推荐文章

  • 显示方式:
  • 简洁模式
  • 摘要模式
  • 1  基于互联网群体智能的知识图谱构造方法
    蒋逸,张伟,王佩,张馨月,梅宏
    2022, 33(7):2646-2666. DOI: 10.13328/j.cnki.jos.006313
    [摘要](957) [HTML](46) [PDF 2.44 M](1534)
    摘要:
    知识图谱是一种基于图的结构化知识表示方式.如何构造大规模高质量的知识图谱,是研究和实践面临的一个重要问题.提出了一种基于互联网群体智能的协同式知识图谱构造方法.该方法的核心是一个持续运行的回路,其中包含自由探索、自动融合、主动反馈3个活动.在自由探索活动中,每一参与者独立进行知识图谱的构造活动.在自动融合活动中,所有参与者的个体知识图谱被实时融合在一起,形成群体知识图谱.在主动反馈活动中,支撑环境根据每一参与者的个体知识图谱和当前时刻的群体知识图谱,向该参与者推荐特定的知识图谱片段信息,以提高其构造知识图谱的效率.针对这3个活动,建立了一种层次式的个体知识图谱表示机制,提出了一种以最小化广义熵为目标的个体知识图谱融合算法,设计了情境无关和情境相关两种类型的信息反馈方式.为了验证所提方法及关键技术的可行性,设计并实施了3种类型的实验:仅包含结构信息的仿真图融合实验、大规模真实知识图谱的融合实验,以及真实知识图谱的协同式构造实验.实验结果表明,该知识图谱融合算法能够有效利用知识图谱的结构信息以及节点的语义信息,形成高质量的知识图谱融合方案;基于“探索-融合-反馈”回路的协同方法能够提升群体构造知识图谱的规模和个体构造知识图谱的效率,并展现出较好的群体规模可扩展性.
    2  代码审查中代码变更恢复的经验研究
    王青叶,万志远,李善平,夏鑫
    2022, 33(7):2581-2598. DOI: 10.13328/j.cnki.jos.006312
    [摘要](368) [HTML](34) [PDF 2.25 M](569)
    摘要:
    代码审查是一种由其他开发者而非代码作者本人评审代码的形式.在代码审查系统中,开发者通过提交代码变更来修复软件缺陷或添加软件特性.并非所有的代码变更都会被集成到代码库中,部分代码变更会被拒收.被拒收的代码变更有可能被恢复,并继续接受审查,提供代码贡献者改进代码变更的机会.然而,审查恢复过的代码变更需要花费更多的时间.收集了4个开源项目中的920 700条代码变更,采用主题分析方法识别出11类代码变更恢复的原因,并定量分析被恢复的代码变更的特征.主要发现包括:1)导致代码变更恢复的原因中,“提升改进”类型占比最大;2)不同项目之间,代码变更被恢复的原因类别分布存在差异,但并不显著;3)与从未恢复过的代码变更相比,恢复的代码变更接收率低10%,评论数量平均多1.9倍,审查所用时间平均多5.8倍;4)81%的恢复代码变更被接收,19%的恢复代码变更被拒收.
    3  人脸识别反欺诈研究进展
    张帆,赵世坤,袁操,陈伟,刘小丽,赵涵捷
    2022, 33(7):2411-2446. DOI: 10.13328/j.cnki.jos.006590
    [摘要](880) [HTML](107) [PDF 3.23 M](930)
    摘要:
    当前,人脸识别理论和技术取得了巨大的成功,被广泛应用于政府、金融和军事等关键领域.与其他信息系统类似,人脸识别系统也面临着各类安全问题,其中,人脸欺诈(face spoofing,FS)是最主要的安全问题之一.所谓的人脸欺诈,是指攻击者采用打印照片、视频回放和3D面具等攻击方式,诱骗人脸识别系统做出错误判断,因而是人脸识别系统所必须解决的关键问题.对人脸反欺诈(face anti-spoofing,FAS)的最新进展进行研究:首先,概述了FAS的基本概念;其次,介绍了当前FAS所面临的主要科学问题以及主要的解决方法及其优缺点;在此基础上,将已有的FAS工作分为传统方法和深度学习方法两大类,并分别进行详细论述;接着,针对基于深度学习的FAS域泛化和可解释性问题,从理论和实践的角度进行说明;然后,介绍了FAS研究所使用的典型数据集及其特点,并给出了FAS算法的评估标准和实验对比结果;最后,总结了FAS未来的研究方向并对发展趋势进行展望.
    4  可信系统性质的分类和形式化研究综述
    王淑灵,詹博华,盛欢欢,吴昊,易士程,王令泰,金翔宇,薛白,李静辉,向霜晴,向展,毛碧飞
    2022, 33(7):2367-2410. DOI: 10.13328/j.cnki.jos.006587
    [摘要](714) [HTML](92) [PDF 3.92 M](923)
    摘要:
    计算机系统被应用于各种重要领域,这些系统的失效可能会带来重大灾难.不同应用领域的系统对于可信性具有不同的要求,如何建立高质量的可信计算机系统,是这些领域共同面临的巨大挑战.近年来,具有严格数学基础的形式化方法已经被公认为开发高可靠软硬件系统的有效方法.目标是对形式化方法在不同系统的应用进行不同维度的分类,以更好地支撑可信软硬件系统的设计.首先从系统的特征出发,考虑6种系统特征:顺序系统、反应式系统、并发与通信系统、实时系统、概率随机系统以及混成系统.同时,这些系统又运行在众多应用场景,分别具有各自的需求.考虑4种应用场景:硬件系统、通信协议、信息流以及人工智能系统.对于以上的每个类别,介绍和总结其形式建模、性质描述以及验证方法与工具.这将允许形式化方法的使用者对不同的系统和应用场景,能够更准确地选择恰当的建模、验证技术与工具,帮助设计人员开发更加可靠的系统.
    5  基于预测编码的样本自适应行动策略规划
    梁星星,马扬,冯旸赫,张驭龙,张龙飞,廖世江,刘忠
    2022, 33(4):1477-1500. DOI: 10.13328/j.cnki.jos.006472
    [摘要](536) [HTML](180) [PDF 1.31 M](1052)
    摘要:
    军事行动、反恐突击等强对抗场景中,实时信息的碎片化、不确定性对制定具有博弈优势的弹性行动方案提出了更高的要求,研究具有自学习能力的智能行动策略规划方法已成为编队级强对抗任务的核心问题.针对复杂场景下行动策略规划状态表征困难、数据效率低下等问题,提出了基于预测编码的样本自适应行动策略规划方法.利用自编码模型压缩表示任务的原始状态空间,通过任务环境的状态转移样本,在低维度状态空间中使用混合密度分布网络对任务环境的动态模型进行学习,获得了表征环境动态性的预测编码;基于预测编码展开行动策略规划研究,利用时间差分敏感的样本自适应方法对状态评估值函数进行预测,改善了数据效率,加速了算法收敛.为了验证算法的有效性,基于全国兵棋推演大赛机机挑战赛的想定,构建了包含大赛获奖选手操作策略的5种规则智能体,利用消融实验验证编码方式、样本采样策略等不同因子组合对算法的影响,并使用Elo评分机制对各个智能体进行排序;实验结果表明:基于预测编码的样本自适应算法——MDN-AF得分排序最高,对战平均胜率为71%,其中大比分获胜局占比为67.6%,而且学习到了自主波次划分、补充侦察策略、“蛇形”打击策略、轰炸机靠后突袭等4种长时行动策略.该算法框架应用于2020年全国兵棋推演大赛的智能体开发,并获得了全国一等奖.
