ISSN1000-9825 Journal of Software % # % B 2000,11(61:711~-719

Building Hybrid Real-Time Systems in XYZ/E—Implemen-
tation of the Steam-Boiler Control Specification Problem’

YAN An' TANG Zhi-song”

I{Depattment of Computer Seience Drown University Providence RL 029122
?(Lahoratory of Computer Scicnce Institute of Software Chinese Academy of Sciences Beijing 100080)

E-mail: va@es. brown. edu

Absiract XYZ/E is 2 termporal logic sysrem as well as a programming language. The temporal logic lan-
guage XYZ/E can represent both ligh level and low level specifications in the same framework, so that the
specification and implementation of software systems are very convenient. A specification and an implementa-
tion of the Steam Boiler Control Specification Problem in XYZ/E is presented in this paper. A visual user in-
terface is also implemented,

Key words Temporal logic language, real-time hybrid system, specification. XY7/E.

XYZ is a scitware engineering system consisting of & temporal logic language XYZ/E and a ser of CASE
rools. The temporal logic language XYZ/E is based or Manna-Pnuli’s Linear Time Temporal Logie. It can rep-
resent both high level and low level specitications in the same frame work, so that the specificztion and imple-
mentetion of software systems are very convenient. XYZ/E is simple yet expressive encugh to be accepied by
engineere, Besides, the formal nature of this language makes it capable of programming verifications. The basic
command of XYZ/E (called conditional element or ce) is

LB=yARD@QANLB=x2) (1)
Here v and z are called definitional label and forward label of the ce respectively, “@* represents $0O (next
time} or <> (eventualiy)., R and @ are logic formula called condition part and action part respectively. More de-
tails abont XYZ/¥ please refer to Ref. [1].

Steam Boiler Control Specification Problem is raised in Ref. [2], which encourages & formal specification
and an implementation program to conteol the water level in a boiler. Safery property is the most impariant be-
cause the quantity of water has to be kept in a given range. Being tao law or tao high might lead to unexpected
destructions.

A steam-boiler system consists of a boiler, four pumps, four pump controllers, a valve and two sensors.
One sensor measures the quantity of water and the other measures the speed of the steam coming out of the boil-
er, There are also a message transmission system and zn operator disk. Our goal is 1o specify the behaviors of

the sicam-boiler and verily serme properties of the system in XYZ/E.

x This research is supported by the National Natural Science Foundation of China ([¥ § S # % £ &, No. 69673015).
YAN An was born in 1975. He received a B. S, degree in Computer Scieace [rom University of Scieace & Technology of China,
and a M, S. degree in computer science from Institute of Software at the Chinese Academy of Stiences and Brown University.
His research interests are programming language, Tezl-time systems. software engineering and cbject-oriented database.
TANG Zhi-seng was born in 1925, He is a professor, a doctorsl supervisor and a member of the Chinese Academy of Sciences.
His current resesrch areas include tempore. logic language. software engineering, CASE tools and software architecturs.

Manuscript received 1898-0%-04. accepted 1995-01-27.

© IR

CRAEFTTE hitp/ www. jos. org. cn

— 712 — Journal of Software M3 2000,11(8)

The steam-boiler system is safety-critical. The program must keep the water level in a given range. The
heiler needs to be stopped onee the water goes beyond emergency lines. The system should also be fault-toler-
ant. It is expected to maintain working even if some malfunctions occur in the physical units. Please refer to
Ref. [2] for a complete description of the steam-boiler problem.

