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Abstract:  This paper investigates a variant scheduling problem of minimizing makespan in a two-machine flow 
shop. In this variant, there will be two tasks for each job. The first task can be processed on either machine, and the 
second task can only be processed on the second machine after the first task has been finished. Furthermore, if the 
second task should start right after the first task is completed, it is called a no-waited case and is denoted by NSHFS. 
On the other hand, if the second task is allowed to be processed at any time after the first task is completed, the 
problem is then denoted as SHFS. In the case of SHFS, based on the result of Wei and He, an improved polynomial 
time approximation algorithm with worst-case ratio of 8/5 is presented. In the case of NSHFS, this paper shows that 
it is NP-hard, and presents a polynomial time approximation algorithm with worst-case ratio of 5/3. 
Key words: flowshop scheduling; computational complexity; approximation algorithm; worst-case ratio; 

makespan 

摘  要: 讨论了一类两台机流水作业要求最后完工工件完工时间最早的排序问题.问题中每个工件包含两个加工

任务:第 1 个任务可以在任何一台机器上加工,第 2 个任务只能在第 1 个任务完成后在第 2 台机器上加工.如果要求

在加工同一个工件的两个任务时,两个任务之间不能有停顿,则称其为不可等待的模型,记作 NSHFS.如果第 2 个任

务可以在第 1 个任务完成后的任意时间加工,则称其为允许等待的模型,记作 SHFS.对于 SHFS 模型,在魏麒和何勇

工作的基础上给出了一种改进的最坏情况界为 8/5 的多项式时间近似算法.对于 NSHFS 模型,首先证明它是 NP-难
的,并且给出了一种最坏情况界为 5/3 的多项式时间近似算法. 
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1   Introduction 

This paper considers the following two-machine flow shop scheduling problem. There is a set of independent 
jobs J ={J1,J2,…,Jn} to be processed in two machines M1 and M2. Each Ji, for i=1,2,…,n, consists of two tasks Ai 

and Bi, and only upon finishing task Ai can task Bi start. Task Ai can be processed on M1 for ai time units, or on M2 
for ai time units; task Bi can only be processed on M2 for bi time units. We assume that jobs and machines 
are available at time zero, and preemption is not allowed. For a given schedule, we denote the completion time of 
task Ai by 

iAC , 
iBS , the start time of task Bi, and Cmax=max{Ci}, the makespan. The goal is to minimize 

the makespan. 
The above model, proposed first by Wei and He[1], applies to the graphic programs processing which comprises 

of data and graphics processing. Graphics processing cannot start until data processing is completed. Data 
processing can be done by either CPU (central processing unit), or GPU (graphic processing unit), while graphics 
processing must be done by GPU. The above model is derived from the fact that we refer to CPU and GPU as two 
machines and the processing of data and graphics as the jobs. We usually put the results of data processing into a 
cache memory in advance and take them out when we begin graphics processing. 
The two-stage hybrid flow shop problems (denoted by HFS) proposed by Panagiotis and George[2] are similar to our 
problem. It is assumed that the two tasks of each job can be both processed on either machine, or processed by the 
traditional model, i.e., the first task on M1 and the second task on M2. Clearly, in HFS, there are three processing 
models for each job, while only two models in our problem. Hence, we call our problem the two-stage semi- hybrid 
flow shop problem. In some cases, the space of the cache memory is not enough to store some of the results that 
data processing needs. Sometimes, there is no cache memory. Under these circumstances, the task Bi should begin to 
be processed after the completion of task Ai, i.e. 

i iA BC S= . We call this problem as a two-stage no-waited 

semi-hybrid flowshop denoted by NSHFS. On the other hand, if task Bi is allowed to be processed any time after 
the completion time of task Ai, i.e. 

i iB AS C≥ , then this problem would be denoted by SHFS. In this paper, both 

problems NSHFS and SHFS will be considered. 
The problem HFS is proved to be NP-hard, and Ref.[2] proposed an optimal algorithm based on dynamic 

programming and extends it to a pseudo-polynomial approximation algorithm for a generalized problem. Another 
closely related problem is called two-stage flow shop problem with multi-processor flexibility by Vairaktarakis and 
Lee[3], where the first task must be completed before the second task can start. Moreover, the first (second) task can 
be processed on M1 (M2), or on both processors simultaneously with smaller processing time. For this problem, 
Vairaktarakis and Lee presented a dynamic programming algorithm and a polynomial time approximation algorithm 
with a worst-case ratio of 1.618. 

In Ref.[1], the problem SHFS was also considered. Simply, the processing times of task Ai on M1 and M2 is 
different. They showed the problem SHFS is ordinary NP-hard, and presented a pseudo-polynomial time optimal 
algorithm and a polynomial time approximation algorithm with a worst-case ratio 2. In this paper, we present an 
approximation algorithm with a worst-case ratio of 8/5 for SHFS. In addition, we consider the new problem 
NSHFS. We show it is NP-hard, and present a polynomial time approximation algorithm with a worst-case ratio of 
5/3. 

