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Abstract: This paper investigates a variant scheduling problem of minimizing makespan in a two-machine flow
shop. In this variant, there will be two tasks for each job. The first task can be processed on either machine, and the
second task can only be processed on the second machine after the first task has been finished. Furthermore, if the
second task should start right after the first task is completed, it is called a no-waited case and is denoted by NSHFS.
On the other hand, if the second task is allowed to be processed at any time after the first task is completed, the
problem is then denoted as SHFS. In the case of SHFS, based on the result of Wei and He, an improved polynomial
time approximation algorithm with worst-case ratio of 8/5 is presented. In the case of NSHFS, this paper shows that
it is NP-hard, and presents a polynomial time approximation algorithm with worst-case ratio of 5/3.
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1 Introduction

This paper considers the following two-machine flow shop scheduling problem. There is a set of independent
jobs [ 7={J1,J,...,dn} to be processed in two machines M; and M,. Each J;, for i=1,2,...,n, consists of two tasks A;
and B;, and only upon finishing task A; can task B; start. Task A; can be processed on M, for a; time units, or on M,
for a; time units; task B; can only be processed on M, for b; time units. We assume that jobs and machines
are available at time zero, and preemption is not allowed. For a given schedule, we denote the completion time of
task A by C,, Sy, the start time of task B;, and Cpnix=max{Ci}, the makespan. The goal is to minimize
the makespan.

The above model, proposed first by Wei and Hel¥, applies to the graphic programs processing which comprises

of data and graphics processing. Graphics processing cannot start until data processing is completed. Data
processing can be done by either CPU (central processing unit), or GPU (graphic processing unit), while graphics
processing must be done by GPU. The above model is derived from the fact that we refer to CPU and GPU as two
machines and the processing of data and graphics as the jobs. We usually put the results of data processing into a
cache memory in advance and take them out when we begin graphics processing.
The two-stage hybrid flow shop problems (denoted by HFS) proposed by Panagiotis and George? are similar to our
problem. It is assumed that the two tasks of each job can be both processed on either machine, or processed by the
traditional model, i.e., the first task on M; and the second task on M,. Clearly, in HFS, there are three processing
models for each job, while only two models in our problem. Hence, we call our problem the two-stage semi- hybrid
flow shop problem. In some cases, the space of the cache memory is not enough to store some of the results that
data processing needs. Sometimes, there is no cache memory. Under these circumstances, the task B; should begin to
be processed after the completion of task A;, i.e. C, =Sy . We call this problem as a two-stage no-waited
semi-hybrid flowshop denoted by NSHFS. On the other hand, if task B; is allowed to be processed any time after
the completion time of task A;, i.e. S =C, , then this problem would be denoted by SHFS. In this paper, both
problems NSHFS and SHFS will be considered.

The problem HFS is proved to be NP-hard, and Ref.[2] proposed an optimal algorithm based on dynamic
programming and extends it to a pseudo-polynomial approximation algorithm for a generalized problem. Another
closely related problem is called two-stage flow shop problem with multi-processor flexibility by Vairaktarakis and
Leel®], where the first task must be completed before the second task can start. Moreover, the first (second) task can
be processed on M; (M,), or on both processors simultaneously with smaller processing time. For this problem,
Vairaktarakis and Lee presented a dynamic programming algorithm and a polynomial time approximation algorithm
with a worst-case ratio of 1.618.

In Ref.[1], the problem SHFS was also considered. Simply, the processing times of task A; on M; and M, is
different. They showed the problem SHFS is ordinary NP-hard, and presented a pseudo-polynomial time optimal
algorithm and a polynomial time approximation algorithm with a worst-case ratio 2. In this paper, we present an
approximation algorithm with a worst-case ratio of 8/5 for SHFS. In addition, we consider the new problem
NSHFS. We show it is NP-hard, and present a polynomial time approximation algorithm with a worst-case ratio of
5/3.

The rest of the paper is organized as follows. In Section 2, we present a better polynomial time approximation
algorithm with a worst-case ratio of 8/5 for the SHFS problem. In Section 3, we show the problem NSHFS is
NP-hard and present a polynomial time approximation algorithm with a worst-case ratio of 5/3.