In this paper, we present a specification and an implementation of the Steam Beiler Control Specification
Problem in XYZ/E. A visual user interface is also implemented for this purpose. There are also some closely re-
lated papers. Reference [3] discusses the stepwise specification and verification of the steam-boiler system. Ref-
erence [4] discusses the mathematic model, formal specification and verification of general hybrid systems in the

XYZ framework.
1 Architecture of the XYZ/Steam-Boiler System

To describe the steam hoiler system, we present a process for each physical unit to simulate its behaviors,
for example, the level process for LEVEL, the pump process for PUMPI-PUMP4. Anocther process is called
“control center”, which receives messages from the physical units, analyzes the received information, and trans-
rits messages to the physical units. Besides. a process called “clock” generates a CLOCK message every 5 sec-
onds to synchronize all the actions. The process “msg-center” serves to distribute messages within the process-
es. To simulate the events occurring on the physical units, for instance, a failure on LEVEL, we give another
process called “event” to communicate with the user interface. When vou click on the visual item which repre-
sents one of the physical units, such as the LEVEL, in the user interface, the event process will receive a mes-
sage from the interface. Then it will set the state of the LEVEL in the level process to be BROKEN. In the
next time cycle, the control center process will detect the failure by the odd behavior of the level process. All
the processes are running concurrently, and their relaticnship is shown in Fig. 1.

N message | I message | ™

Physical units Event process User interface

\\HJ - A .

message

L
™ message (™ deck (4 2
e

Message center Cortrol center Clock
messa
\ _ - _RL
Fig. 1 Architecture of the XYZ/Steam-Boiler system

In specification [orm :
LLB=S8TARTmain U <> ProgramRunning ¥V ProgramSiopped]
WHERE[
(ProgramRunning+
(ControlCenter Running A ClockRunning A EventRunning N\
SteamBRunning N Level Running A Pumpl Running N\ Pump2Running N
Pump3Running \ PumpdRunning N\ PumpCtril Running A
PumpCtri2Running A PumpCtri3Running A PumpCirldRunning A ValveRunning))
(ProgramStopped+
(LB=ST0OPmain ‘/\ ControlCenterStap A ClockStop /\
EventStop N SteamStop A\ LevelStop N PumplStop A
Pump2Stop N Pump3Step A PumpdStop I\ PumpCtri1Stop)\
PumpCtri2Stop A PumpCtri3Stop N PumpCtridStop \ ValveStop))
{(ControlCenter Running<~ControlCenter (state) eRunningStateSet))\

© hIEREY

SEAFIEII httped/ www. jos. org. cn

H% ¥ AXYZ/ETRRRAEM AR — RALRT L6 et — 713 —

(ControlCenter Running «—+ControlCenzer (state) eRunning StateSer) 1\
(SteamRunning+> Steam(state YeRunningStateSet) A

(LevelRunning > LovelCenter (stateYeRunningStateSet) A

(PumplRunning <+ Pump (stateyeRunningStateSet) A

CPump2Running<> Pump?2{state)eRunningSrateSet) /\

(Pump3Running++ Pump3 (state e RunningStateSet) A

(PumpdRunning<> Pump4 (state)eRunningStateSet) A

{PumpControll Running++ PumpControl (stateYeRunningStateSet) A
(PumpControl 2Running > PumpControl? (stateJeRunning StateSes) A
(PumpControl 3Running > PumpControl3{stateYeRunning StateSet) A
(PumpControld Running+> PumpControld (state e Running StateSet) A
(ValveRunning <V alve (state) e RunningStateSet))

(Clock Running<+Clock (state) =WORKING) A

(EventRunning+ Event (state) =WORKING) A

(ControiCenterStopsControlenter (state} = EMERGENCY _STOP A LBec=ST0P) A
(StearnSiop+Steam (state) = EMERGENCY . STOP A LBstearmn=STOFP)Y)

