ISEN1000-9825 Tournal of Software 8t # % 2000,1101) :1~7

Hybrid Systems in XYZ/E~
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Abstract Hybrid System is an embedded computing system composed of computers and physical instro-
ments. It allows the inclusion of continueus components in a reactive real-time system. XYZ/E is a temporal
logic language based on Manna-Pnueli’s Linear Time Temporal Logic, It combines both static and dynamic se-
mantics in a unified framework and supports the whole procedure of stepwise refincment, i.e. from the ab-
stract specificarions to executable codes. In this article, the authors first specify and verity hybrid systems
with XYZ/E, then introduce the computational model we selected for the hybrid systems and discuss the for-
mal description of hybrid systems in the TLL XYZ/E. Finally the verification method;)logy in the framework
is discussed. Compared with the related work. XYZ/E supports state transitions such that it can specify com-
plex contrel algorithms in a convenient way.

Key words Hybrid system, phase transition system, temporal logic language, XYZ/E, program specifica-

tion, verification.

Hybrid System ie an embedded computing system composed of computers and physical instruments. It al-
lows the inclusion of continuous components in a reactive real-time system. The compuiers contrs! and synchro-
nize the physical units® behavior to meet the special requirements for the system. Because of its extensive usage
in the industrial and defensive fields, Hybrid System lays the most important emphasis on the safety and reliabil-
ity properties.

The TLL XYZ/E is outlined in Ref.[1]. Tt is a temporal logic language based on Manna-Pnueli’s Linear
Time Temporal Logic. XYZ/E combines both static and dynamic semantics in a unified framework and supports

the whole procedure of stepwise refinement, i.e. from the abstract specifications to executable codes.
1 Computational Model

In hybrid systems, the continuous companents are characterized by differential equations. Every program
state occupies a continuzous time interval and all the differential equations activated in this interval preseribe the
behaviors of the system. State transitions occur at the discrete time points. The value of variables can be
changed and ancther set of differential equarions will be activated.

In XYZ/E. hybrid systems are modeled as phase transition system (PTS). PTS was originally presented in

Ref. [2]. We choose it as the computational model because it js formal and precise enough and can be
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cunveniently represented in XYZ/E after careful extension.

The following definition is quoted from Ref. [2].

A phase transition system (PT8) &=(V,8,T,A,II) consists of

« V=Av1y0ss... 0.1 A Tinite set of system variables. It can be partitioned into :he set of discrete vari-
ables £ and the set of integrators I. A special integrator T is introduced to represent the master clock,

+ & The initial condition.

« 7. A finite set of transitions. Each transition v+ 7 iz a function

T: 32

mapping each state s&€ X into a (possibly empty ) set of r-successor states r(;} 3,

The successor function for z is defined by a transition relation o.(V,V'), which may refer to V and modify
V—IT}. For every t €T, it is required that p,—T"=T.

« A: A finite set of activities. Each activity «& A is represented by an activity relation;

porT () = F2 (V0 1)

where p.is a predicate over D called the activation condition of a. The vector equation ¥ (2)=F*(V°,¢) defines
the evolution of the integratars throughout a phase of continueus change according 1o the activity a,

* II; The time-progress condition specifving a global restriction over the progress of tme.
2 Specify Hybrid Systems in XYZ/E

2.1 Specify state transitions

In XY7/E, we choose PTS as the computational model and vse the iterative method to realize it in exe-
rutable codes, Suppose the sampling interval A satisfies the precision requirement for the system.

Referring w0 the length of the remporal logic operator & as *|@|”. we define the Next-time (perator Se-
ries NEXT=0{$0,, $Os,... . It is required that | $0,|> | $O:i., |, and for all €0, 3 N>>0, ¥ n> N,
| $¢. [ <le. Based on this. we introduce a new operator $ O, called e-next-time operator, which means; Next
time. and | $0.]<lz. Because for alle, 3 N>0,Y >N, | $O.|<Ze, if we define § O.= $O0u,, then | $0.| <
e. In other words, we may think of the gperator §(J, as an element of NEXT and 1t is picked out based on the
time npper bound e