    6  ReChorus: 综合高效易扩展的轻量级推荐算法框架
    王晨阳,任一,马为之,张敏,刘奕群,马少平
    2022, 33(4):1430-1438. DOI: 10.13328/j.cnki.jos.006473
    [摘要](704) [HTML](146) [PDF 449.92 K](1052)
    摘要:
    近年来,各种各样的推荐算法层出不穷,特别是深度学习的发展,极大地推动了推荐系统的研究.然而,各个推荐算法在实现细节、评价方式、数据集处理等方面存在众多差异,越来越多的研究者开始对推荐领域的可复现性产生担忧.为了帮助缓解上述问题,基于PyTorch实现了一个综合、高效、易扩展的轻量级推荐算法框架ReChorus,意为构建一个推荐算法的“合唱团”.ReChorus框架中实现了多种不同类型的推荐算法,类别涵盖常规推荐、序列推荐、引入知识图谱的推荐、引入时间动态性的推荐等;同时,对于一些常见的数据集也提供统一的预处理范式.相比其他推荐系统库,ReChorus在保证综合高效的基础上尽可能做到了轻量实用,同时具有较高的可扩展性,尤其以方便学术研究为导向,非常容易上手实现新的模型.不同的推荐算法在ReChorus框架中能够在相同的实验设定下进行训练和评测,从而实现推荐算法间的有效对比.该项目目前已在GitHub发布:https://github.com/THUwangcy/ReChorus.
    7  类脑超大规模深度神经网络系统
    吕建成,叶庆,田煜鑫,韩军伟,吴枫
    2022, 33(4):1412-1429. DOI: 10.13328/j.cnki.jos.006470
    [摘要](824) [HTML](195) [PDF 920.08 K](1296)
    摘要:
    大规模神经网络展现出强大的端到端表示能力和非线性函数的无限逼近能力,在多个领域表现出优异的性能,成为一个重要的发展方向.如自然语言处理(NLP)模型GPT,经过几年的发展,目前拥有1 750亿网络参数,在多个NLP基准上到达最先进性能.然而,按照现有的神经网络组织方式,目前的大规模神经网络难以到达人脑生物神经网络连接的规模.同时,现有的大规模神经网络在多通道协同处理、知识存储和迁移、持续学习方面表现不佳.提出构建一种启发于人脑功能机制的大规模神经网络模型,该模型以脑区划分和脑区功能机制为启发,集成大量现有数据和预训练模型,借鉴脑功能分区来模块化构建大规模神经网络模型,并由脑功能机制提出相应的学习算法,根据场景输入和目标,自动构建神经网络通路,设计神经网络模型来获得输出.该神经网络模型关注输入到输出空间的关系构建,通过不断学习,提升模型的关系映射能力,目标在于让该模型具备多通道协同处理能力,实现知识存储和持续学习,向通用人工智能迈进.整个模型和所有数据、类脑功能区使用数据库系统进行管理,该系统了还集成了分布式神经网络训练算法,为实现超大规模神经网络的高效训练提供支撑.提出了一种迈向通用人工智能的思路,并在多个不同模态任务验证该模型的可行性.
    8  基于K近邻和优化分配策略的密度峰值聚类算法
    孙林,秦小营,徐久成,薛占熬
    2022, 33(4):1390-1411. DOI: 10.13328/j.cnki.jos.006462
    [摘要](878) [HTML](189) [PDF 1.55 M](1308)
    摘要:
    密度峰值聚类(density peak clustering,DPC)是一种简单有效的聚类分析方法.但在实际应用中,对于簇间密度差别大或者簇中存在多密度峰的数据集,DPC很难选择正确的簇中心;同时,DPC中点的分配方法存在多米诺骨牌效应.针对这些问题,提出一种基于K近邻(K-nearest neighbors,KNN)和优化分配策略的密度峰值聚类算法.首先,基于KNN、点的局部密度和边界点确定候选簇中心;定义路径距离以反映候选簇中心之间的相似度,基于路径距离提出密度因子和距离因子来量化候选簇中心作为簇中心的可能性,确定簇中心.然后,为了提升点的分配的准确性,依据共享近邻、高密度最近邻、密度差值和KNN之间距离构建相似度,并给出邻域、相似集和相似域等概念,以协助点的分配;根据相似域和边界点确定初始聚类结果,并基于簇中心获得中间聚类结果.最后,依据中间聚类结果和相似集,从簇中心到簇边界将簇划分为多层,分别设计点的分配策略;对于具体层次中的点,基于相似域和积极域提出积极值以确定点的分配顺序,将点分配给其积极域中占主导地位的簇,获得最终聚类结果.在11个合成数据集和27个真实数据集上进行仿真实验,与最新的基于密度峰值的聚类算法作对比,结果表明:所提算法在纯度、F度量、准确度、兰德系数、调整兰德系数和标准互信息上均表现出良好的聚类性能.
    9  概念漂移数据流半监督分类综述
    文益民,刘帅,缪裕青,易新河,刘长杰
    2022, 33(4):1287-1314. DOI: 10.13328/j.cnki.jos.006476
    [摘要](788) [HTML](178) [PDF 801.83 K](1143)
    摘要:
    在开放环境下,数据流具有数据高速生成、数据量无限和概念漂移等特性.在数据流分类任务中,利用人工标注产生大量训练数据的方式昂贵且不切实际.包含少量有标记样本和大量无标记样本且还带概念漂移的数据流给机器学习带来了极大挑战.然而,现有研究主要关注有监督的数据流分类,针对带概念漂移的数据流的半监督分类的研究尚未引起足够的重视.因此,在全面收集数据流半监督分类研究工作的基础上,对现有带概念漂移的数据流的半监督分类算法进行了多角度划分;并以算法采用的分类器类型为线索,对已有的多个算法进行了介绍与总结,包括现有数据流半监督分类采用的概念漂移检测方法;在一些被广泛使用的真实数据集和人工数据集上,对部分代表性数据流半监督分类算法进行了多方面的比较与分析;最后,提出了当前概念漂移数据流半监督分类中一些值得进一步深入探讨的问题.实验结果表明:数据流半监督分类算法的分类准确率与众多因素有关,但与数据分布的变化关系最大.本综述将有助于感兴趣的研究者快速进入数据流半监督分类问题领域.