The rest of the paper is organized as follows. In Section 2, we present a better polynomial time approximation 
algorithm with a worst-case ratio of 8/5 for the SHFS problem. In Section 3, we show the problem NSHFS is 
NP-hard and present a polynomial time approximation algorithm with a worst-case ratio of 5/3. 

In the remainder of this paper, let CH and C* be the makespan yielded by an algorithm H and an optimal 
schedule for a given instance of SHFS or NSHFS. 
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2   SHFS 

To present the polynomial time approximation algorithm for problem SHFS, we first define two processing 
modes for each job. One is called mode 1 if both tasks Ai and Bi of job Ji are processed in turn on M2 with ai and bi 
time units, respectively. Another one is called mode 2 if the task Ai is processed on M1 with ai time units and task Bi 
on M2 with bi time units. It is easy to see that every job should be processed by mode 1, or alternatively mode 2 
due to the definition of problem SHFS. Consequently, in an arbitrary schedule, the set of jobs J  can be partitioned 

into two non-intersecting subsets: V1 and V2. V1 is made up of all jobs which are processed by mode 1; V2 is made 
up of all jobs which are processed by mode 2. 

Johnson’s rule[4] is the optimal schedule of two-machine flowshop, but if every task Ai of job Ji is processed on 
M1 and task Bi on M2, and the jobs in J  are processed in the Johnson’s rule, Wei and He[1] show the worst-case  

ratio is 2. Thus, Johnson’s rule is not very efficient for SHFS. 

2.1   A greedy-like algorithm H1 for SHFS 

In this subsection, we present an algorithm, denoted by H1, including two phases 1 and 2, which are used for 
partitioning all jobs into two sets and processing jobs, respectively. 

Algorithm H1: 

Let k
iV  be a set of jobs processed by mode i, i=1,2 after assigning the first k jobs in phase 1. 

Phase 1: 
1. Re-index all jobs in set J  with respect to the values of ai such that a1≥a2≥…≥an; 

2. Let 1
1V = ∅  and 1

2 1{ }V J= , k=2; 

3. While k≤n, if 1 1
2 1

( )k k
i ii i iJ V J Va a b− −∈ ∈

> +∑ ∑ , let 1
1 1 { }k k

kV V J−= ∪  and 1
2 2
k kV V −= , and let 1

1 1
k kV V −=  

and 1
2 2 { },  1k k

kV V J k k−= ∪ ← + ; 

4. Return 1
nV  and 2

nV . 

For convenience, we denote 1 1
nV V=  and 2 2

nV V=  in the remainder of this subsection. 

Phase 2: 
1. Process all tasks Ai in V2 on M1 in order of their indices at time zero; 
2. Process all jobs in V1 on M2 in order of their indices at time zero, and all tasks Bi in V2 as early as 

possible in order of their indices. 
It is not hard to obtain that the time complexity of the algorithm H1 is O(nlogn). 

Theorem 2.1. *

11 1

1max ( ), , max{ }
2

n n

i i i i ii ni i
C a b b a b

= =

⎧ ⎫
+ +⎨ ⎬

⎩ ⎭
∑ ∑

≤ ≤
≥ . 

Proof:  The optimal makespan must be at least the average load of the 2 machines. Therefore, it is clear that 

*
1

1 ( )
2

n
i iiC a b

=
+∑≥ . For each task, Bi, i=1,2,…,n, is processed on M2, which follows that the completion time of 

M2 is at least 1 .n
ii b

=∑  Then, *
1

n
iiC b

=∑≥ , and C*≥max1≤i≤n{ai+bi} holds trivially. 

The proof is applicable for both jobs that are allowed to wait and those that are not. Thus, Theorem 2.1 is 
suitable for both SHFS and NSHFS. 

Theorem 2.2. 1
*

5
3

HC
C

≤  and the bound is tight. 

Proof:  To obtain the desired worst-case ratio, we distinguish two cases as follows. 
Case 1. 

2 1
( )

i ii i iJ V J Va a b
∈ ∈

> +∑ ∑  (see Fig.1). 
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Fig.1  Case 1 

Let Jt be the last job processed on M1. It yields Ji∈V1 for each t+1≤i≤n. Furthermore, by the definition of Jt, 

we conclude that the completion time of all jobs in 1
1
tV − is not less than the start time of task At, and the completion 

time of all jobs in V1 is not greater than that of task At. Therefore, by step 2 of phase 2, all tasks Bi in V2\{Bt} can be 
processed on M2 one by one right after the completion time of all jobs in V1. Hence, the makespan is determined by 
task Bt. Two cases are considered as shown in Fig.2. 