In the remainder of this paper, let C" and C” be the makespan yielded by an algorithm H and an optimal
schedule for a given instance of SHFS or NSHFS.
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2 SHFS

To present the polynomial time approximation algorithm for problem SHFS, we first define two processing
modes for each job. One is called mode 1 if both tasks A; and B; of job J; are processed in turn on M, with a; and b;
time units, respectively. Another one is called mode 2 if the task A; is processed on M; with a; time units and task B;
on M, with b; time units. It is easy to see that every job should be processed by mode 1, or alternatively mode 2
due to the definition of problem SHFS. Consequently, in an arbitrary schedule, the set of jobs .7 can be partitioned
into two non-intersecting subsets: V; and V,. V; is made up of all jobs which are processed by mode 1; V, is made
up of all jobs which are processed by mode 2.

Johnson’s rule™ is the optimal schedule of two-machine flowshop, but if every task A; of job J; is processed on
M; and task B; on M, and the jobs in 7 are processed in the Johnson’s rule, Wei and He!™ show the worst-case

ratio is 2. Thus, Johnson’s rule is not very efficient for SHFS.
2.1 A greedy-like algorithm H; for SHFS

In this subsection, we present an algorithm, denoted by Hy, including two phases 1 and 2, which are used for
partitioning all jobs into two sets and processing jobs, respectively.

Algorithm H;:

Let V, be aset of jobs processed by mode i, i=1,2 after assigning the first k jobs in phase 1.

Phase 1:

1. Re-index all jobs in set .7 with respect to the values of a; such thata;=a,=...=a,;

2. Let V=@ and V, ={J,}, k=2;

3. While k<<n, if Zjigvzk,lai >ZJiEV1k,1(ai+bi), let V¥=V*"U{3,} and V) =V}, and let V} =V}
and V) =V, U} k< k+1;

4. Return V," and V,'.

For convenience, we denote V; =V," and V, =V, in the remainder of this subsection.

Phase 2:

1. Process all tasks A; in V, on My in order of their indices at time zero;

2. Process all jobs in V; on M, in order of their indices at time zero, and all tasks B; in V, as early as
possible in order of their indices.

It is not hard to obtain that the time complexity of the algorithm H; is O(nlogn).

. 1 n n
Theorem 2.1. C" = max{ziz_ll(ai + bi),éq,lrgi)g{ai + bi}} .
Proof: The optimal makespan must be at least the average load of the 2 machines. Therefore, it is clear that
c’ Z%Zi":l(ai +b,) . For each task, B;, i=1,2,...,n, is processed on M,, which follows that the completion time of
Mgisatleast > " b. Then, C"=3"" b, and C"=max;<i=,{a;+bi} holds trivially.

The proof is applicable for both jobs that are allowed to wait and those that are not. Thus, Theorem 2.1 is
suitable for both SHFS and NSHFS.

Theorem 2.2. C%* <§ and the bound is tight.

Proof: To obtain the desired worst-case ratio, we distinguish two cases as follows.
Case 1. Zlevz a >ZJ>€V1 (a +b) (see Fig.1).
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Vs

V, V,

Fig.1 Casel

Let J; be the last job processed on M;. It yields J;eV; for each t+1<<i<{n. Furthermore, by the definition of J;,
we conclude that the completion time of all jobs in V,""is not less than the start time of task A,, and the completion
time of all jobs in V; is not greater than that of task A;. Therefore, by step 2 of phase 2, all tasks B; in V,\{B.} can be

processed on M, one by one right after the completion time of all jobs in V;. Hence, the makespan is determined by
task B;. Two cases are considered as shown in Fig.2.

ay | at ajp ‘ at

el [ QL] 1[I o]
! 5

Jis1...dn BieVo{Bi} Jis1...dn BieVo\{B}

(@) (b)
Fig.2 The makespan determined by B,

For the first case (see Fig.2(a)), we have C™ = ZJveVZ a; + Db, . By the definition of J; and step 3 in phase 1, we

can conclude that v, 1y I D am@+bh) < ,, (@ +by) , together with Theorem 2.1, leads to
i€ t i€y i€

Ch= > a+a-+h eyt > ai+1 > a+a+h = > ai+E > (a+b)+a, +b
JieVo \{9i} 2 JieVo It} 2 Ji Vo \{3} JieVo {3} Jievy
<23 @+h)+1 Y (a+h)+o(a+h)=2D (@ +b)+ (g +h)<C + C'=>C"
25, 253 2 23 2 2 2
For the second case (see Fig.2(b)), we have
n
Ch=>a+>h (1)
Jievy n-1
and thus
ch< Y (a+h) )