    10  标签推荐方法研究综述
    徐鹏宇,刘华锋,刘冰,景丽萍,于剑
    2022, 33(4):1244-1266. DOI: 10.13328/j.cnki.jos.006481
    [摘要](1154) [HTML](201) [PDF 1.33 M](1907)
    摘要:
    随着互联网信息的爆炸式增长,标签(由用户指定用来描述项目的关键词)在互联网信息检索领域中变得越来越重要.为在线内容赋予合适的标签,有利于更高效的内容组织和内容消费.而标签推荐通过辅助用户进行打标签的操作,极大地提升了标签的质量,标签推荐也因此受到了研究者们的广泛关注.总结出标签推荐任务的三大特性,即项目内容的多样性、标签之间的相关性以及用户偏好的差异性.根据这些特性,将标签推荐方法划分为3个类别,分别是基于内容的方法、基于标签相关性的方法以及基于用户偏好的方法.之后,针对这3个类别下的对应方法进行了梳理和剖析.最后,提出了当前标签推荐领域面临的主要挑战,例如标签的长尾问题、用户偏好的动态性以及多模态信息的融合问题等,并对未来研究方向进行了展望.
    11  面向多方安全的数据联邦系统
    李书缘,季与点,史鼎元,廖旺冬,张利鹏,童咏昕,许可
    2022, 33(3):1111-1127. DOI: 10.13328/j.cnki.jos.006458
    [摘要](727) [HTML](226) [PDF 2.36 M](1553)
    摘要:
    大数据时代,数据作为生产要素具有重要价值.因此,通过数据共享实现大规模数据的分析挖掘与利用具有重要意义.然而,近年来日益严格的隐私安全保护要求使得数据分散异质的多方之间不能任意共享数据,加剧了“数据孤岛”问题.数据联邦能让多数据拥有方在保护隐私的前提下完成联合查询.因此,基于“数据不动计算动”的联邦计算思想实现了一种多方安全的关系型数据联邦系统.该系统适配多种关系型数据库,能够为用户屏蔽底层多数据拥有方的数据异构性.系统基于秘密共享实现了支持多方安全的基础操作多方安全算子库,优化了算子的结果重建过程,提高了其执行效率.在此基础上,系统支持求和、求均值、求最值、等值连接和任意连接等查询操作,并充分利用多方特点减少各数据拥有方之间的数据交互,降低安全开销,从而有效支持高效数据共享.最后,在标准测试数据集TPC-H上进行实验,实验结果说明:与目前的数据联邦系统SMCQL和Conclave相比,该系统能够支持更多的数据拥有方参与,并且在多种查询操作上有更高的执行效率,最快可超越现有系统3.75倍.
    12  联邦学习中的隐私保护技术
    刘艺璇,陈红,刘宇涵,李翠平
    2022, 33(3):1057-1092. DOI: 10.13328/j.cnki.jos.006446
    [摘要](1729) [HTML](306) [PDF 3.36 M](3707)
    摘要:
    联邦学习是顺应大数据时代和人工智能技术发展而兴起的一种协调多个参与方共同训练模型的机制.它允许各个参与方将数据保留在本地,在打破数据孤岛的同时保证参与方对数据的控制权.然而联邦学习引入了大量参数交换过程,不仅和集中式训练一样受到模型使用者的威胁,还可能受到来自不可信的参与设备的攻击,因此亟需更强的隐私手段保护各方持有的数据.分析并展望了联邦学习中的隐私保护技术的研究进展和趋势.简要介绍联邦学习的架构和类型,分析联邦学习过程中面临的隐私风险,总结重建、推断两种攻击策略,然后依据联邦学习中的隐私保护机制归纳隐私保护技术,并深入调研应用上述技术的隐私保护算法,从中心、本地、中心与本地结合这3个层面总结现有的保护策略.最后讨论联邦学习隐私保护面临的挑战并展望未来的发展方向.
    13  基于键值存储的分布式时序相似性搜索方法
    俞自生,李瑞远,郭阳,蒋忠元,鲍捷,郑宇
    2022, 33(3):950-967. DOI: 10.13328/j.cnki.jos.006445
    [摘要](565) [HTML](181) [PDF 1.93 M](1047)
    摘要:
    时序相似性搜索是时序数据分析最基本的操作之一,具有广泛的应用场景.针对现有分布式算法无法应对维度增长、扫描范围过大和相似性计算耗时的问题,提出一种面向键值存储的分布式时序相似性搜索方法KV-Search.首先对时序数据分块,并设计其键值存入键值数据库,解决了时序数据维度高且不断增长的问题;其次,基于切比雪夫距离计算其下界,并利用键值范围扫描提前过滤无效数据,减少了数据传输;最后,利用基于分块的时序表示计算距离下界,避免了更高维度真实数据的计算,加快了查询效率.使用HBase实现了KV-Search,并利用真实的大规模数据集做了大量实验.实验结果表明,KV-Search算法在效率和扩展性方面均优于基准实验.
    14  基于大数据的分布式社会治理智能系统
    吕卫锋,郑志明,童咏昕,张瑞升,魏淑越,李卫华
    2022, 33(3):931-949. DOI: 10.13328/j.cnki.jos.006455
    [摘要](919) [HTML](248) [PDF 2.08 M](1489)
    摘要:
    近年来,推动社会治理的协同化、智能化,完善共建共治共享的社会治理制度,是国家的重要发展方向.数据作为一种生产要素,在社会治理中起着愈发关键的作用.如何实现多方海量数据的安全查询、协同管理、智能分析,是提升社会治理效果的关键问题.在新冠疫情防控等重大公共事件中,分布式社会治理面临着安全计算效率低、多方可信协同差、复杂任务决策难的三大挑战.针对以上挑战,基于安全多方计算、区块链技术与精准智能理论,提出了一种基于大数据的分布式社会治理智能系统.所提出的系统能够支撑社会治理的各类应用,为新时代社会治理水平的提升提供决策支撑.
    15  内存数据库并发控制算法的实验研究
    赵泓尧,赵展浩,杨皖晴,卢卫,李海翔,杜小勇
    2022, 33(3):867-890. DOI: 10.13328/j.cnki.jos.006454
    [摘要](1067) [HTML](216) [PDF 2.57 M](1040)
    摘要:
    并发控制算法是数据库系统保证事务执行正确且高效的重要手段,一直是数据库工业界和学术界研究的核心问题之一.将并发控制算法的基本思想归纳为“先定序后检验”,并基于该思想对现有各类并发控制算法进行了重新描述和分类总结.基于在开源内存型分布式事务测试床3TS上的实际对比实验,系统性地探究了各类算法的优缺点和适用场景,为面向内存数据库的并发控制算法的后续研究提供参考.
    16  一种基于图模型的网络攻击溯源方法
    黄克振,连一峰,冯登国,张海霞,吴迪,马向亮
    2022, 33(2):683-698. DOI: 10.13328/j.cnki.jos.006314
    [摘要](918) [HTML](254) [PDF 542.63 K](1159)
    摘要:
    随着信息技术的飞速发展, 网络攻击事件频发, 造成了日益严重的经济损失或社会影响. 为了减少损失或预防未来潜在的攻击, 需要对网络攻击事件进行溯源以实现对攻击者的挖掘追责. 当前的溯源过程主要依赖于人工完成, 效率低下. 面对日益增加的海量溯源数据和日趋全面的溯源建模分析维度, 亟需半自动化或自动化的网络攻击者挖掘方法. 提出一种基于图模型的网络攻击溯源方法, 建立网络攻击事件溯源本体模型, 融合网络攻击事件中提取的线索数据和威胁情报数据, 形成网络攻击事件溯源关系图; 引入图嵌入算法自动学习嵌有关联线索特征的网络攻击事件特征向量, 进而利用历史网络攻击事件特征向量训练SVM(support vector machine)分类器, 并基于SVM分类器完成网络攻击者的挖掘溯源; 最后, 通过实验验证了该方法的可行性和有效性.