(LevelStop+> LevelCenter (state) = EMERGENCY _STOP A LBlevel —STOP) A
(Pump1Seop> Pumpl (state)= EMERGENCY _STOP A\ LBpump1=STOP) A
(PumpStop— Pump? (state)= EMERGENCY _STOP }\ LBpump2=STOP) A
(Pump3Stop>Pump3(state) = EMERGENCY .STOP A LBpump3=STOP) A
(Pump A Stop+> Pumpd (state)= EMERGENCY _STOP A LBpumps=STOP) A
{PumpControl 1Stop— PumpControl 1 {state) = EMERGENCY _STOP A LBpc1=8TOP)I A
CPumpControl 28top+> PumpControl 2 (state) = EMERGENCY . STOP A LBpe2=8TOP) \
(PumpControl 3Stop <> PumpControl 3(state) = EMERGENCY _STOP A LBpc3=STOF) A
(PumpControl4Stop+r PumpControld (state) = EMERGENCY _STOP)\ LBpcd=S8TOP) A
WValveStop—Valve (state) = EMERGENCY _STOP A LBvalve=STOF) A
(ClockStop—Clock (state) = EMERGENCY _STOP A LBclock=S8TOP) A

{(EventStop<> Kvent (state} = EMERGENCY _STOP A\ LBevent=STOPY

RunningStateSet = {INITTALIZATION , NORMAL ,DEGRADED .RESCUE)
|

d
Here we assume that,
LB=wmain_START A Pre-conditionl \ Pre-condition2 . . . A\ Pre-conditionk
0 <[Posi-conditionl ; Post-condition? i- .« s Post-conditionk]
WHERE({(LB= prus| _START N Pre-conditionl O <> Post-conditionl)
(LB=pros2 .START A Pre-condition2 & < Post-condition2)
(LB~ prosk-START N Pre-conditionk © <> Post-conditionk))
Prosl, pros2.... s prosk are processes which run concurrently.
This property is called decomposability. It will greatly reduce the complexity of specification and verifica-
tion. Further discussion of the decomposability of a parallel program can be found in Ref. [1].
In executable code.
LLB=8START $ OLB=1InitProcessName
LB =TInitProcessName 1
$ Cpumpl = pumppros A § Opump2 = pumppros A

KAFWFFOIT hitp:/ www. jos. org. cn

© 1]

— T4 - Journal of Software $HAFFI/ 2000,1106)

$ Opump3=pumppros i\ $ Opumpd = pumppros A

$ Opctrll = peirlpros N $ Opetrl 2= petripros A

§ Opetri3= perripros & $ Opctrld= petrlpros A

$ Osteam] =steampros N $ Qlevel 1 =levelpros \

$ Ovalvel =valvepros A $ Ocontrol _center| =control _center |\

$ Oclockl=clockpros . $ Oeventl =eventpros A

3 Omsg _centerl = msg_center \ $ OLB=run;

LB =runt ||

pumpl {1} (HINP/1|jy BCHN/ch. msgb pumpll(msg_centerbl, *) |ch_receive (conl. »)4
BCIIN fch_ pumpl msgbl(% ymsg_centerbl) ch_send (% ,con2));

pump? (1) (BINP/2|js %CHN/ch_msgh_pump?’ (msg . centerbl, *) |ch receivelconl, *);
BCHN/ch. pump?_msghl (% ymsg_centerbl) |ch- send{ * scon2));

petrll{l} (BINP/|j; %CHN/ch msgc_ petrill (msg_centercl, ¥) |ch_receive{conl, ¥);
GCHN fch_pctrll _msgel(# ymsg_centercl) |ch_send{ * ,con2));

steam] {1} { % CHN/ch_msgb_steam 1 (msg_centerbl, * ¥|ch.receive(conl, * J;
G CHN jeh_steam| _msgh(¥ ymsg..centerbl) |ch_send (* ,con2));

control_center {1} (% CHN /ch_msg _control_center| imsg_center], * Y |ch_receive(conl, %)3
ZCHN fch_contrel _center] _msg(+ ,msg_center) |ch_send { ¥ ,con2));

msg_center1 {1 (CHN jch_valvel _msg(valvel, ») |ch_valve_msg(conll, = ¥;
TCHN feh_clock] _msg{clockl. x) |ch_clock_msg{conl2, 1)];

LB=i20 $OLB=STOP .