JieVy

due to szevl (@ +b)< ZJ_E\IZ a,. Then, from Eq.(1), Eq.(2) and Theorem 2.1, we have

ch <1[ > a +Zn:bi + > ( +b.)]<%2n:(ai +bi)+% > b <C*+%C*:§C*.
i=1

Jievy i=1 JjeV, JieV,
Case 2. ZJ_EVZ a ézj_s\ﬁ(ai +b;) (see Fig.3(a)). Then C™ :ZJ_EVlai +." b We distinguish two cases
according to the number of jobs in V.
Subcase 2.1. |Vq|=1 (see Fig.3(b)). We have C™ =a,+>" b and a, < %zi":lai from a,<ay, then

H 1 4 13 13 « 1 .« 3
Ch<=>a+)b==>(a+b)+=D b <C+=C' ==
27 3 2 2 2 2

Subcase 2.2. |V4|>1. Let J; be the last job to be put into V; (see Fig.3(c)). It yields that the start time of job J; is

c".
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less than the completion time of all tasks A; in V™', which implies that

D (a+hb)- (a1+b()<2a Za_Za—Za

JieVy J: e\/2 JjeV, JjeVy

that is ZJEV <= (a1+b[+2,1. ZJ_Evlbi).

Since a;<a;, i=1,2,....t, we have a < Z. LA s= z a,. Then, we obtain that

C“1—2a+2b (q+Q+Za—Zb)+Zb— Z(a+b)+ (q+b)+—2b

Jievy Jievy J o~
<*Z(ai +bi)+fa1 +£Zn:b, 1Z(ai +bi)+—2ai+fzbi
2 i=1 2 i=1 2 i=1 i 2 il

n _ \ X X
L@ Sa e S so o oo e <o
i=1

The last inequality holds because t=3, due to |V,| and the definition of t.

T wE e s 1 5 1 - o] o] o
(a) (b) (©
Fig.3 Case?2

The following instance shows that the worst-case ratio of 5/3 is tight. Consider the instance .7={J;,J,,J3,J4}-
Where a;=L, bi=¢; a,=L-2¢, b,=¢, az=L-3¢, bs=L; a,=3¢ by=2L(e<<L). It is easy to obtain C'=3L+5¢ by
processing Js by mode 1 and J;,J5,J3 by model 2 with the order of J,,J3,J5,J1, while C™ =5L -3¢ It follows that

C/ SII: 253 >% when & tends to 0.
+5¢

2.2 Animprovement of Algorithm H;

In this section, we present an algorithm H, with a worst-case ratio of 8/5 by improving the algorithm Hj.

Recall that, in the proof of Theorem 2.2, the worst-case ratio in case 1 and subcase 2.1 is 3/2, and 3/2+ %,[ in

subcase 2.2. Then, the desired result can be obtained trivially by algorithm H; if t=5. In fact, the algorithm H; can
also achieve the desired result when t=4 (see Lemma 2.3). Hence, in order to improve the worst-case ratio, we only
need to improve the method for case t=3.

Before going to present the improved algorithm, we first show the following lemma.

Lemma 2.3. If t=4 in subcase 2.2 of the proof of Theorem 2.2, then C /* S

Proof: Recall that, C™ =ZJ B + b from case 2 in the proof of Theorem 2.2. Since JieVy, by the

rule of the algorithm H;, we can conclude that

Z & > Z (& +b) (3)

Jievy? Jeyt
Note that if J;eV, and J,eVy, we then consider two cases according to the assignment of Js.
Case 1. J;eV; (see Fig.4(a)). Then, Eq.(3) yields that al>a2+b2+a3+b3>a2+a3 Since a;<az<<a,, we have

a4<%(a2+a3)<%a1.Thus, ga4<%(a2+a3)+%a1+%a4 —(y+a,+a,+a,) <= Z. L&
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.1 1
Thatis, —a, <— a. . Therefore,
2" 10Z

i=1 1"

n
Ch=> a+db=a+a+a,+y.b f(a2+a3)+ (a2+a3+a4)+;a4+2b

n
Jievp i=1 i=1 i=1

1 n n
Sats (a2+a3+a4)+ Za+2b<( 1—]Z‘(a bH(E_EjZ

i=1

1

It follows that C™ <[1+%)C*+(%—EJC 7§C by Theorem 2.1.