    17  异质信息网络分析与应用综述
    石川,王睿嘉,王啸
    2022, 33(2):598-621. DOI: 10.13328/j.cnki.jos.006357
    [摘要](1313) [HTML](367) [PDF 627.62 K](1904)
    摘要:
    实际系统往往由大量类型各异、彼此交互的组件构成. 目前, 大多数工作将这些交互系统建模为同质信息网络, 并未考虑不同类型对象的复杂异质交互关系, 因而造成大量信息损失. 近年来, 越来越多的研究者将这些交互数据建模为由不同类型节点和边构成的异质信息网络, 从而利用网络中全面的结构信息和丰富的语义信息进行更精准的知识发现. 特别是随着大数据时代的到来, 异质信息网络能够自然融合异构多源数据的优势使其成为解决大数据多样性的重要途径. 因此, 异质信息网络分析迅速成为数据挖掘研究和产业应用的热点. 对异质信息网络分析与应用进行了全面的综述. 除了介绍异质信息网络领域的基本概念外, 重点聚焦基于异质网络元路径的数据挖掘方法、异质信息网络的表示学习技术和实际应用这3个方面的最新研究进展, 并对未来的发展方向进行了展望.
    18  超图学习综述: 算法分类与应用分析
    胡秉德,王新根,王新宇,宋明黎,陈纯
    2022, 33(2):498-523. DOI: 10.13328/j.cnki.jos.006353
    [摘要](1701) [HTML](450) [PDF 728.05 K](1708)
    摘要:
    随着图结构化数据挖掘的兴起, 超图作为一种特殊的图结构化数据, 在社交网络分析、图像处理、生物反应解析等领域受到广泛关注. 研究者通过解析超图中的拓扑结构与节点属性等信息, 能够有效解决实际应用场景中所遇到的如兴趣推荐、社群划分等问题. 根据超图学习算法的设计特点, 将其划分为谱分析方法和神经网络方法, 根据方法对超图处理的不同手段, 可进一步划分为展开式方法和非展开式方法. 若将展开式方法用于不可分解超图, 则很有可能会造成信息损失. 然而, 现有的超图相关综述文章鲜有就超图学习方法适用于哪类超图这一问题做出相关归纳. 因此, 分别从超图上的谱分析方法和神经网络方法两方面出发, 对展开式方法和非展开式方法展开讨论, 并结合其算法特性和应用场景作进一步细分; 然后, 分析比较各类算法的设计思路, 结合实验结果总结各类算法的优缺点; 最后, 对超图学习未来可能的研究方向进行了展望.
    19  基于硬件虚拟化的内核同层多域隔离模型
    钟炳南,邓良,曾庆凯
    2022, 33(2):473-497. DOI: 10.13328/j.cnki.jos.006211
    [摘要](1067) [HTML](280) [PDF 523.96 K](1620)
    摘要:
    为了解决内核不可信带来的问题, 很多工作提出了同层可信基的架构, 即, 在内核同一硬件特权水平构建可部署安全机制的唯一保护域. 但是, 实际过程中往往面临多样化的安全需求, 将多种对应的安全机制集中于唯一的保护域必然导致只要其中任何一个安全机制被攻陷, 同一个保护域内其他所有安全机制都可能被攻击者恶意篡改或者破坏. 为了解决上述问题, 提出了内核同层多域隔离模型, 即在内核同一硬件特权水平构建多个保护域实现了不同安全机制的内部隔离, 缓解了传统方法将所有安全机制绑定在唯一保护域带来的安全风险. 实现了内核同层多域隔离模型的原型系统Decentralized-KPD, 其利用硬件虚拟化技术和地址重映射技术, 将不同安全机制部署在与内核同一特权水平的多个保护域中, 并不会引起较大的性能开销. 总体而言, 实验结果展示了内核同层多域隔离模型的安全性和实用性.
    20  分布式数字资产交易平台的问题与评估
    蔡维德,王荣,何娟,邓恩艳
    2022, 33(2):410-433. DOI: 10.13328/j.cnki.jos.006329
    [摘要](808) [HTML](290) [PDF 660.97 K](1153)
    摘要:
    近年来, 分布式数字资产交易平台(decentralized digital asset exchanges, DDAE)受到了广泛的关注. 基于金融市场基础设施(principles for financial market infrastructures, PFMI)原理, 提出了评估数字资产交易平台的5项基本原则. 并基于这些原则, 从通信技术和交换协议技术两个方面对现有的分布式数字资产交易平台进行了讨论和评估, 阐述了几种典型技术解决方案的实施原理, 将各种技术归纳为不同的模型进行分析. 然后讨论了当前分布式数字资产交易平台存在的监管问题, 并针对之前监管中出现的监管数据不完整和数据被篡改的问题, 提出一种分布式监管模型, 该模型由区块链系统、监管执行引擎以及监管法规库这3部分组成, 能够通过读取区块链中的交易数据进行分析, 自动执行监管法规库中的规则, 对满足监管规则的交易自动生成监管报告, 从而实现自动化监管. 最后, 对分布式数字资产交易平台的发展进行了总结和展望.
    21  自适应推导下的统一化调试加速技术
    娄一翎,张令明,郝丹,张皓天,张路
    2022, 33(2):377-396. DOI: 10.13328/j.cnki.jos.006347
    [摘要](1118) [HTML](259) [PDF 684.93 K](1058)
    摘要:
    在传统调试过程中, 缺陷定位通常作为程序修复的前置步骤. 最近, 一种新型调试框架(统一化调试)被提出. 不同于传统调试中缺陷定位和程序修复的单向连接方式, 统一化调试首次建立了定位与修复之间的双向连接机制, 从而达到同时提升两个领域的效果. 作为首个统一化调试技术, ProFL利用程序修复过程中伴随产生的大量补丁执行信息逆向地提升已有缺陷定位技术的效果. 统一化调试技术不仅修复了可被修复的缺陷, 而且也为不能被自动修复技术修复的缺陷提供了有效的调试线索. 虽然统一化调试是一个很有前景的研究方向, 但其在补丁验证过程中涉及到了大量的测试用例执行(比如百万量级的测试执行), 因此时间开销问题严重. 提出一种针对于统一化调试框架的加速技术(AUDE), 该技术通过减少对缺陷定位效果无提升的测试执行, 以提升统一化调试的效率. 具体来说, AUDE首先通过马尔可夫链蒙特卡洛采样方法构建补丁执行的初始序列, 随后在补丁执行过程中将已执行的补丁信息作为反馈信息, 自适应性地估计每一个未执行补丁可能提供有效反馈信息的概率. 在广泛使用的数据集Defects4J上对该技术进行了验证, 发现AUDE在显著加速ProFL的同时, 并没有降低其在缺陷定位和程序修复的效果. 例如: 在减少了ProFL中70.29%的测试执行的同时, AUDE仍在Top-1/Top-3/Top-5指标上与ProFL保持了相同的定位效果.