2 The Overall Operation of the Control Center

2.1
“The program follows a cycle and a priori does not terminate. This aycle takes place each five seconds and
consists of the {ollowing actions . reception of messages coming from the physical units, analysis of the informa-
tion received, transmission of messages to the physical units. ”
[LB =START $ OLE=mainloop:
LEB=mainloop 0 $ Och_receive?msg $ QOLB=checkmsg;
LB=checkmsg N\ (msg=CLOCK) [$ OLB=deal_clockmsg;
LE=checkmsg A\ (msg=LEVEL) U $ OLB=deal_levelvnsg;

LB=deal_clockmsg) $ OLB=mainloop;
LB=deal levelvinsg N (msg.valve>M2% Vmsg. value<M1)
0 $OLB=emergency_stop;
LB=deal_levelvmsg N (msg. value>M1 A msg. value<N1)
W $Osendmsg[11=OPENPUMP A\ $ Ock_send 1sendmsg A OLB=mainloop;
-]
Note that we omit the specification of these behaviors because it is straightforwardly represented in the exe-

cutable code. The informal deseripzion in the section title is quated from Ref. [1].

© HIEF

PEUFFTE hitpi/ www. jos. org. cn

F% ¥ 5 XYZ/E + RARM KN A9 FUHYP 1 H A M A — 715 —

.2
“The control center operates in different modes, namely ; initialization normal , degraded , rescue, emergen-
cy stop. ”
CLE —8TART 0 $ Omode=INITIALIZATION A $ OLEB=1linit;
LB=linith...
oo D S O0Omode— NOBRMAL M § OLEB=lnormal;
«oo D $Omode=DEGRADED A $ OLB—~ldegraded;
ov o D 8 Omode=EMERGENCY _STOP A $ OLB=/lemergeney_stops
LB=Inormal O ...
LB=Idegraded O. ..
LE=lIrescue . ..
LEB=/lemergency _stop). ..
]
2.3

“The initialization mode is the mode to start with, The program enters a state in which it waits for the mes-
sage STEAM. BOILER_ WAITING to come from the physical units. As scon as this message is received the
program checks whether the quantity of steam coming our of the steam beiler is really zero. If the unit for de-
tection of the level of steam is defective. that is, when v is not cqual to zero, the program enters the emergency
stop mode. ”

[LB=1init O § Och recimsg A § OLB=/linit .checkmsg;

LB=linit_checkmsg A (msg 0|=STEAM Amsg[1]=STEAM_BOILER_WAITING)
0 $OLB=linit_steamwaiting;

LEB=1linit check Amsg(msg_1]=CLOCK) b $ OLRB=check_timeouty

IR=linit checkmsgh... ...

LB=linit steamwaiting A Gmsg 2]=0)1»

$ OStamWaiting= $T A $ OSteamOb= ST A SOLB=Iinit;
LE={linit_steamwaiting \ Gmsg[2 /=00 D

$ Omode = EMERGENCY STOP M § OLB=lemergeney_stop;

2.4 .

*If the quantity of water in the steam-boiler is above N2 then the program activates the valve of steam-boil-
er in order tc empty it. If the quantity of water in the steam-boiler is below N1 then the program activates a
pump to fill the steam-boiler. If the program realizes a failure of the water level detection unit it enters the e-
mergency stop mode, As soon zs a level of water between N1 and N2 is reached the program czn send continu-
ously the signal PROGRAM READY to the physical units until it receives the signal PHYSICAL - UNITS_
READY which must be emizted by the physical units. As soon as this signal is received, the program enters ei-

ther the mode normal if all the physical units operate correctly or the mode degraded if any physical unit is

© i

CRAFIETEET hiep/ www. jos. org. cn

— 716 — Journal of Software #HAFFH 2000,11(8)

defective. A transmission failure puts the program into the mode emergeney stop, *