Case 2. JzeV, (see Fig.4(b)). Next, we have C" —ZJ o +> " b=a,+a,+ . b, which, together with
the fact that a,<az<a,<ay, leadsto C™ <= (a1+a2)+ (a3+a4)+zI b (z L@ +h)+= Z. b

Hence, we have C™ <C” +%C* = gC* by Theorem 2.1.

The proof is complete.

a a5...anj a as a5...anI
|
5 | 3 | a | b [ beb, % a: | bu [bi]bs] bs.by
(C) (b)

Fig.4 Assignment of J;

Now, we focus on subcase 2.2 with t=3.
By the rule of algorithm H; and the definition of t, we can conclude that J,eV, and J,,JzeV;. Then,
zjiev;lai >ZJiEV1H(ai +h) implies a;>a,+b,. Recall that zJi€V2 a ézjis\ﬁ(ai +b;) in case 2 in the proof of

Theorem 2.2. It follows that a1+2?:4ai < a, +b, +a,+b,. Thus, we can claim that this case occurs if and only if
the job set .7 satisfies the following Condition 1:
n=3
Condition 1:9a, > a, +b,
a+> a4 <a,+h +a,+h
For any instance [7={J1,J,...,dn}, consider the job set 7'={J,,J,,...,J;} where J/=J; fori=1,2,3and J/
satisfying a/=0 and b/=b, for i=4,...,n. Note that every job J/, i=4,...,n, is processed on M, in any solution,
which implies that there exists an optimal solution to process these jobs one by one at time zero on M,. It is easy to
obtain an optimal schedule by using an enumerating method for the remainder jobs J; =J;,J; =J, and J; = J,. Let
V" be the set of jobs in {J;,J,,J3} processed by mode i in this optimal schedule, i=1,2. Denote V'={B;|i=4,...,n},
then the optimal schedule can be described as Fig.5.
Now we present a new algorithm Ag for subcase 2.2 with t=3 in the proof of Theorem 2.2 as follows:
Algorithm Ag:
1. Let V'=¢ and V,={J,}, k=5;
2. While k<n, if ZJ,E\/;ai >Zjlewai Jet V'=V/"u{J,},and let V, =V, U{J, } .k« k+1;
3. Process tasks {A]J;eV,} and {A|J, €V} on M; and M, at time zero, respectively. Let T be the
larger completion time on M, and M, for these tasks;
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4. Since VUV/=.7\{J,,J,,.}, we have {B|J, eV, }U{B |J, eV,}=V'. Then, we can process the
remainder tasks V', V,', and V, by using the optimal schedule for .7 at time T.
The algorithm Ag can be described in Fig.6.

Vi @l | V|

\VZ \'A {a 13 eV} v’

Fig.5 Optimal schedule for t=3 Fig.6 Illustrate of algorithm Ag

Lemma 2.4. If the algorithm Ag processes the job set .7 satisfying the Condition 1, then c /* < <3 <§
Proof: Let C" and C™ be the optimal makespan of .7 and .7, respectively. It is clear that C">=C"". Then, we
have C*<<T+C"<<T+C" from Fig.6. We will complete the proof after showing that T < %C* .
In fact, the assignment of step 2 in algorithm Ag is identical to the LS algorithm. Let task A, be the task

used to determine the time T. Then, we have T-a < %(Z::Aai —a,) by the assignment of A;, which yields that
T<= Z. At a4 with aj<<a,. Combining a;>a,+b, and a1+z a8 <a,+b,+a,+b, in Condition 1, we
obtain Y ,a <a;+b,.

It follows that T < Z. " a4\»zl At (a3+b3)+;a4 Itis clear that a, < (a1+a2) due to a,<

a,<a,. Thus, T<= zl N (a3+b3)+ (a1+a2)— ZI 1a,+ib < Z::l(ai+bi)' implying Tgéc* by
Theorem 2.1.

Now, we present the improved algorithm H:

Algorithm Hy:

1. Re-index all jobs in set .7 with respect to the values of a; such that a;=a,=... =a,,.
2. If 7 satisfies Condition 1, run the algorithm Ag. Otherwise, run the Algorithm H;.