    22  网络行为仿真综述
    符永铨,赵辉,王晓锋,刘红日,安伦
    2022, 33(1):274-296. DOI: 10.13328/j.cnki.jos.006338
    [摘要](1040) [HTML](443) [PDF 14.32 M](1831)
    摘要:
    网络行为描述了网络上各类元素对象动态交互过程. 它以各类网络服务协议及应用为运行载体, 形成不断变化的丰富多样的网络行为, 反映出网络拓扑结构给定时间内网络上的场景特点. 网络行为仿真主要包括运行框架、背景流仿真、前景流仿真, 将生产网络环境下网络行为按需映射到测试网络环境, 提供一种按需灵活定制仿真再现能力. 网络仿真应用场景不断发展, 包括性能分析评估、产品和技术验证、网络入侵检测、网络攻防演练与研究发展等. 为总结现有研究成果和存在的不足, 分析未来发展趋势, 梳理了网络行为仿真的相关概念和研究框架, 从框架、背景流、前景流等技术层面总结了网络行为仿真的国内外研究现状, 并对相关商业产品和开源软件工具进行了系统地分析调研, 最后对网络行为仿真的未来发展进行了展望.
    23  大规模图神经网络系统综述
    赵港,王千阁,姚烽,张岩峰,于戈
    2022, 33(1):150-170. DOI: 10.13328/j.cnki.jos.006311
    [摘要](4256) [HTML](532) [PDF 3.57 M](7991)
    摘要:
    图神经网络(GNN)是一类基于深度学习的处理图域信息的方法, 它通过将图广播操作和深度学习算法结合, 可以让图的结构信息和顶点属性信息都参与到学习中, 在顶点分类、图分类、链接预测等应用中表现出良好的效果和可解释性, 已成为一种广泛应用的图分析方法. 然而现有主流的深度学习框架(如TensorFlow、PyTorch等)没有为图神经网络计算提供高效的存储支持和图上的消息传递支持, 这限制了图神经网络算法在大规模图数据上的应用. 目前已有诸多工作针对图结构的数据特点和图神经网络的计算特点, 探索了大规模图神经网络系统的设计和实现方案. 首先对图神经网络的发展进行简要概述, 总结了设计图神经网络系统需要面对的挑战; 随后对目前图神经网络系统的工作进行介绍, 从系统架构、编程模型、消息传递优化、图分区策略、通信优化等多个方面对系统进行分析; 最后使用部分已开源的图神经网络系统进行实验评估, 从精确度、性能、扩展性等多个方面验证这些系统的有效性.
    24  神经结构搜索的研究进展综述
    李航宇,王楠楠,朱明瑞,杨曦,高新波
    2022, 33(1):129-149. DOI: 10.13328/j.cnki.jos.006306
    [摘要](1779) [HTML](422) [PDF 7.60 M](4484)
    摘要:
    近年来, 深度神经网络(DNNs)在许多人工智能任务中取得卓越表现, 例如计算机视觉(CV)、自然语言处理(NLP). 然而, 网络设计严重依赖专家知识, 这是一个耗时且易出错的工作. 于是, 作为自动化机器学习(AutoML)的重要子领域之一, 神经结构搜索(NAS)受到越来越多的关注, 旨在以自动化的方式设计表现优异的深度神经网络模型. 全面细致地回顾神经结构搜索的发展过程, 进行了系统总结. 首先, 给出了神经结构搜索的研究框架, 并分析每个研究内容的作用; 接着, 根据其发展阶段, 将现有工作划分为4个方面, 介绍各阶段发展的特点; 然后, 介绍现阶段验证结构搜索效果经常使用的数据库, 创新性地总结该领域的规范化评估标准, 保证实验对比的公平性, 促进该领域的长久发展; 最后, 对神经结构搜索研究面临的挑战进行了展望与分析.
    25  自承认技术债的研究: 问题、进展与挑战
    郭肇强,刘释然,谭婷婷,李言辉,陈林,周毓明,徐宝文
    2022, 33(1):26-54. DOI: 10.13328/j.cnki.jos.006292
    [摘要](1646) [HTML](411) [PDF 10.25 M](2373)
    摘要:
    技术债是一个指以牺牲长期代码质量为代价来实现短期项目目标的隐喻. 其中, 那些由开发者有意引入项目中的技术债被称为自承认技术债(self-admitted technical debt, SATD), 通常以代码注释的形式存在于软件项目中. SATD的存在给软件质量和鲁棒性带来了巨大挑战. 为了识别并且及时地偿还SATD来保障代码质量, 研究者从特性分析和识别模型两方面进行了大量研究并且取得了较大的进展. 与此同时, 相关研究工作中仍存在一些亟待解决的挑战. 对近年来国内外学者在该领域的研究成果进行系统性的总结. 首先, 描述自承认技术债的研究问题. 然后, 分别从特性分析和识别模型两方面总结相关的研究进展, 并对具体的理论和技术途径进行梳理. 接着, 简要介绍技术债的其他相关技术. 最后, 指出目前该领域研究过程中面临的挑战并给出建议的研究方向.
    26  动态手势理解与交互综述
    张维,林泽一,程坚,柯铭雨,邓小明,王宏安
    2021, 32(10):3051-3067. DOI: 10.13328/j.cnki.jos.006217
    [摘要](1736) [HTML](660) [PDF 414.86 K](3326)
    摘要:
    近年来,手势作为一种输入通道,已在人机交互、虚拟现实等领域得到了广泛的应用,引起了研究者的关注.特别是随着先进人机交互技术的出现以及计算机技术(特别是深度学习、GPU并行计算等)的飞速发展,手势理解和交互方法取得了突破性的成果,引发了研究的热潮.综述了动态手势理解与交互的研究进展与典型应用:首先阐述手势交互的核心概念,分析了动态手势识别与检测进展;而后阐述了动态手势交互在人机交互中的代表性应用,并总结了手势交互现状,分析了下一步的发展趋势.
