. Clearly, Algorichm 1% is an ¢, 5-approximation

algorithm for the “union of sets” problem.
2 Pair_Wise Independence

lu the above algorithm, it is assumed 1hat all X.s are zompletelv independent. But what will happen if X:s
are only pair-wise independent?

Theorem 3, Let X, and ¥ be the randam variables described as above except that X; are only pair_ wise inde-
pendent, then N2> (:—1) /¢ suffices to satisfy (2).

Teo prove this, we need the following proposition™,

oy
“ -

Proposition 4. Suppose X;, i=1,2....,m, be pair_wise independent, thwn u[ E mX?:|= }_m[_x,—]?.
P i<

r=t
Proof (of Theorem 3). By the property of expectation and variance, we have

ElYT=E[X,]1=1US: and 6lY P=0_X, P/N<G— 1D US [B/N (hy Theorem 15.

Then Pr{|Y — US>l US T/ G US| /alY 102l (¢—1)/Ne<< 8, which is a natural result of the well-
known Chebyshev ineguality. M

Ore advantage of using pair— wise independent samples is that we need possibly sma'l sample size to achieve
ceriain approximation perfortmance with high probability,

Then to generaie N pair-wise independent samples, how many fully independent samples must we have?

Theorem 5. Let xi0i=1,2,... v, be independen! random variables unifermly distribured over Z,, where p
s o prime. Then y o=z +2;* ki iy j=1,20 0. 0ors k=0,1s. .. p— 1, are pair_wise independent variables

uniformly distributed over Z,, where the operations +, * are over Z,.

Proof.  First, for any y s end a€ 2, Prl s, =a =Pr lr.+z; k=a]=b§ Pr [a,=58]+ Prle+z, * £

=alz,=b]= ZZJ‘Pr [x;=#] Pr [z==a—kb]=1/p. S0, all ., are uniformly distributed over Z,.
bEZ,

Nuw consider 1wo random variables w ;4 and . They are pair - wise indepenent iff for any a,6€ Z,,
Prlyi oo =@ A iy, =01=Pr [y, .0, =21 * Prlw, 5, =6]==1/p% We prove this in four cases;

Case 1. ¢1=¢;, ji=j;and k%%;. Then

ERP

y

<
] is the unique scvlution of the lincar equation over Z,,

Pr [3”.-:1*1:“/‘J"y-fﬂz=5jﬂpf [.r.1+.r.,1 - élza/\;z;,er_(.;z by =é]=Pr [.L',-l:ff\a‘,l:a,’]:l/ng
1 A3 flx o
i 1 kzl ‘yJ =[b
Case 2, 1=/, ;% j,. Then

Pr [_)r'.' ok T f'\y,-,‘_,-rk::b,]:Pr [r,l‘f’-l’;] - k1=£1."\.1”;2+1,‘2 . k;'.:bl

1

where

Y . = - g =) Bym f gt
7(_L4Pl' [_r.,——c—l'Pr [.T,"diAJ‘;,,*dQ]“'_J(l/P)(l/P)*—l/P »
ez, = <

czZ
»
where &, and d; are the unigue solutions of the two cquations ¢-}-a » &y =a and ¢ | = » ka=p respectively.
Case 3. /1 74;, ji=4z. Then
Pr [Jﬂl wipky TR A Higeipety T 6H1=Pr [sr.l -Jr':».",-I v bi=a /\:r=:+x,-2 v kb, :b]

= ZPr [x;.=d] - Pr [3?,l=a—dfz1 /\.T.Z:t'}—a’.éd
dei,

= Z /P (X7 p*a=17p".
deZP
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Case 4. i,%1;, 5.7 ;- Then

Pr [ =af\y,2.j2,kz=b]=1)r [.T,l‘f‘.l‘q Chi=alx, tx, k0]
N

= 2y Pr [le=d1:| * Pr [1:_-1=d2] « Pr [.r,l=a—d,k1 A r,2=b—dzk2]
ddyE2,

107

&l
= :S;‘z 1/ p(L/ p) 1/ p ) =11 pt.
SISty

,
Here we get p ) pair_wise random variables from r {ully independent random variables.

Sor=[+v20—1)/ép]+1 is enough to generate at least (#—1) /<& pair_wise independent variables.

New we give a slightly changed algorithin employing the ubove idea.

Algorithm 2.

(1) Let p be a prime not less than Z |5;] and add a set with p— Z |S;| new elements which do not ap-
=1 11

pear in any other sets, ¢’ <413

(2 Let r=[v20¢ —1)/c6p]+1, uniformly and independently choose =€ 2,, i=1,2,... ry and compute
Vogar i =10 2eeeiry 5y A=00140.ssp—1;

(2) For all v, :do

begin

=1 i1 i
) ) 1
Let @ be the | wpe— E |S;] | th element of tae ith set, where Z |8, |y << }.4 [S; 13
i=1 i=1 j=:

Compute cov(x)=|{j|x € 5,}|;

»'_‘ fl
Xiwe L I8, Jeov{x)— p+ Z; |5 13
=1 i=

end;
4) X*—,; EX,;_;,*
r ivfok

(ZJ.p

It is easy to obtain from the construction of Algorithm 2 that.
Theorem 6. Algorithm 2 is an ¢.é-approximation algorithm.