From the proof of Theorem 2.2, Lemmas 2.3 and 2.4, the main result of this subsection can be obtained
directly.

Theorem 2.5. The worst-case ratio of algorithm H, is at most 8/5.

The worst-case ratio of 8/5 yielded by algorithm H, is tight. Consider the instance 7={J1,J,,J3,J4,J5} Where
a;=2L, by=¢; a,=L, b=, az=L-3¢, bs=¢; ay=L—4¢, by=¢; as=¢, bs=5L (Where &<<L).

It is optimal to process Jy,...,J; by mode 2 and Js by mode 1 with the order of Jg,J4,J3,J,J;. Then, we have

i, T —>§ when &tends to 0.
5L +5¢

From the Algorithm H,, we believe that it is possible to design an algorithm with worst-case ratio 3/2 by
presenting more detailed processing method for subcase 2.2 with t=4,5,6,..., though it may be very complicated and
hard.

C'=5L+5¢ while C" =8L -3¢ . It follows that C”%* -
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3 NSHFS

3.1 Computational complexity

Theorem 3.1. The NSHFS is NP-hard.
Proof: We show the result by reducing the 3-partitioning problem to this problem. Given an instance 3P of

the 3-partitioning problem with a set of positive integers A={c;,C,,...,C3n} and Z?:Ci =mB, I%<ci < 52, we

construct an instance NS of the NSHFS as follows:

Jiia,=¢&,b=¢—¢, i=12,...,3m (‘9<%3m))'
J;ia,=B+1b =1 i=3m+13m+2,..,4m+1,

Jamiz P8umi2 =L 04y, = B.
Let K=(m+1)B+(m+2). We claim that the instance 3P has a solution if and only if the instance NS has a solution
with the objective value of no more than K.
If 3P has a solution, that is, there exist m subsets Sy,S,,...,Sn of A such that S;US,U...USy=A, SiNS=Q,
1<<i,j<m, i#j and Zciesj ¢, = B, then we construct a solution for instance NS, which processes jobs J;,J5,...,d3m by

mode 1 and Jam+1,d3m+2, .-, Jam+1 DY mode 2 in order of their subscript and processes Jan+> by mode 1 at time zero on
M,. Let S| ={J;|c; €S;} and process the jobs in S} between Jzy.j and Jamjer (7=1,2,...,m) (see Fig.7). It is clear

that agms1=asm+2+bam+2 and for any 1<j<m, as,, ., —bs,.; =B :Zciesj ¢ =Y . (a+h) (ie, the total size of

JjeS]

4m+1

the jobs in S}). It follows that the makespan is Z a+1=(m+1)B+m+2=K, which yields a solution of NS

i=3m+1 1

as a result.

A3m+l A3m+2 A4m+1

’ '
‘]4m+2 B3m+1 Sl B3m+2 BAm Sm B4m+1

Fig.7 Asolution for instance NS

Before going to construct a solution of 3P from that of NS, we first give a proposition as follows:
Proposition 3.2. Any solution of NS with makespan at most K must satisfy:

(i) Jobs Jzm+1,d3me2,- -+, Jam+1 Must be processed by Mode 2;
(ii) Jobs J1,Jy,...,d3m @and Jsmsp Must be processed by Mode 1;
(iii) Job Jgm+, must be processed on M, before James.

Proof: (i) If there is a job J;, 3m+1<cj<<4m+1 processed by mode 1, then the completion time of M, is

4m+2

o b=B+1l+ B+m+1+zi3:‘1ci -3me=(M+2)B+m+2-3me, which is strictly greater than

not less than a; + )’
K due to the assumption of ¢ < 3 a contradiction. With loss of generality, we assume these jobs are processed in
m

order of their subscript. Then, we can conclude that the completion time of these jobs is at least

4m+1

Z &+, =K 4)

i=3m+1
(ii) Suppose there is a job J;, 1=<xj<<3m or j=4m+2 processed by mode 2. From (i) and the Eq.(4), we obtain
K +min{a,,,,,b;m.p=K+1>K, if j=4m+2
K+min{a;,b}=K+¢>K, if 1< j<3m

that the makespan is not less than { a contradiction too.
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(iii) Suppose Jyms, is processed between Jgm.j and Jamejsr, 1j<<m, or after Jymsq 0N My, If Jyps, is processed
after Jyms1, combing it with Eq.(4), we conclude that the makespan is not less than K+byn.,=K+B>K, a
contradiction. If it is processed between Jam.j and Jamsje1, 15j<<m, then the completion time of Agn.j+q, i.€., the start

3m+j 3m+j

o & T Bamy Qo 040 = Zi:mﬂai +B+2. Hence, the makespan is

time of Bap.j+1 (see Fig.8), is at least )

at least > a.+B+2+Z?:";;1+j+zai+b4m+1:z:‘:";;l+lai—a3m+j+l+ B+3=K+1>K, which yields the last

i=3m+1 1

contradiction.