 
 
 
 
 

(a)                             (b) 

Fig.2  The makespan determined by Bt 

For the first case (see Fig.2(a)), we have 1

2i

H
i tJ VC a b

∈
= +∑ . By the definition of Jt and step 3 in phase 1, we 

can conclude that 1
2 11\{ } ( ) ( )t

i t i ii i i i iJ V J J V J Va a b a b−∈ ∈ ∈
+ +∑ ∑ ∑≤ ≤ , together with Theorem 2.1, leads to 

1

2 2 2 2 1

2 1

\{ } \{ } \{ } \{ }

* * *

1

1 1 1 1 ( )
2 2 2 2

1 1 1 1 1 1 3( ) ( ) ( ) ( ) ( ) .
2 2 2 2 2 2 2

i t i t i t i t i

i i

H
i t t i i t t i i i t t

J V J J V J J V J J V J J V

n

i i i i t t i i t t
J V J V i

C a a b a a a b a a b a b

a b a b a b a b a b C C C

∈ ∈ ∈ ∈ ∈

∈ ∈ =

= + + = + + + + + + +

+ + + + + = + + + + =

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

≤

≤ ≤

 

For the second case (see Fig.2(b)), we have 

 1

1 1i

n
H

i i
J V n

C a b
∈ =

= +∑ ∑  (1) 

and thus 

 1

2

( )
i

H
i i

J V
C a b

∈

+∑≤  (2) 

due to 
1 2
( ) .

i ii i iJ V J Va b a
∈ ∈

+ <∑ ∑  Then, from Eq.(1), Eq.(2) and Theorem 2.1, we have 

1

1 2 2

* * *

1 1

1 1 1 1 3( ) ( ) .
2 2 2 2 2i i i

n n
H

i i i i i i i
J V i J V i J V

C a b a b a b b C C C
∈ = ∈ = ∈

⎛ ⎞
+ + + + + + =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ ∑≤ ≤ ≤  

Case 2. 
2 1

( )
i ii i iJ V J Va a b
∈ ∈

+∑ ∑≤  (see Fig.3(a)). Then 1

1 1 .
i

nH
i iJ V iC a b

∈ =
= +∑ ∑  We distinguish two cases 

according to the number of jobs in V1. 

Subcase 2.1. |V1|=1 (see Fig.3(b)). We have 1
2 1

nH
iiC a b

=
= + ∑  and 2 1

1
2

n
iia a

=∑≤  from a2≤a1, then 

1 * * *

1 1 1 1

1 1 1 1 3( ) .
2 2 2 2 2

n n n n
H

i i i i i
i i i i

C a b a b b C C C
= = = =

+ = + + + =∑ ∑ ∑ ∑≤ ≤  

Subcase 2.2. |V1|>1. Let Jt be the last job to be put into V1 (see Fig.3(c)). It yields that the start time of job Jt is 

J2 

a1 a1

J2

at at… …

… …bt bt

Jt+1…Jn Bi∈V2\{Bt} Jt+1…Jn Bi∈V2\{Bt}

V2

V2V1
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less than the completion time of all tasks Ai in 1
2
tV − , which implies that 

11 2 12
1

( ) ( ) ,
ti i ii

n

i i t t i i i i
J V J V i J VJ V

a b a b a a a a
−∈ ∈ = ∈∈

+ − + = −∑ ∑ ∑ ∑ ∑≤ ≤  

that is 
1 11

1 ( )
2i i

n
i t t i iJ V i J Va a b a b

∈ = ∈
+ + −∑ ∑ ∑≤ . 

Since at≤ai, i=1,2,…,t, we have 
1 1

1 1 .t n
t i ii i

a a a
t t= =∑ ∑≤ ≤  Then, we obtain that 

1

1 1 21 1 1 1

1 1 1 1 1

1 1 1

1 1 1 1( ) ( ) ( )
2 2 2 2

1 1 1 1 1 1( ) ( )
2 2 2 2 2 2
1 1 1( ) ( )
2 2 2

i i i

n n n n
H

i i t t i i i i i t t i
J V i i J V i i J V

n n n n n

i i t i i i i i
i i i i i
n n n

i i i i i
i i i

C a b a b a b b a b a b b

a b a b a b a b
t

ta b a b b
t t

∈ = = ∈ = = ∈

= = = = =

= = =

= + + + − + = + + + +

+ + + + + +

−
= + + + +

∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑

≤

≤ ≤

* * * * *1 1 3 1 5 .
2 2 2 3

tC C C C C
t t t

− ⎛ ⎞+ + = +⎜ ⎟
⎝ ⎠

∑ ≤ ≤

 

The last inequality holds because t≥3, due to |V1| and the definition of t. 
 
 
 
 

(a)                     (b)                                       (c) 

Fig.3  Case 2 

The following instance shows that the worst-case ratio of 5/3 is tight. Consider the instance J ={J1,J2,J3,J4}. 