The PI'S model reguires that for every t€ 7, g,—T" =T This kind of assertion is valid in computational
models but in no temporal logic languages. It s illogical it 77 =7 and V'#V, because the program variable can-
not have two different values at the same time. We have to introduce a new operator to represent these
transitions.,

First of all, we can find a constant & for the given system, which guarantees that we can omit the time oc-
cupied by the operators whose length is less than € and the correctness of the program is not affected, e. g. we
cail define £=A/1000 where A is the sampling interval. Based on this £, we can pick out the e-next-time opers-
lor F O, from the operator sert NEXT for the next time operators which is expected to be zero-time-consuming.
For example, the transition 7€ T in PTS can be described as .

LB=y A Enable condition(z)= $0.(p.V . VIALE =2z).

Please note that in the language level T'=7"1+ | $0.| and in the model level T ="F. This difference does
not affect the consistency between the model and the progrzm because we have supposed that | $O.[<Ce.
2.2 specify hybrid systems

Let’s take a lock into the following hybrid system;

The system enters state v alter initialization and the activity rharacrerized hy activate _condition—=#(z,1) is
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activated in state y. When the assertion “transition. condition” is satisfied the transition_action is enabled and

the system enters the next state 3, The system variable ¢ refers to how long the system has been in the current

init condition/ Flx0) iransitton condition/

—_—

activate_condition transition action

F=ITq

———

We specity this system in XYZ/E as below,
LB=yAx=x,~>
<> (transition_condition A $ O.(transition_action AN LE=1+')}

WHERE (f.B=x A activate - condition—F{z,t})

{x=transition—action(F1(xest))} /[ * posi_.condition, where F1(zo.£} is the value of x before the transi-

tion and it satisfies the diff. eq. F(z.0) % /

It specifies that when the pre_condition is x=x,, and the activation condition is true, the value of x satis-
fies the differential equation F (x.¢) until a transition is enabled. The program will take the transition and enter
the next state y'.

The executable codes for this specification are given below with the iterative method ;

{x=ux4} /% pre_condition * /
LB=—3y=> 8 O0O.G¢=0Alast _t=0ALB=yl);
LB=yl A activate_condition=>
OO A (r=x+G—last-z) » F'(x.e) AMast_t=: AN LB=y1);
LB=y1 A transition_condition =>
$ O ltransition action A\LB=y");
{x=transition_action (F1(z;,£))} /#* post_condition * /
Here “ $ 0=<00,4>" means: Next time, and the time interval is less than A.

The first conditional element sets the temporary variable r and fast_¢ as 0 and starts the iteration. The sec-
ond conditional element specifies that if the predicate activate _condition is satisfied the program will take an iter-
ation within 4 time. The iterative equation r,p, =2+ {80, —4) * F' (.. 4) is deducted from F(x.2). The value
af ¢ is set by the system when the conditional element is fired. The temporary variable last : is introduced to
record the last value of 2.

The third conditional element specifies if the predicate transition_condition becomes true, the system will
take the transition and enter the next state.

We have used the following assumptions in the above discussion:

+ All the conditional clements are fired a5 scon as their condition is satisfied, l.e. "ZB=yAR =... " is
put into action as socn as the FOL R is satisfied.

* The sampling interval A is short enough to satisfy the precision requirement.

+ The differential equation is suitable for the iterative method.

Exampie 1. Let’s take a look at the following hybrid system.

Its corresponding PTS @ is

V=I{s,T)

G:x=1AT=0

T:{r} WHERE pr:x=—1A0=1AT'=T
A:te} which is specified as $ T—r=2"—¢
Miyxz—1
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We specify this hybrid system in XYZ/E as below.
IB=yvyAzxz=1>
<>(e=—1A $0(x=1ANLB=23})
WHERE[([{IB=yAx>—1—=d=—1)
Please note that if p.is the activation condition of the activity @ in the PTS model, then we define activate_
condition=p, \ pg, where ppis the time progress restriction related to e in II. As to this example, we have

activate_condition= 3T Az==—1, 1.e. 2=—1.

x=1 _2>/ﬁ,1 \’