    27  神威太湖之光上分子动力学模拟的性能优化
    田卓,陈一峯
    2021, 32(9):2945-2962. DOI: 10.13328/j.cnki.jos.005978
    [摘要](401) [HTML](386) [PDF 1.69 M](743)
    摘要:
    “神威·太湖之光”国产超级计算机的特点是适用于高通量计算系统,此类系统往往存储器访问延迟,网络延迟较长.在实际应用中,有一大类问题是时间演化的模拟问题,往往需要高频状态迭代,每次迭代需要通信.此类应用问题的典型代表是分子动力学模拟,分子的性质依赖于时间演化,导致状态相关的时间尺度上难以并行化.实际应用中,全原子模型需要模拟超过ms时间尺度,每一步的物理时间为1fs~2.5fs,这意味着所需时间步个数超过1012个.众核处理器中,不同核心访存时需较长的“排队”等待,造成访存延迟.另外,网卡通信延迟以及较长的数据通路会带来网络延迟,由此导致在长延迟的众核处理器上进行一次有效的模拟几乎是不可能的.解决此类问题的主要挑战是提高迭代频率,即每秒执行尽可能多的迭代步.针对神威高性能芯片处理器的体系结构特点,以分子动力学模拟为例,研究了一系列优化策略以提高迭代频率:(1)单核通信与片上核间同步相结合,降低通信成本;(2)共享内存等待与从核同步相结合,优化异构体系结构中的核间同步;(3)改变计算模式,减少核间数据关联和依赖关系;(4)数据传输与计算重叠,掩盖访存延迟;(5)规则化问题,以提高访存凝聚性.
    28  碎片化家谱数据的融合技术
    吴信东,李娇,周鹏,卜晨阳
    2021, 32(9):2816-2836. DOI: 10.13328/j.cnki.jos.006010
    [摘要](2459) [HTML](364) [PDF 601.67 K](3693)
    摘要:
    家谱数据是典型的碎片化数据,具有海量、多源、异构、自治的特点.通过数据融合技术将互联网中零散分布的家谱数据融合成一个全面、准确的家谱数据库,有利于针对家谱数据进行知识挖掘和推理,从而为用户提供姓氏起源、姓氏变迁和姓氏间关联等隐含信息.在大数据知识工程BigKE模型的基础上,提出了一个结合HAO智能模型的碎片化数据融合框架FDF-HAO (fragmented data fusion with human intelligence,artificial intelligence and organizational intelligence),阐述了架构中每层的作用、关键技术和需要解决的问题,并以家谱数据为例,验证了该数据融合框架的有效性.最后,对碎片化数据融合的前景进行展望.
    29  软件缺陷自动修复技术综述
    姜佳君,陈俊洁,熊英飞
    2021, 32(9):2665-2690. DOI: 10.13328/j.cnki.jos.006274
    [摘要](2905) [HTML](767) [PDF 648.15 K](3633)
    摘要:
    软件缺陷是软件开发和维护过程中不可避免的.随着现代软件规模的不断变大,软件缺陷的数量以及修复难度随之增加,为企业带来了巨大的经济损失.修复软件缺陷,成为了开发人员维护软件质量的重大负担.软件缺陷自动修复技术有希望将开发者从繁重的调试中解脱出来,近年来成为热门的研究领域之一.搜集了94篇该领域最新的高水平论文,进行了详细的分析和总结.基于缺陷修复技术在补丁生成阶段所使用的技术手段不同,系统性地将软件自动修复技术分为4大类,分别是基于启发式搜索、基于人工模板、基于语义约束和基于统计分析的修复技术.特殊地,根据对近几年最新研究的总结,首次提出了基于统计分析的技术分类,对已有分类进行了补充和完善.随后,基于对已有研究的分析,总结了该领域研究所面临的关键挑战及对未来研究的启示.最后,对缺陷修复领域常用的基准数据集和开源工具进行了总结.
    30  领域驱动设计模式的收益与挑战:系统综述
    贾子甲,钟陈星,周世旗,荣国平,章程
    2021, 32(9):2642-2664. DOI: 10.13328/j.cnki.jos.006275
    [摘要](2156) [HTML](771) [PDF 653.92 K](2115)
    摘要:
    背景:近年来,领域驱动设计(domain driven design,简称DDD)作为一种软件设计方法在业界中逐渐流行起来,并形成了若干应用的固有范式,即领域驱动设计模式(domain driven design pattern,简称DDDP).然而,目前软件开发社区却仍然对DDDP在软件项目中的作用缺少较为全面的了解.目的:旨在揭示DDDP的应用情况,即哪些DDDP被应用到了软件开发中,以及其所带来的收益、挑战及相应的缓解挑战方法.方法:应用系统化文献综述方法,对2003年~2019年7月之间发表的相关文献进行了识别、筛选、汇总和分析.结果:通过结合手动检索、自动检索和滚雪球等过程,覆盖了1 884篇相关文献,经过筛选,最终得到26篇高质量文献,对应26个独立的研究.总结了基础研究中DDDP的应用概况,即已经被应用到软件开发中的DDDP以及应用DDDP所获得的11项收益、17个挑战以及相应的缓解挑战方法.结论:因为对领域知识非常重视,领域驱动设计能够帮助实践者更好地进行软件设计,但在具体应用领域驱动设计模式时却存在着诸多挑战.虽然目前存在一些缓解方法能够在一定程度上应对挑战,但是仍然存在很多不足.通过系统文献综述,填补了学术界在这一领域的空白.考虑到DDDP的实践价值与当前理论成熟度的不匹配,未来工业界和学术界应该给予该领域更多关注.
    31  视觉问答研究综述
    包希港,周春来,肖克晶,覃飙
    2021, 32(8):2522-2544. DOI: 10.13328/j.cnki.jos.006215
    [摘要](2195) [HTML](857) [PDF 972.98 K](3320)
    摘要:
    视觉问答是计算机视觉领域和自然语言处理领域的交叉方向,近年来受到了广泛关注.在视觉问答任务中,算法需要回答基于特定图片(或视频)的问题.自2014年第一个视觉问答数据集发布以来,若干大规模数据集在近5年内被陆续发布,并有大量算法在此基础上被提出.已有的综述性研究重点针对视觉问答任务的发展进行了总结,但近年来,有研究发现,视觉问答模型强烈依赖语言偏见和数据集的分布,特别是自VQA-CP数据集发布以来,许多模型的效果大幅度下降.主要详细介绍近年来提出的算法以及发布的数据集,特别是讨论了算法在加强鲁棒性方面的研究.对视觉问答任务的算法进行分类总结,介绍了其动机、细节以及局限性.最后讨论了视觉问答任务的挑战及展望.
    32  浏览器同源策略安全研究综述
    罗武,沈晴霓,吴中海,吴鹏飞,董春涛,夏玉堂
    2021, 32(8):2469-2504. DOI: 10.13328/j.cnki.jos.006153
    [摘要](2068) [HTML](680) [PDF 1.48 M](2705)
    摘要:
    随着云计算和移动计算的普及,浏览器应用呈现多样化和规模化的特点,浏览器的安全问题也日益突出.为了保证Web应用资源的安全性,浏览器同源策略被提出.目前,RFC6454、W3C和HTML5标准都对同源策略进行了描述与定义,诸如Chrome、Firefox、Safari、Edge等主流浏览器均将其作为基本的访问控制策略.然而,浏览器同源策略在实际应用中面临着无法处理第三方脚本引入的安全威胁、无法限制同源不同frame的权限、与其他浏览器机制协作时还会为不同源的frame赋予过多权限等问题,并且无法保证跨域/跨源通信机制的安全性以及内存攻击下的同源策略安全.对浏览器同源策略安全研究进行综述,介绍了同源策略的规则,并概括了同源策略的威胁模型与研究方向,主要包括同源策略规则不足及应对、跨域与跨源通信机制安全威胁及应对以及内存攻击下的同源策略安全,并且展望了同源策略安全研究的未来发展方向.