Where a1=L, b1=ε; a2=L−2ε, b2=ε; a3=L−3ε, b3=L; a4=3ε, b4=2L(ε<<L). It is easy to obtain C*=3L+5ε by 
processing J4 by mode 1 and J1,J2,J3 by model 2 with the order of J4,J3,J2,J1, while 1 5 3HC L ε= − . It follows that 

1
*

(5 3 ) 5
(3 5 ) 3

H LC
C L

ε
ε

−
= →

+
 when ε tends to 0. 

2.2   An improvement of Algorithm H1 

In this section, we present an algorithm H2 with a worst-case ratio of 8/5 by improving the algorithm H1. 

Recall that, in the proof of Theorem 2.2, the worst-case ratio in case 1 and subcase 2.1 is 3/2, and 3/2+ 1
2t  in 

subcase 2.2. Then, the desired result can be obtained trivially by algorithm H1 if t≥5. In fact, the algorithm H1 can 
also achieve the desired result when t=4 (see Lemma 2.3). Hence, in order to improve the worst-case ratio, we only 
need to improve the method for case t=3. 

Before going to present the improved algorithm, we first show the following lemma. 

Lemma 2.3. If t=4 in subcase 2.2 of the proof of Theorem 2.2, then 1
*

8
5

HC
C

≤ . 

Proof:  Recall that, 1

1 1i

nH
i iJ V i

C a b
∈ =

= +∑ ∑  from case 2 in the proof of Theorem 2.2. Since Jt∈V1, by the 

rule of the algorithm H1, we can conclude that 
 

1 1
2 1

( )
t t

i i

i i i
J V J V

a a b
− −∈ ∈

> +∑ ∑  (3) 

Note that if J1∈V2 and J2∈V1, we then consider two cases according to the assignment of J3. 
Case 1. J3∈V1 (see Fig.4(a)). Then, Eq.(3) yields that a1≥a2+b2+a3+b3≥a2+a3. Since a4≤a3≤a2, we have 

4 2 3 1
1 1( )
2 2

a a a a+≤ ≤ . Thus, 4 2 3 1 4 1 2 3 4 1

5 1 1 1 1 1( ) ( )
2 2 2 2 2 2

n
ii

a a a a a a a a a a
=

+ + + = + + + ∑≤ ≤ . 

V2 

J2

a1 

at… bt

at+1…an

V2 
a2 Bi∈V2 

… 

V1 

a3…an 

b2 b1 b3…bn

a1
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That is, 4 1

1 1
2 10

n
ii

a a
=∑≤ . Therefore, 

1

1

2 3 4 2 3 2 3 4 4
1 1 1

1 2 3 4
1 1 1 1

1 1 1( ) ( )
2 2 2

1 1 1 1 1 1 1( ) ( ) .
2 2 10 2 10 2 10

i

n n n
H

i i i i
J V i i i

n n n n

i i i i i
i i i i

C a b a a a b a a a a a a b

a a a a a b a b b

∈ = = =

= = = =

= + = + + + = + + + + + +

⎛ ⎞ ⎛ ⎞+ + + + + + + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑≤ ≤

 

It follows that 1 * * *1 1 1 81
5 2 10 5

HC C C C⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

≤  by Theorem 2.1. 

Case 2. J3∈V2 (see Fig.4(b)). Next, we have 1

1 2 41 1i

n nH
i i iJ V i iC a b a a b

∈ = =
= + = + +∑ ∑ ∑ , which, together with 

the fact that a4≤a3≤a2≤a1, leads to 1
1 2 3 4 1 1 1

1 1 1 1( ) ( ) ( ( ))
2 2 2 2

n n nH
i i i ii i iC a a a a b a b b

= = =
+ + + + + +∑ ∑ ∑≤ ≤ . 

Hence, we have 1 * * *1 3
2 2

HC C C C+ =≤  by Theorem 2.1. 

The proof is complete. 
 
 
 
 

(a)                                    (b) 

Fig.4  Assignment of J3 

Now, we focus on subcase 2.2 with t=3. 
By the rule of algorithm H1 and the definition of t, we can conclude that J1∈V2 and J2,J3∈V1. Then, 

1 1
2 1

( )t t
i ii i iJ V J Va a b− −∈ ∈

> +∑ ∑  implies a1>a2+b2. Recall that 
2 1

( )
i ii i iJ V J Va a b
∈ ∈

+∑ ∑≤  in case 2 in the proof of 

Theorem 2.2. It follows that 1 2 2 3 34
n

iia a a b a b
=

+ + + +∑ ≤ . Thus, we can claim that this case occurs if and only if 

the job set J  satisfies the following Condition 1: 

1 2 2

1 2 2 3 34

3
Condition 1: .

n
ii

n
a a b

a a a b a b
=

⎧
⎪⎪ > +⎨
⎪

+ + + +⎪⎩ ∑

≥

≤

 