<7 NN

=1 /=1

Now we refine it into the executzble codes. Deducting from the original descriptien =>—1—3= —1, we

have the iteration equation x..; =4+ {t;1;—#) * (—1). The executable program is shown below .
{z=1} /=* pre condition * /
LB=y=$0.(t=0Mlast_t=0\LE=7y1);
LB=ylAx>—1=2$0<0. A (a=0x— (—last_t) Aast.t=t ALB=y1);
LB=ylAx=~1=2%0.(z=1 A LB=y);
{r=1} /+# post_condition * /

Please note that the fiting condition in the third conditional element is 2<{—1, not z=—1. It is the special
need in the iterative method because despite the precision assumption, it is possible that in some program runs
r=—1—¢, where ¢ is a neglectable positive value.

2.3 The benefits of the multi-control mechanism for hybrid systems

XYZ/E realizes the dynamic semantics by introducing the concept of program control. Everv control occu-
pies a virtual processor. LB is used to represent the program control and LB =z represents that program con-
trol { is in state z. The multi-control mechanism is allowed in XYZ/E and every program control has its own set
of states, We define the state set of the system Zas =%, X2, X... X5, here 5, i=1..r, is the state set of
control ;.

In the single-control model, exactly one activity is activated in a given system state. This activity encloses
behaviors of all the integrators and is always described by a group of differential equations. In the multi-control
model . every integrator is assigned to a specific control and each control deals with one (several) differential

equation{s). The program is thus decomposed into several simpler processes.
IT=F1(x,3,¢)

] can be specified in the single-control and multi-control models
J'=F2(I1y;t)

Exampie 2.  The activity (

as below .
(1) In the single-control model
Specification :
LB=yAz=x, N y= n>
<> (transition_ condition N $ O.(ransition_ action A LB = v'))
WHERE [J(LB = y A activate_ condition — (& = Fl(x.y,t) A 3= F2(z,v,)))
{Cx.y) = transition_ action(F1' (x4, 36423 F2 (xg0veat)) )

/ + post_ condition, where (F1'(xy,¥,.¢)F2 (0, ¥5,¢)) are the values of (x,») before
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&= fl{x.y,1)
the transition and they satisfy the diff. eq.| . o
» = Filx,y.t)

Executable code:
ixr=a0 A ¥y =) /% pre_condition # /
LB=3y=%0,Gt6=0MAlast_t =0 A\ LB = yl);
LB = y1 A activaie_ condition =
$O <0, A> (x=ua+ ¢ —last_ ) *Fl{xz,v,8) A
y=y+ @G —last_ ) # F2(a,y,) Nlast. t =t N LB = y1);
LB = 31 A transition _ conditien=$ O (transition_ action A LB = y'};
{(x,3) = transition_ action(F1" (x4,%,,¢),F2' (x1,¥:,2))} [/ * post_ condition */
All the integrators must be handled wogether in the single-control model. This work may be exhausting if
the number of integrators grows large.
(2) In the multi-control model
The integrators can be handled separately in the multi-control model. All the contrels synchronize with
each other by the communication command. In our discussion we always use the following assumption: The
message transmission consumes no time.
Specification ;
LB.=vlAx=x>
<> (transition_condition. A § O.{transition_ action, A\LB=y1"));
LB,=y2 A y=y,=
<> (transition conditon, A § O (transition_action, N\L.B=y2' )}
WHERE [ (LB, =1 A activate _condition,—~2=F1{x,yst)) A
(LB, = y2 A activate_condition,—»p=F2(z.y.t))
{x=transition_action, (F1' {x5,30+12) Ay =transition_action,(F2' (zo,3cet )}
Executable code:

« The program control of x:

la=aot / + pre.condition * /
LB.=y1=$0.(t,=0MNlast_t,=0A LE=1y11);
LB:=yil Achy? = 80 (ch,.? yNLB=y11); /= get the value of y =/
LB.=y11 Aactivate - condition, =
SO0, A> (x=xt+ U, —last_t,) * Fllxz.y. 1) A / % iteration */
chol 2 A / %send the value ol z =/

last- .=t ALB,=y11);
LB.=y11 Atransition_condition, =
$Oltransicion_action, Nkt cALB.=31'): / * rransition * /
{z=transition_action . (¥1' (xo1¥5+2))} {/* post.condition # /