    33  国产复杂异构高性能数值软件的研制与测试专题前言
    孙家昶,李会元
    2021, 32(8):2287-2288. DOI: 10.13328/j.cnki.jos.006009
    [摘要](1224) [HTML](493) [PDF 128.29 K](1258)
    摘要:
    中国科学院首个 C 类战略性先导科技专项 XDC01000000 主要目标已经达到.在数值软件层面,该先导专项第 1 阶段的主要任务是在复杂异构先进计算系统上研制高水平的基准测试软件 HPL(high performance Linpack)和 HPCG(high performance conjugate gradients). HPL 与 HPCG 是国际上最受关注的用于评测高性能计算机浮点运算性能的两款基准测试软件.HPL 通过高斯消去法求解稠密线性代数方程组来评测高性能计算机浮点性能的实际持续峰值,是目前全球超级计算机TOP500 以及中国高性能计算机 TOP100 排行榜的依据.HPCG 是求解稀疏代数方程组的一种迭代算法.HPCG基准测试在国际上受到广泛关注,与 HPL 相比,在一定程度上更能真实地反映高性能计算机的实际应用性能.全球超级计算机 TOP500 以及中国高性能计算机 TOP100 均提供 HPCG 性能排行榜.如今,以计算速度为目标的HPL 与 HPCG 基准测试,不仅为高性能计算机性能排名提供一种依据,更已成为一种被高性能计算提供商、研究机构与应用部门广为接受的工业标准. 先导专项先后两次开展了 HPL 与 HPCG 基准测试,其效率和可扩展性超过了先导专项的要求.据此,先导专项顺利通过了中国高性能计算机性能 TOP100 排行榜专家组的鉴定,并得到了中国计算机协会专家组的肯定. 为此,《软件学报》编辑部特开设“国产复杂异构高性能数值软件的研制与测试”专题.专题拟聚焦国产复杂异构先进计算系统下的高性能计算软件、算法与测试技术,探讨软硬件总体结构与软件在先进计算系统中的地位与作用.专题定向邀请参与先导专项的兄弟单位研究团队,从学术层面交流复杂异构系统下的高性能计算基础软件的研制和优化的各种关键技术,总结高性能计算软件和应用研究中的挑战与对策.内容重点涵盖先进计算系统基准评测软件 HPL、HPCG 等的研制、调优与测试及相应 BLAS 等基础代数库的优化,也包含了若干高性能应用算法与软件的研制进展. 专题收到 8 篇投稿,先后邀请了十几位领域专家参与审稿,每篇稿件都由 3 位专家历经 2 轮或 3 轮审稿,最终有 7 篇论文入选本专题.
    34  区块链系统中身份管理技术研究综述
    姚前,张大伟
    2021, 32(7):2260-2286. DOI: 10.13328/j.cnki.jos.006309
    [摘要](3849) [HTML](820) [PDF 2.61 M](5153)
    摘要:
    区块链技术是一种通过块链式结构、共识算法和智能合约来生成、存储、操作和验证数据的新型分布式基础架构和计算范式,其所构建的新型信任机制有助于推动互联网技术由信息互联网向价值互联网的转化.由于区块链中的账本数据采用公开交易记录、多节点共识确认的方式进行存储和验证,因此对系统中的身份管理及隐私保护提出了极大的挑战.首先分析了区块链系统交易模型的特点及其与传统中心化系统在身份认证、数据存储和交易确认方面的不同,阐述了区块链系统中身份管理技术涵盖的主要内容、关键问题及安全挑战;其次,从身份标识、身份认证和身份隐藏3个方面比较分析了目前主流区块链平台中身份管理和隐私保护的不同实现技术;最后,分析了现有区块链系统中身份管理的不足并对未来的研究方向进行了展望.
    35  代码注释自动生成方法综述
    陈翔,杨光,崔展齐,孟国柱,王赞
    2021, 32(7):2118-2141. DOI: 10.13328/j.cnki.jos.006258
    [摘要](3275) [HTML](896) [PDF 2.12 M](4777)
    摘要:
    在软件的开发和维护过程中,与代码对应的注释经常存在缺失、不足或者与代码实际内容不匹配等问题,但手工编写代码注释对开发人员来说费时费力,且注释质量难以保证,因此亟需研究人员提出有效的代码注释自动生成方法.代码注释自动生成问题是当前程序理解研究领域的一个研究热点,对该问题进行了系统综述.主要将已有的自动生成方法细分为3类:基于模板的方法、基于信息检索的方法和基于深度学习的方法.依次对每一类方法的已有研究成果进行了系统的梳理、总结和点评.随后分析了已有的实证研究中经常使用的语料库和主要的注释质量评估方法,以利于针对该问题的后续研究可以进行合理的实验设计.最后进行总结,并对未来值得关注的研究方向进行了展望.
    36  自动驾驶智能系统测试研究综述
    朱向雷,王海弛,尤翰墨,张蔚珩,张颖异,刘爽,陈俊洁,王赞,李克秋
    2021, 32(7):2056-2077. DOI: 10.13328/j.cnki.jos.006266
    [摘要](2982) [HTML](822) [PDF 2.19 M](5685)
    摘要:
    随着人工智能技术的深入发展,自动驾驶已成为人工智能技术的典型应用,近十年来得到了长足的发展,作为一类非确定性系统,自动驾驶车辆的质量和安全性得到越来越多的关注.对自动驾驶系统,特别是自动驾驶智能系统(如感知模块、决策模块、综合功能及整车)的测试技术得到了业界和学界的深入研究.调研了56篇相关领域的学术论文,分别就感知模块、决策模块、综合功能模块及整车系统的测试技术、用例生成方法和测试覆盖度量等维度对目前已有的研究成果进行了梳理,并描述了自动驾驶智能系统测试中的数据集及工具集.最后,对自动驾驶智能系统测试的未来工作进行了展望,从而为该领域的研究人员提供参考.
    37  操作系统内核并发错误检测研究进展
    石剑君,计卫星,石峰
    2021, 32(7):2016-2038. DOI: 10.13328/j.cnki.jos.006265
    [摘要](1904) [HTML](698) [PDF 2.11 M](2762)
    摘要:
    并发错误是程序设计语言和软件工程领域的研究热点之一.近年来,针对应用程序并发错误检测的研究已取得了很大进展.但是由于操作系统内核的并发和同步机制复杂、代码规模庞大,与应用程序级并发错误检测相比,操作系统内核的并发错误检测研究仍面临巨大的挑战.对此,国内外学者提出了各种用于操作系统内核并发错误检测的方法.首先介绍了并发错误的基本类型、检测方法和评价指标,讨论了现有的并发错误检测方法和工具的局限性;然后,从形式化验证、静态分析、动态分析和静态动态相结合4个方面,对现有的操作系统内核并发错误检测的研究工作进行了分类阐述,并作了系统总结和对比分析;最后,探讨了操作系统内核并发错误检测研究面临的挑战,并对该领域未来的研究趋势进行了展望.