For any instance J ={J1,J2,…,Jn}, consider the job set 1 2{ , ,..., }nJ J J′ ′ ′ ′=J  where i iJ J′ =  for i=1,2,3 and iJ ′  
satisfying 0ia′ =  and i ib b′ =  for i=4,…,n. Note that every job iJ ′ , i=4,…,n, is processed on M2 in any solution, 

which implies that there exists an optimal solution to process these jobs one by one at time zero on M2. It is easy to 
obtain an optimal schedule by using an enumerating method for the remainder jobs 1 1 2 2,J J J J′ ′= = and 3 3J J′ = . Let 

iV ′  be the set of jobs in {J1,J2,J3} processed by mode i in this optimal schedule, i=1,2. Denote V′={Bi|i=4,…,n}, 

then the optimal schedule can be described as Fig.5. 
Now we present a new algorithm Ag for subcase 2.2 with t=3 in the proof of Theorem 2.2 as follows: 
Algorithm Ag: 
1. Let 1V ′′= ∅  and 2 4{ }, 5V J k′′= = ; 

2. While k≤n, if 
2 1i ii iJ V J Va a′′ ′′∈ ∈

>∑ ∑ , let 1 1 { }kV V J′′ ′′= ∪ , and let 2 2 { }, 1kV V J k k′′ ′′= ∪ ← + ; 

3. Process tasks 2{ | }i iA J V ′′∈  and 1{ | }i iA J V ′′∈  on M1 and M2 at time zero, respectively. Let T be the 

 larger completion time on M1 and M2 for these tasks; 

J2

a1 a5…an 

b1

a1

a4 

a3 a5…an 

a4b4 b5…bn b1b4 b5…bn b3J2 J3 
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4. Since 1 2V V′′ ′′∪ =J� 1 2 3{ , , }J J J , we have 2 1{ | } { | }i i i iB J V B J V V′′ ′′ ′∈ ∪ ∈ = . Then, we can process the 

remainder tasks V′, 1V ′ , and 2V ′  by using the optimal schedule for J′ at time T. 

The algorithm Ag can be described in Fig.6. 
 
 
 
 

Fig.5  Optimal schedule for t=3           Fig.6  Illustrate of algorithm Ag 

Lemma 2.4. If the algorithm Ag processes the job set J  satisfying the Condition 1, then *
3 8
2 5

AgC
C

<≤ . 

Proof:  Let C* and C*′ be the optimal makespan of J  and J′, respectively. It is clear that C*≥C*′. Then, we 

have CAg≤T+C*′≤T+C* from Fig.6. We will complete the proof after showing that *1
2

T C≤ . 

In fact, the assignment of step 2 in algorithm Ag is identical to the LS algorithm. Let task Al be the task 

used to determine the time T. Then, we have ( )4

1
2

n
l i liT a a a

=
− −∑≤  by the assignment of Al, which yields that 

44

1 1
2 2

n
iiT a a

=
+∑≤  with al≤a4. Combining a1>a2+b2 and 1 2 2 3 34

n
iia a a b a b

=
+ + + +∑ ≤  in Condition 1, we 

obtain 3 34

n
ii a a b

=
< +∑ . 

It follows that 4 3 3 44 4

1 1 1 1 1( )
2 2 4 4 2

n n
i ii iT a a a a b a

= =
+ + + +∑ ∑≤ ≤ . It is clear that 4 1 2

1 ( )
2

a a a+≤  due to a4≤

a2≤a1. Thus, 3 3 1 2 34 1 1

1 1 1 1 1 1( ) ( ) ( )
4 4 4 4 4 4

n n n
i i i ii i iT a a b a a a b a b

= = =
+ + + + = + +∑ ∑ ∑≤ ≤ , implying *1

2
T C≤  by 

Theorem 2.1. 
Now, we present the improved algorithm H2: 
Algorithm H2: 
1. Re-index all jobs in set J  with respect to the values of ai such that a1≥a2≥…≥an. 
2. If J  satisfies Condition 1, run the algorithm Ag. Otherwise, run the Algorithm H1. 

From the proof of Theorem 2.2, Lemmas 2.3 and 2.4, the main result of this subsection can be obtained 
directly. 

Theorem 2.5. The worst-case ratio of algorithm H2 is at most 8/5. 
The worst-case ratio of 8/5 yielded by algorithm H2 is tight. Consider the instance J ={J1,J2,J3,J4,J5} where 

a1=2L, b1=ε; a2=L, b2=ε; a3=L−3ε, b3=ε; a4=L−4ε, b4=ε; a5=ε, b5=5L (Where ε<<L). 
It is optimal to process J1,…,J4 by mode 2 and J5 by mode 1 with the order of J5,J4,J3,J2,J1. Then, we have 

C*=5L+5ε, while 2 8 3HC L ε= − . It follows that 2
*

8 3 8
5 5 5

H LC
C L

ε
ε

−
= →

+
 when ε tends to 0. 