N
Emergency stop
T, -/ Steamn boiler level
=~ faiiure timeout
(Initializatic:\ ‘
Physical unit readM Nhysical unit ready
Pump | pumpController failure
-— (Normal\ plp i Deg:rade} —_—
o wmlpump(bnuoller repaired SNt S
Level failLN;vel repuired/mel failure
_ Rescue)
Steam failurc
PumpController failure /

Fig. 2 Working modes of the control center
(LB =linit 0 $ Och_rectmsg N $ OLB=linit_check_msg;
LB=linit_check_msg \ (msg[1]=LEVEL) 0 $ OLB=/linit_check_levels;
LB=linit_check_msg \ (msg[1]=CLOCK) 0 $ OLB=linit_change mode;
LB=linit -check msg N\ (msg[0)=STEAM Amsg[1]=PHYSICAL_UNIT _READY)
D $OSteamReadv= $ T A $OLB=linit;

LB=linit_check _msg N\ (msg[0]=VALVE Amsg[1]=PHYSICAL_UNIT_READY)
D $OValveReadv=$ T \ $ OLB=linit;
LB=linit_check_levelv \ (msg.value>N2 N msg. value<!M2)
§ Osendmsg[01=VALVE A $ Osendmsg[1]=OPENVALVE A
$ Och_send | sendmsg A $ OLB=1linit_init;
LB=Ilinit_check_levelv)\ (msg. value<IN1 A\ msg. value>M1) D
$ Osendmeg[0]=PUMP1 A 3 Osendmsg[1]=OPENPUMP A
8 Och_send |sendmsg N\
$ Osendmsg[0]=PUMP2Z N\ $ Och_send | sendmsg A
$ Osendmsg[01=PUMP3 A $ Och . send) sendmsg N
$ Osendmsg[0]=PUMPA N $ Och_send\sendmsg N $ OLB=linit_init,
LB=linit_check levelu A (msg. valuez=N2 N msg. values{N1) ¥
$ Osendmsg[0]=STEAM A 8 Osenddnsg[1]=FPROGRAM_READY N\ $ Och_send | sendmsg N\
S Osendmsg[0]=LEVEL A § Ock_send tsendmsg A\
$ Osendmsg[0]=PUMP1 A $ Och_send! sendmsg N\

$ Osendmsg[0]=VALVE A $ Och_send sendmsg N § OLB=linit_init;

I.B=linit change mode N\ (SteamOk \ LevelOb A ... AValveOk) D
$ Omode — NORMAI A $ OLR=lnormal;
LB=linit_change_mnde \ ~ (SteamOk N\ LevelOE A ... D) D
% Omade=DEGRADED A $OLB=ldegraded,

© rhmEE BAFWFFO http:/ www, jos, org. cn

A% T EXYZ/EYERARAENAG — BB EH ARG HER — 717 —

3 The Overall OQperation of the msg_Center Process

The message passing schema is shown in Fig. 3. X represents steam, level,..., valve. We introduce the
msg_center process to distribute the messages. There is no difficulty in extending this mode to a point to point

one, because it is clear that

msg. to=steam, level,... s valve Staam-\
ts identical to . -

msg to steam, (™ _mse. to=X (< msg (Level—\
Control center ' msg center '«——>__ _

msg to level, o /' msg. from=X _

\\(/ Vaive\
!) _
msg to valve Fig. 3 Message passing schema
In the former mode, we can deal with zall the
messages in the same way, i.e. ch_receivelmsg, ch_send tmsg. 1f information about the source and destination
is included in the message itself, that will greatly reduce the complexity of program coding. What is more, for
communicating with a newly added physical unir, for example, pump5, we need not add ch_from-pump5 and

ch.to_pump5 in the code of the control _center process, Thus the control cenfer can operate in the same way as

before.
4 The Operation of the Level Process

The procedure of specification and implementation of the level process is very much like that of the control
center, except that it uses MODE message {rom the control center rather than the CLOCK inessage from the
clock process for synchronization. The control center will receive a CLOCK message from the clock process for
every 5 seconds, then it wiil send 3 MODE message to all the other processes. This message serves as the indi-
cation of the next time cycle in those processes. Following is the description of the time cycle of the level pro-
cess:

[LB=STARTIlevel b § LB=lreadmsg;

LB=lreadmsg O $ Och_recetvetmsg \ § OLB=check_msg;
LB=check _msg N (msg[1]=MODE) L $ QLB=1Isendlevelv;
LB=check_msg

LB=lsendlevelv [CalculateW aterlevel (% IOP [freallevele |qs T INP [time-timeD 1)
LB=lsendlcvelvl D $ Osendmnsg[0]=LEVEL A % Osendmsg[1]=LEVELv A
$ Osendmsg[2] =reallevelz: N § Och _send 1sendmsg N $ OLB=1Ireadmsg;

]
Here we use “CalculateWaterlevel (5 IQP /reallevelv |qs GeINP ftime-time0|1)” to get a value for simulat-
ing the water level in a real steam boiler. Following is the specification of the CalculateWaterlevel procedure.
LE=8START _CalculateWaterlevel AN q20 Ng<XC A0 Auzz Ul
ANaesKU2Ap20 A oS WA p20A pidP

B <>[¢ =g+, ogdt ALBE=RETURN]

1

WHERE[§=p— fp—w'z- o' =tr+_[(,t)dt ho=u]

s

© v [E R

PAFIFFUT hitp:// www. jos. org. cn

— 718 — Journal of Sofrware #H44FHR 2000,11(63

Here u is the increase of quantity of steam, v is the quantity of the steam exiting the steam-boiler, and p is
the throughput of the pumps. g, ard p, are densities of water and steam, respectively. We will discuss the fo--
mal specification and verification of hybrid systems in Ref. [3] and other related papers™**. The safety and live-
ness propertics of the steam-boiler svstem are also specified and verified in those papers. A new operator

“§ Oc” will be introduced for that purpose.

5 The User’s Interface

The visual user interluce is coded in C language with Xlib. It runs in XWindow or OpenWindow. This in-
erface works concurremly with the program coded in XYZ/E that we have described before. They will ex-
chanye data and control via the IPC message passing mechanism of UNIX.

The interface exhibirs the current status of the steam boiler in a pictorial way. Warter is drawn blue and will
rise and {all as the data in the “steam” changes. Figure 4 is a running snapshot when PUMP?2 is broken (drawn

red), and all the other PUMPs have been opened antometically becanse the water level has failen beyond the

I].Ol'm(ll range.

XYZ STEAM-BOILER SYSTEM
QUIT START STOP

STEAM: WORKING
LEVEL: WORKING

| PUMPL: QOPEN
5TIAM PUMPz: BROKEN

0 PUMP2: OPEN

[PUMP4: OPEN
Mo PUMP CTRLi: WORKING
PUMP CTRIZ: WORKING

P CTRI.1 PLIMPI

N2— — PUMP CTRL3: WORKING
! PUMP CTRLi: WORKING
P CTRL2 PUMPI VAILVE: WORKING

WATER QAUNTITY: 38
STEAM MODE: DEGRADED

O P CTRL3 PUMFI SYSMODE: RUNNING STEAM
NI ‘\§\\§P CTRLt PUMPI
o HSI].EI?] vave

Fig, ¢ User interface
Also, the interface offers us the opportunity to simulate an exceptional event cccurring on the pliysical u-
nits; for instance, PUMP1 is broken at an arbitrary time. The usage is described below.

Click at a physical unit drawn black: which indicates that there is a failure on the physical unit which we
are simulating by computer. The corresponding process will change its state at insrance. After a few see-
onds, the control center process will detect Uhis failure and send FAILURE_DETECTION message to the
corresponding process. The coler of this element will change to red at the same time, showing that this
physical unit is broken and the control center has acknowledged this situation.