1
A3m+1 e ‘ A3m+j A3m+j+1 A4m+1
T 1
Bam+1 - Bam+j Jams+2 B3rn+j+l Bam+1
K+1

Fig.8 Jams is processed between Jgp.j and Jamsjer

Now, we continue to prove our result. By Proposition 3.2, we can obtain one best possible schedule for J;,
3m+1<<i<<4m+2, as described as Fig.9.

Asmet | Agmsz Asmsj | Asmajet ‘ Asms1
1 1 1 [ 1 1
Jams2 | Bams1 Bams2 " BBm+j BSm+j+1 e Bam+1
T 1
s | B B K

Fig.9 One optimal schedule for J;, 3m+1<<i<<4m+2

From Eq.(4), in order to obtain the makespan no more than K, we must partition {J;,Jy,...,J3n} into m subsets
S| with Zjiesi(ai +b)=<B, 1<j<m, and schedule all jobs in S| between Jzpn.j and Jam.j+1. Because aj+bi=c;

and > c,=mB, we have Y (a+b)=Y =B, j=12..m Let S,={¢|J,€S;}. Then, we have
= i€9j i€9j
zqesj ¢ = ZdieSi ¢ =B, j=12,..,m, which implies that S;,S,,...,S is a solution of 3P.

If it takes time for constructing NS, then NSHFS is NP-hard.

Recall that, in Ref.[1], there exists an optimal algorithm for the problem SHFS if the processing mode of every
job is known in advance (that is, the job set .7 has been partition into two sets V; and V, defined in section 2). For
the pure two-stage two machines flowshop with no-waited problem, denoted by TTMF, if the job processing mode
of every job is given in advance, there also exists an optimal algorithm presented by Gilmore and Gomory®!. The
difference between NSHFS and TTMF is that in NSHFS both two tasks of job can be processed on M,, while in
TTMF two tasks of job must be processed on different machines. However, the following theorem shows that the
problem NSHFS is still NP-hard, even if the processing mode of every job is known in advance. Hence, we can
conclude that, in some sense, the problem NSHFS is more difficult than the other two problems.

Theorem 3.3. NSHFS is NP-hard if the job processing mode of every job is given in advance.

Proof:  We also show the result by reducing the 3-partitioning problem to this problem. Given the instance 3P,

we construct an instance of the NSHFS with the processing mode of every job as follows:

© PEEEEBAITT
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J,ia+b =¢, processed by Mode 1,i=1,2,...,3m (¢ < %Sm))‘
J,ia,=B+1b =1 processed by Mode 2,i=3m+1,3m+2,...,4m+1,
Jumaz S 84ms2 +Dams, = B +1, processed by Mode 1.

Let K=(m+1)B+(m+2). The following proof is just similar to that of Theorem 3.1.
3.2 A polynomial time approximation algorithm for NSHFS

Let C" and C” be the makespan yielded by algorithm H and an optimal algorithm for problem NSHFS,
respectively. It is clear that the optimal makespan of NSHFS is not less than that of SHFS. Then, Theorem 2.1 is
still true for problem NSHFS. In this section, we continue to use the notation V, and V, defined in section 2.

For this problem, the main idea of the algorithm also includes two parts: partitioning .7 into V; and V, and
giving the processing order of jobs. The detailed can described as follows:

Algorithm Ha:

1. Re-index all jobs in set .7 with respect to the values of a; such that a;=a,=... =a,;

2. If a= %Zi":l(ai +b,), put jobs J,,J3,...,J, into set V4, and job J; into V,. Then, process jobs in order of
J2,J3,...,dnJ1 (See Fig.10). Stop.