From the Algorithm H2, we believe that it is possible to design an algorithm with worst-case ratio 3/2 by 
presenting more detailed processing method for subcase 2.2 with t=4,5,6,…, though it may be very complicated and 
hard. 

V′ 1V ′

2V ′

2V ′ V′ 1V ′ 2V ′

2V ′
2{ | }i ia J V ′′∈

1{ | }i ia J V ′′∈
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3   NSHFS 

3.1   Computational complexity 

Theorem 3.1. The NSHFS is NP-hard. 
Proof:  We show the result by reducing the 3-partitioning problem to this problem. Given an instance 3P of 

the 3-partitioning problem with a set of positive integers A={c1,c2,…,c3m} and 3
1

,  4 2
m

i ii
B Bc mB c

=
= < <∑ , we 

construct an instance NS of the NSHFS as follows: 

4 2 4 2 4 2

: , ,             1,2,...,3 ( ),(3 )
: 1, 1,              3 1,3 2,...,4 1,

: 1, .

i i i i

i i i

m m m

BJ a b c i m m
J a B b i m m m
J a b B

ε ε ε

+ + +

= = − = <

= + = = + + +
= =

 

Let K=(m+1)B+(m+2). We claim that the instance 3P has a solution if and only if the instance NS has a solution 
with the objective value of no more than K. 

If 3P has a solution, that is, there exist m subsets S1,S2,…,Sm of A such that S1∪S2∪…∪Sm=A, Si∩Sj=∅, 
1≤i,j≤m, i≠j and 

i j ic S c B
∈

=∑ , then we construct a solution for instance NS, which processes jobs J1,J2,…,J3m by 

mode 1 and J3m+1,J3m+2,…,J4m+1 by mode 2 in order of their subscript and processes J4m+2 by mode 1 at time zero on 
M2. Let { | }j i i jS J c S′ = ∈  and process the jobs in jS′  between J3m+j and J3m+j+1 (j=1,2,…,m) (see Fig.7). It is clear 

that a3m+1=a4m+2+b4m+2 and for any 1≤j≤m, 3 2 3 ( )
i j i jm j m j i i ic S J Sa b B c a b+ + + ′∈ ∈

− = = = +∑ ∑  (i.e., the total size of 

the jobs in jS′ ). It follows that the makespan is 4 1
3 1 1 ( 1) 2m

ii m a m B m K+

= +
+ = + + + =∑ , which yields a solution of NS 

as a result. 
 
 
 
 
 

Fig.7  A solution for instance NS 

Before going to construct a solution of 3P from that of NS, we first give a proposition as follows: 
Proposition 3.2. Any solution of NS with makespan at most K must satisfy: 
(i) Jobs J3m+1,J3m+2,…, J4m+1 must be processed by Mode 2; 
(ii) Jobs J1,J2,…,J3m and J4m+2 must be processed by Mode 1; 
(iii) Job J4m+2 must be processed on M2 before J3m+1. 

Proof:  (i) If there is a job Jj, 3m+1≤j≤4m+1 processed by mode 1, then the completion time of M2 is 

not less than 4 2 3
1 11 1 3 ( 2) 2 3m m

j i ii ia b B B m c m m B m mε ε+

= =
+ = + + + + + − = + + + −∑ ∑ , which is strictly greater than 

K due to the assumption of 
3
B
m

ε < , a contradiction. With loss of generality, we assume these jobs are processed in 

order of their subscript. Then, we can conclude that the completion time of these jobs is at least 

 
4 1

4 1
3 1

m

i m
i m

a b K
+

+
= +

+ =∑  (4) 

(ii) Suppose there is a job Jj, 1≤j≤3m or j=4m+2 processed by mode 2. From (i) and the Eq.(4), we obtain 

that the makespan is not less than 4 2 4 2min{ , } 1 ,  if 4 2
min{ , } ,            if 1 3

m m

i i

K a b K K j m
K a b K K j mε

+ ++ = + > = +⎧
⎨ + = + >⎩ ≤ ≤

 a contradiction too. 

A3m+1 

K 

1S′J4m+2 

A3m+2 A4m+1 …

…B3m+1 B3m+2 mS′ B4m+1B4m
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(iii) Suppose J4m+2 is processed between J3m+j and J3m+j+1, 1≤j≤m, or after J4m+1 on M2. If J4m+2 is processed 
after J4m+1, combing it with Eq.(4), we conclude that the makespan is not less than K+b4m+2=K+B>K, a 
contradiction. If it is processed between J3m+j and J3m+j+1, 1≤j≤m, then the completion time of A3m+j+1, i.e., the start 

time of B3m+j+1 (see Fig.8), is at least 3 3
3 4 2 4 23 1 3 1 2m j m j

i m j m m ii m i ma b a b a B+ +
+ + += + = +

+ + + = + +∑ ∑ . Hence, the makespan is 

at least 3 4 1 4 1
4 1 3 13 1 3 2 3 1

2 3 1 ,m j m m
i i m i m ji m i m j i m

a B a b a a B K K+ + +
+ + += + = + + = +

+ + + + = − + + = + >∑ ∑ ∑  which yields the last 

contradiction. 
 