* The program control of y:

{y=130} / % pre_condition * /
LB,=32=>$04t,=0Alast_t,=0NLB=1y21);
LB,=321 Achn? = $0.(chsy? x ALB,=21); / % get the value of = * /

LB,= 321 /i activate . condition,=
$O<0, 4> (y=y+ @, —last_t,) * F2(x,v,t) A /% iteration */
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ch,. ) y A /% send rthe value of y % /
last t,=t,NLB,=21),

LB,=y21 A transition_condition,~>

$ O.Uransition_aciion, A ch,.1 yALB,=352'); /# tramsition */

{v=transition_action, (FZ (x,,v0,2))} / * post_condition +/

If the communication is reliable and efficient, and there is no restriction on the iteraticn sequence, the rep-
resentations in single-control model and multi-control model are consistent and the sets of program states are of
the same size. On the other side, the state set of each control, i. e. the state set facing the programmers, is
much smaller than that of the whole program. So programs in multi-control model are more concise and legible
than those in single-control mode.

2.4 The lasting conditions

Normally there are three firing conditions.

Figure 1 is the most common situation. The eonditional elemenr 35 activated as soon as the {inng condition
becomes true. Figure 3 is a special case in hybrid systems in which the firing condition is a cumulating integra-
101, e. g. the leak of gas. This can be conveniently expressed hecause we have discussed how to specify integra-
tors in XYZ/E. However. for those cases like Fig. 2 which require the condition to remain TRUE for a period,

a specific command is needed.

Fig.1 On-Point condition Fig. 2 Lasting conditicn Fg 3 Cumulating condition

We introduce a new operator “$ O{!,u}"” meaning: Next time, which is within ¥ tiroe, and the firing condi-
tion must last for at least £ time. It is used in the condition element in the fellowing way:
LB=y AR=>$0{,u}(Q A LB — 2)
It is defined as,
LB =y NR=$OWELAY () N LB=v) $W(R A $OLB =y
LB=y=@QALB=2) SWOVERwu — ) A $OLB = exception $V R A $OLB = y)
Here $0, $ W are the NEXT-TIME and UNLESS operators in the model level.

3 Verifying Hybrid System in XYZ/E

Reference [2] discussed the verification of PTS. ln that article, activities and transitions are combhined to
form the set of extended transitions Ty, i.e. let @:<(V,8,T,A. 01, then Ty =TV Ts. where To={r.|aT A}.
For each a€ A, the transition relation of z, is given by.

3 AZAD =DAp. AT =F (VA ANY e [0,8, ID.FWV.0»

Then the verification of safety properties can use the fallawing rule,

1. @“‘]’J
2 Apitip) for every rETy,
o-[lp

However, the length of the basic transition ¥ § 07 is not zero in 2 temporal logic language such as the TLL
XYZ/E. We cannot verify the validity of p when the nexr-time operator § (2 is in processing because there is no
place for the programmers to specify what happens during these intervals. What we can verify by the above rule
is the validity of p outside the time occupied by $O.

Because the safety property in a hybrid systém meens “for all t220, p holds”, we must take all the time.
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including the intervals occupied by $ O, into account. In the linear time temporal logic, all we can do is to dis-
cuss the system’s hehaviors on the discrete series of time points, i.e. tgst1y... (44, is the next time of £.). We
call this kind of safety which is related 1o the length of the next operator $O as “4 safety” and note it as
“(J4". It can be verified by the following induction rule:

1. ¥ p holds at 2

2. for all ¢, p=$G(p);

3. then [ap.

4 Related Work

In this article we have concentrated on the computational model, the specification, the implementation and
verification of hybrid systems in the TLL XYZ/E. This work is further discussed in Refs. [3,47. As an example
for the work in this article, Ref. [3” gives the specification, stepwise refinements and verification of the Steam-
boiler Control Specification problem™ and Ref. [5] gives the final implementation of this problem. Reference
[4] also illustrated XYZ/E's capacity for visual programming. Compared with the related work, i.e. Duration
Calculus™, XYZ/E supports state transitions such that it can specify complex control algorithms in a conve-

nient way.
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