Proof. Similar calculation to that in the proof of Theorem 1 shows E[X: ;)= | ) U &]. By Theorem 4
=iy

all yi ;4 are pair_wise independent. So all X, are pair wise independent unbiased estimators of | 1J §;
1=0

=g

. By

Thearem 2, estimator such as

7
‘ = p>(:—1)/cd is enough to ensure that Algorithm 2 is an «,8-approximation
i

algorithm. [
3 Analysis of the Algorithms

We now have a look at how many random bits are used in each algorithm. Let M—inaxygje [S; | then Al-
gorithm 17 uses
Nilog t+log My=[4s In(2/83/¢7 + log tM=00(log M) (1/e)*1In (1/8)3,
random bits. Algorithm 2 uses
rlog p— ([ V20 107edpd | 1) - log p=0G1(1/DV2(1/8)VE)
bits. For fixed < and &, as we can see here, Algorithm Z uses much fewer random bits (O0Y®)) than Algorithm
1" (O(og tM)).
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But what about the running time bounds? We suppose all arithmetic operations can be done in G(1) time.
Then in Algorithm 1*, the time 1o compute cov () is Olelog M). Sc we can bound its running time by Otlog M
« N wrich is QG*log M1/ 3 In (1/8) ).

-
New consider Algorithm 2. In step 2, computing all i ;4 nezds O((E) = prlog p)=0Clog p{1/e)(1/8))
Ume, coasidering that the computations are over Z,. In step 3. we need (J(¢} time to find x. To compute cov

{x). we can first determine c= | {j|2€ 8;,j=1.... ¢} ]. U 220, we know that x is in some sers among 54

j=1,2.....t, and not in 8, (with size p— Z [$;12, 80 cov(x)—c. Otherwise, cov(z) =1 because + must be
=1

m set 5¢(¢'=¢+1) and not n any other set. So O{log M) rime is enough to determine cov(x). Thus the total

runring time for step 31s O

.
‘}} P+ (Olog MI+O0WN =0 log M+123(1 /) (1/8)). And the running time

r
for step 4 is O(( ?f * pI=00GL/e)(1/FY). We can now cenclude that the time bound of Algorithm 2 is O((z

'
log p+:flog MI(1/)(1/8)). According to the resuit in number theory, there is a prime belween J}_; 15,1 and
2;; IS:] (£.2tM). Sa we can safely bound the running rime of Algorithm 2 by O (r » log (2M) +4%log MY {1/
A1 =0G0g M{1/<1(1/87). We conclude the above discassion by the jollowing result.

Theorem 7. Algorithm 2 uses Q(¢"?) random bits and runs in time G<log M for fixed scouracy and confi-
dence parameter ¢,8.

Surprisingly . Algorithm 2 doesn’t necessarily cnst more running time (which depends on ¢ and 8) than Al
gorithm 17 though it nceds fewer random biss, And for fixed accuracy and confidence parameter ¢ and 8, they

have the same hound U(r*log A7),
4 Further Discussions

Often, we view an ¢, §-approximation algorithm as a member of a family of approximation algorithms
{A.s}(e,872>0). Such a family of approximation algorithms is called a polynumial-time approximaticn scheme if
for all ¢ and &, the running time of A, ;is bounded by a polynomial time in n (the sizc of the instance)s (1/¢) and
In (1/8). We note that the approximation scheme related to Algorithm 1" is a polynomial-time approximstion
schema while that of Algorithm 2 is not, since (1/8) is nor bounded by any pelynomial in (In (1/6)). Is it an
inevitzble result of the introduction of pair- wise independence? We leave it as an open problem for furcher
research,

It is well. krown that the technique of pair - wise independence is a powerful tool in derandomization which
enables us to remaove {partly) randomaess from a randumised algorithm, Yet, we have nct made good use of
this technique enough in our algorithm because the number of the random hits used in cur algorithm is not
“small” if ¢ and d are considered. So it is narurul to think about using even fewer random bits in this algorithm,
And, if possible, 10 remove all the randomuess to get @ deterministic algorithm, These are also good open
problams,

In this paper. we take a classical combinatorial problem as an example (0 demonstrate the power of pair_
wise independence, Then,‘ is there any other applicetion problem as well as theoretical problem in which this
technique can be applied 10 remove partly the randomness inside? Ary new results releted to this are of great in-

terest 1o the authors.
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