 
 
 
 

Fig.8  J4m+2 is processed between J3m+j and J3m+j+1 

Now, we continue to prove our result. By Proposition 3.2, we can obtain one best possible schedule for Ji, 
3m+1≤i≤4m+2, as described as Fig.9. 

 
 
 
 
 

Fig.9  One optimal schedule for Ji, 3m+1≤i≤4m+2 

From Eq.(4), in order to obtain the makespan no more than K, we must partition {J1,J2,…,J3m} into m subsets 

jS′  with ( )
i j i iJ S a b B′∈

+∑ ≤ , 1≤j≤m, and schedule all jobs in jS′  between J3m+j and J3m+j+1. Because ai+bi=ci 

and 3
1

m
ii c mB

=
=∑ , we have ( )

i j i ji i iJ S J Sa b c B′ ′∈ ∈
+ = =∑ ∑ , j=1,2,…,m. Let { | }j i i jS c J S′= ∈ . Then, we have 

, 1,2,...,
i j i ji ic S J Sc c B j m′∈ ∈

= = =∑ ∑ , which implies that S1,S2,…,Sm is a solution of 3P. 

If it takes time for constructing NS, then NSHFS is NP-hard. 
Recall that, in Ref.[1], there exists an optimal algorithm for the problem SHFS if the processing mode of every 

job is known in advance (that is, the job set J  has been partition into two sets V1 and V2 defined in section 2). For 

the pure two-stage two machines flowshop with no-waited problem, denoted by TTMF, if the job processing mode 
of every job is given in advance, there also exists an optimal algorithm presented by Gilmore and Gomory[5]. The 
difference between NSHFS and TTMF is that in NSHFS both two tasks of job can be processed on M2, while in 
TTMF two tasks of job must be processed on different machines. However, the following theorem shows that the 
problem NSHFS is still NP-hard, even if the processing mode of every job is known in advance. Hence, we can 
conclude that, in some sense, the problem NSHFS is more difficult than the other two problems. 

Theorem 3.3. NSHFS is NP-hard if the job processing mode of every job is given in advance. 
Proof:  We also show the result by reducing the 3-partitioning problem to this problem. Given the instance 3P, 

we construct an instance of the NSHFS with the processing mode of every job as follows: 

A3m+1 

K+1

J4m+2

A3m+j A4m+1…

… B3m+1 B3m+j

… A3m+j+1

B3m+j+1 B4m+1

1

…

A3m+1 

K

J4m+2 

A3m+j A4m+1

B3m+1 B3m+j

… A3m+j+1

B3m+j+1 B4m+1

A3m+2 

…

…

…B3m+2

BBB 
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4 2 4 2 4 2

: ,                       processed by Mode 1, 1,2,...,3 ( ),(3 )
: 1, 1,               processed by Mode 2, 3 1,3 2,...,4 1,

: 1,  processed by Mode 1.

i i i i

i i i

m m m

BJ a b c i m m
J a B b i m m m
J a b B

ε

+ + +

+ = = <

= + = = + + +

+ = +

 

Let K=(m+1)B+(m+2). The following proof is just similar to that of Theorem 3.1. 

3.2   A polynomial time approximation algorithm for NSHFS 

Let CH and C* be the makespan yielded by algorithm H and an optimal algorithm for problem NSHFS, 
respectively. It is clear that the optimal makespan of NSHFS is not less than that of SHFS. Then, Theorem 2.1 is 
still true for problem NSHFS. In this section, we continue to use the notation V1 and V2 defined in section 2. 

For this problem, the main idea of the algorithm also includes two parts: partitioning J  into V1 and V2 and 

giving the processing order of jobs. The detailed can described as follows: 
Algorithm H3: 
1. Re-index all jobs in set J  with respect to the values of ai such that a1≥a2≥…≥an; 

2. If 1 1

1 ( )
6

n
i iia a b

=
+∑≥ , put jobs J2,J3,…,Jn into set V1, and job J1 into V2. Then, process jobs in order of 

 J2,J3,…,Jn,J1 (see Fig.10). Stop. 

3. If 
11

1 ( )
6

n
i iia a b

=
+< ∑ , we do: 

3.1. If n is an even number, let 2
nm = , put jobs J2i−1, i=1,2,…,m into set V2 and jobs J2i, i=1,2,…,m 

  into set V1. Then, process the jobs in order of J2,J1,J4,J3,…,J2i+2,J2i+1,…,J2m,J2m−1 (see Fig.11(a)).  
  Stop. 