3. If a< %z:zl(ai +b), we do:
3.1. If nis an even number, let m= n2 , put jobs Jyi_y, i=1,2,...,m into set V, and jobs J,;, i=1,2,...,m

into set V4. Then, process the jobs in order of J,,J1,4,J3,...,J2i+2,d2i+1, ..., Jom,:Jom_1 (S€€ Fig.11(a)).
Stop.

3.2. If nis an odd number, let m:(n_l)2 , put jobs Jyi_y, i=1,2,...,m+1 into set V, and jobs Jy;,

i=1,2,...,m into set V;. Then, process jobs in order of J;,J1,d4,J3,-..,d2i2,J2i+1, - - - »J2msdom-1:d2m+1 (SEE
Fig.11(b)). Stop.
Since it is clear that the time complexity of Step 1 is O(nlogn), and the other steps run in O(n), then the time
complexity of algorithm Hs is O(nlogn).

]

58]

Jz‘Jg‘

Fig.10 Case of aizéz::l(ai +b,)

Theorem 1. C%* < % and the bound is tight.

Proof: We distinguish two cases g, Z%Z?ﬂ(ai +b) and a <%Z?:1(ai +b;) to obtain the desired worst-
case ratio.

Casel. a = %Zi”:l(ai +b,) . Then from step 2 and Fig.10, it iseasy to obtain that

Cchs= max{zn:(ai +bi)—a1,a1+bl}.

i=1

If C™ =a +b,then C"=a +b =C" from Theorem 2.1, which yields C"=C" .
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If C"=3" (a+h)-a,, by the assumption of a, = %Z::I(ai +b;), we obtain that

1 5 «
C“=ZL@+W—%<@-QZL@+W<§C-
Case 2. g < %Zi":l(ai +b,) . If nis an even number, then from step 3.1 and Fig.11(a), we have

CcM = max{a, +b,,a}+ Z max{a,; +b,; + by 5, a8y }+b, ;.
i=2

Since a;=a,=... =a,, then
c < (8, +b)+ Z(azu +hy + 0y 5) +D,, = Zazm + Zbi +a,
i i—2 =)
o1 1 : 1 13 1 1 ®)
< Z*(azpz +ay ) -+ zbi +-a < *zai + zbi +-a
iz 2 2 o 2 2: 7 37 2

If nis an odd number, then from step 3.2 and Fig.11(b), we can obtain that

m
H
C™ =max{a, +b,,a}+ z max{a,; + by +by;_5, 8y} + max{b,,_y, 8y, 3+ by g
i—2

. . . b lon n 1
H
By the similar argument for inequality (5), we can also obtain that C™ < EZizlai +Zi:1bi +5a1.
i ;
A1 As | Acics Avica | .. Aoz Aom-1
_ 1
Ja B: Ja Bs . Baia| J2 By -+ Boms | Jom | Boma
B [ [
Max{a,+b2,a1} Max{azi+bi+0zi_3,82i 1} bom-1
(@
—
Ay As e Azi-3 Agig - Azm-3 Azm-1 Aot
1
b2m+1
J2 B; Ja Bs| ... Bi_s J;i Bai-1 -+ ' Bamg | Jom | Bamt Boms1
~ | ' A
Max{a2+b2,a1} Max{a2i+b2i+b2i,3,a2i,1} Max{me—lvaZm—l}
(b)

Fig.11 Case of a1<%zi":1(ai+b,)

According to a; <%Zi":1(ai +b,) and Theorem 2.1, we have a1<%C*. Hence, from the inequality (5) and

Theorem 2.1, we obtain C™s < %Zi”:l(ai +h) +%Zi":1bI +%a1 <cC" +%C* +%C* = gC*.

To show that the worst-case ratio of 5/3 is tight, we consider the instance Z={J;,J5,...,Js}, Where a;=L—(i-1)e¢,
bi=¢for i=1,2,3, ai=L—ig, bi=¢ for i=4,5, and a;=L—(i+1)¢, bj=¢ for i=6 (where &<<L). It is not hard to obtain that it is
optimal to process J;, i=1,3,5 by Mode 2 and the remainder by Mode 1. Then, process them in order of J,,Jq,4,

SL—132 5 when etends
3L-6¢ 3

Ja,J6,Js. We can obtain that C*=3L—6¢, while C™ =5L —13¢ . It follows that CH%* =

© PEESEBPSTIT hups/ www. jos. org. cn
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to 0.
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