-Click et 2 physical unit drawn red: which indicates that the broken physical unit is repaired. The corre-
sponding process will change its state at instance and send PHYSICAL _ UNIT_ REPAIRED message to
the control center. On receiving this message, the control center process will send PHYSICAL _UNIT.
REPAIRED_ACKNOWLEDGEMENT message to the corresponding process. The color of this clemen:
will change to black at the same time. showing that this physical unit is repaired and the control center

has acknowledged this situation.

© PEFEESSRAFITUR bt/ www, jos. org. en

H% %5 XYZ/E ¥ XRRAEH AR H LY R FLE A B — 7y —

6 Conclusions

This paper has discussed the specification arif implementation of the Steam Boiler Control Specification
Problem in the temporal logic language XYZ/I. It turns out that XYZ/E is suitable for hybrid, real-time and
communication problems. In our future work, we plan to discuss the Steam Boiler’s behavior in differential e-

quations. We alsc plan to verify this program undcr our framework.

Acknowledgments

The authors would like to thank Dr. Zhao Chen and the other colleagues in the XYZ Group for their many

helps during the implementation of this system.

References

1 Tang CS. Ar outline of the XYZ system. Logic of software enginccring. In; Pnucli A Lin H eds. Processdings of a Work-
shop 1985, Beijing, Singapore. Waorld Scientilie, 1996

N

Jean-Raymond Abrial. Steam-Boiler control specification. Method for Semantics and Specification. International Conference

and Resezrch Center, Schloss, Dagstukl, Germany. 1994

3 Yan An, Tang C 8. A unified linear-time temparal logic solution to the steam-boiler control specification problem. Science
in China {Series E), 1998,42(2).244~251

4 Yan An, Tang C 8. Hybrid systems in XYZ. Laboratory of Computer Science, Institute of Software, The Chinese Acadeny

of Sciences, Technical Report No. ISCAS-1.CS-9704, 1957

Yan An. Hybrid systems in XYZ TMS Thesis’. Institute of Sofrware, The Chinese Academy of Sciences, 1987

w1

6 Tang C 3. A temporal logic oriented toward scftware engineering—an introduction 1o XYZ system (I). Chinese Journal of
Advanced Sofrware Rescarch, 1994,1(1):1~-29

7 Zohar Manna, Amir Poueli. Clocked trensition systerms, Logic 8 Software Engineering. In: Pnueli A, Lin H eds. Proceed-
ings of a Workshop 1995. Beijing, Singapore: World Scientific, 1996

8 Zchar Manna, Amir Pnueli. Verifying hybrid systems--— hybrid systems. In; Grossman R L, Nerode A, Ravn A eds.
Lecture Notes in Computer Science. Springer-Verlag, 1983

9 Maler O, Manna Z, Prnueli A. From timed to hybrid systems. In; Proccedings of REX Workshop 1951, Springer-Verlag,
1992

10 Zhou Chao-chen, Wang Ji, Anders P Ravn. A formal description of hybrid systems. Laberatory of Computer Science, In-
stitute ot Software, The Cainese Academy of Sciences, Technical Report, No. ISCAS-1.CS-95-14, 1995

£ XYZ/E IR A L it R G —— S ER P 1 5] 7 Y Al R
4% A
(FEM2ESEFHENMHETFERELRE E 100080)

WE XYZ/ER-AHAZHRAAFNLEL-SFTHEFRTET. XYZ/ERBELE —WERLTAF
BEMRBEGRBE MU TRALAANBEE TR EXNEA T XYZ/EXAA Sy MR T THEE RN,
HNMETAHRAMERGEBH 2 X6,

X@H HAIHET.RATH A%, HE XYZ/E

hE*SGES TP311

FESATFT http:/ www, jos. org. cn