3.2. If n is an odd number, let ( 1)
2

nm −= , put jobs J2i−1, i=1,2,…,m+1 into set V2 and jobs J2i, 

  i=1,2,…,m into set V1. Then, process jobs in order of J2,J1,J4,J3,…,J2i+2,J2i+1,…,J2m,J2m−1,J2m+1 (see 
  Fig.11(b)). Stop. 

Since it is clear that the time complexity of Step 1 is O(nlogn), and the other steps run in O(n), then the time 
complexity of algorithm H3 is O(nlogn). 

 
 
 
 

Fig.10  Case of 1 1

1 ( )
6

n
i iia a b

=
+∑≥  

Theorem 1. 3
*

5
3

HC
C

≤  and the bound is tight. 

Proof:  We distinguish two cases 1 1

1 ( )
6

n
i iia a b

=
+∑≥  and 

11
1 ( )
6

n
i iia a b

=
+< ∑  to obtain the desired worst- 

case ratio. 

Case 1. 1 1

1 ( )
6

n
i iia a b

=
+∑≥ . Then from step 2 and Fig.10, it iseasy to obtain that 

3
1 1 1

1
max ( ) , .

n
H

i i
i

C a b a a b
=

⎧ ⎫
= + − +⎨ ⎬

⎩ ⎭
∑  

If 3
1 1

HC a b= + , then 3*
1 1

HC a b C+ =≥  from Theorem 2.1, which yields 3* HC C= . 

A1

… B1J2 J3 Jn
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If 3
11( )nH

i iiC a b a
=

= + −∑ , by the assumption of 1 1

1 ( )
6

n
i iia a b

=
+∑≥ , we obtain that 

3 *
11 1

1 5( ) 1 ( ) .
6 3

n nH
i i i ii iC a b a a b C

= =

⎛ ⎞= + − − +⎜ ⎟
⎝ ⎠

∑ ∑≤ ≤  

Case 2. 
11

1 ( )
6

n
i iia a b

=
+< ∑ . If n is an even number, then from step 3.1 and Fig.11(a), we have 

3
2 2 1 2 2 2 3 2 1 2 1

2
max{ , } max{ , } .

m
H

i i i i m
i

C a b a a b b a b− − −
=

= + + + + +∑  

Since a1≥a2≥…≥an, then 

 

3
1 1 2 1 2 2 3 2 1 2 1 1

2 2 1

2 2 2 1 1 1 1
2 1 1 1

( ) ( )

1 1 1 1 1      ( )
2 2 2 2 2

m m n
H

i i i m i i
i i i

m n n n

i i i i i
i i i i

C a b a b b b a b a

a a a b a a b a

− − − −
= = =

− −
= = = =

+ + + + + = + +

+ + + + < + +

∑ ∑ ∑

∑ ∑ ∑ ∑

≤

≤

 (5) 

If n is an odd number, then from step 3.2 and Fig.11(b), we can obtain that 

3
2 2 1 2 2 2 3 2 1 2 1 2 1 2 1

2
max{ , } max{ , } max{ , } .

m
H

i i i i m m m
i

C a b a a b b a b a b− − − + +
=

= + + + + + +∑  

By the similar argument for inequality (5), we can also obtain that 3
11 1

1 1
2 2

n nH
i ii iC a b a

= =
+ +∑ ∑≤ . 

 
 
 
 
 
 

(a) 

 
 
 
 
 
 

(b) 

Fig.11  Case of 
11

1 ( )
6

n
i iia a b

=
+< ∑  

According to 
11

1 ( )
6

n
i iia a b

=
+< ∑  and Theorem 2.1, we have *

1
1
3

a C< . Hence, from the inequality (5) and 

Theorem 2.1, we obtain 3 * * * *
11 1

1 1 1 1 1 5( ) .
2 2 2 2 6 3

n nH
i i ii iC a b b a C C C C

= =
+ + + + + =∑ ∑≤ ≤  

To show that the worst-case ratio of 5/3 is tight, we consider the instance J={J1,J2,…,J6}, where ai=L−(i−1)ε,  

bi=ε for i=1,2,3, ai=L−iε, bi=ε for i=4,5, and ai=L−(i+1)ε, bi=ε for i=6 (where ε<<L). It is not hard to obtain that it is 
optimal to process Ji, i=1,3,5 by Mode 2 and the remainder by Mode 1. Then, process them in order of J2,J1,J4, 

J3,J6,J5. We can obtain that C*=3L−6ε, while 3 5 13HC L ε= − . It follows that 3
*

5 13 5
3 6 3

H LC
C L

ε
ε

−
= →

−
 when ε tends 
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to 0. 
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