    38  面向非确定性的软件质量保障方法与技术专题前言
    陈俊洁,汤恩义,何啸,马晓星
    2021, 32(7):1923-1925. DOI: 10.13328/j.cnki.jos.006273
    [摘要](1174) [HTML](519) [PDF 374.89 K](1276)
    摘要:
    随着互联网、物联网、云计算等新计算平台、新应用模式、及智能化等新软件模式的广泛运用,软件系统内外各种来源的非确定性不断增强.从软件系统内部的不确定性看,并发程序是一类典型的非确定性软件系统.并发程序由于其随机性高的特点,容易导致并发缺陷且难以调试.从软件系统外部的不确定性看,软件所处的网络环境和所服务的用户需求变得更加动态多变,这就要求软件系统能够主动应对这些动态变化.具有自适应和持续演化能力的软件系统需要在环境和需求的自动感知与理解、适应行为的自主决策、以及适应行为的精准实施等环节处理各种不确定性,以保障系统能够持续稳定地提供服务.从软件构造途径的不确定性看,包含深度神经网络部件的数据驱动智能化软件系统是另一类非确定性软件系统,其非确定性来自于机器学习模型的归纳本质.此类系统日益应用于一些安全相关的领域,这就对其软件质量提出了更高的要求.本专题关注软件质量保障中非确定性问题所面临的挑战以及相关软件质量保障技术. 本专题采取自由投稿的方式,共收到24篇投稿.特约编辑邀请了近20位领域专家参与审稿,每篇稿件至少邀请2位专家进行评审,每篇稿件均经过至少两轮审稿.共计16篇稿件通过评审,并在中国软件大会上进行了报告,最终该16篇论文入选本专题.
    39  形式化方法与应用专题前言
    田聪,邓玉欣,姜宇
    2021, 32(6):1579-1580. DOI: 10.13328/j.cnki.jos.006256
    [摘要](1277) [HTML](460) [PDF 297.02 K](1396)
    摘要:
    计算机科学的发展主要涉及硬件和软件的发展,而软、硬件发展的核心问题之一是如何保证它们是安全可靠的。如今,硬件性能变得越来越高,运算速度变得越来越快,体系结构变得越来越复杂,软件的功能也变得越来越复杂,如何开发可靠的软、硬件系统,己经成为计算机科学发展的巨大挑战。特别是现在计算机系统广泛应用于许多安全攸关系统中,如高速列车控制系统、航空航天控制系统、核反应堆控制系统、医疗设备控制系统等等,这些系统中的任何错误都可能导致灾难性后果。 形式化方法己经成功应用于各种硬件设计,特别是芯片的设计。各大硬件制造商都有一个非常强大的形式化方法团队为保障系统的可靠性提供技术支持,例如IBM、AMD等等。近年来,随着形式验证技术和工具的发展,特别是在程序验证中的成功应用,形式化方法在处理软件开发复杂性和提高软件可靠性方面已显示出无可取代的潜力。各个著名的研究机构都投入了大量人力和物力从事这方面的研究。例如,美国宇航局NASA拥有一支庞大的形式化方法研究团队,他们在保证美国航天器控制软件正确性方面发挥了巨大作用,在美国研发“好奇号”火星探测器时,为了提高控制软件的可靠性和生产率,广泛使用了形式化方法。在新兴领域,如区块链及人工智能等领域,形式化方法也逐步得到应用,提升系统的整体安全可控。 本专题公开征文,共征得投稿27篇。特约编辑先后邀请了国内外在该领域比较活跃的学者参与审稿工作,每篇投稿至少邀请2位专家进行初审。大部分稿件经过初审和复审两轮评审,部分稿件经过了两轮复审。通过初审的稿件还在FMAC 2020大会上进行了现场报告,作者现场回答了与会者的问题,并听取了与会者的修改建议。最终有18篇论文入选本专题。
    40  区块链系统攻击与防御技术研究进展
    田国华,胡云瀚,陈晓峰
    2021, 32(5):1495-1525. DOI: 10.13328/j.cnki.jos.006213
    [摘要](2972) [HTML](849) [PDF 781.51 K](5396)
    摘要:
    区块链作为一种多技术融合的新兴服务架构,因其去中心化、不可篡改等特点,受到了学术界和工业界的广泛关注.然而,由于区块链技术架构的复杂性,针对区块链的攻击方式层出不穷,逐年增加的安全事件导致了巨大的经济损失,严重影响了区块链技术的发展与应用.从层级分类、攻击关联分析两个维度对区块链已有安全问题的系统架构、攻击原理、防御策略展开研究.首先,按照区块链层级架构对现有区块链攻击进行归类,介绍了这些攻击方式的攻击原理,分析了它们的共性与特性;其次,分析总结了已有解决方案的思路,提出了一些有效的建议和防御措施;最后,通过攻击关联分析归纳出多个区块链攻击簇,构建了一个相对完整的区块链安全防御体系,展望了区块链技术在未来复杂服务场景下的安全态势.
    41  基于深度学习的数字病理图像分割综述与展望
    宋杰,肖亮,练智超,蔡子贇,蒋国平
    2021, 32(5):1427-1460. DOI: 10.13328/j.cnki.jos.006205
    [摘要](3261) [HTML](616) [PDF 1.34 M](8187)
    摘要:
    数字病理图像分析对于乳腺癌、前列腺癌等良恶性分级诊断具有重要意义,其中,组织基元的形态和目标测量是量化分析的重要依据.然而,由于病理数据多样性和复杂性等新特点,其分割任务面临着特征提取困难、实例分割困难等挑战.人工智能辅助病理量化分析将复杂病理数据转化为可挖掘的图像特征,使得自动提取组织基元的定量化信息成为可能.特别是随着计算机计算能力的快速发展,深度学习技术凭借其强大的特征学习、设计灵活等特性在数字病理量化分析领域取得了突破性成果.系统概述目前代表性深度学习方法,包括卷积神经网络、全卷积网络、编码器-解码器模型、循环神经网络、生成对抗网络等方法体系,总结深度学习在病理图像分割等任务中的建模机理和应用,并梳理了现有方法的方法理论、关键技术、优缺点和性能分析.最后讨论了未来数字病理图像分割深度学习建模的开放性挑战和新趋势.
    42  可信机器学习的公平性综述
    刘文炎,沈楚云,王祥丰,金博,卢兴见,王晓玲,查宏远,何积丰
    2021, 32(5):1404-1426. DOI: 10.13328/j.cnki.jos.006214
    [摘要](3382) [HTML](857) [PDF 1.37 M](4511)
    摘要:
    人工智能在与人类生活息息相关的场景中自主决策时,正逐渐面临法律或伦理的问题或风险.可信机器学习是建立安全人工智能系统的核心技术,是人工智能领域的热门研究方向,而公平性是可信机器学习的重要考量.公平性旨在研究机器学习算法决策对个人或群体不存在因其固有或后天属性所引起的偏见或偏爱.从公平表征、公平建模和公平决策这3个角度出发,以典型案例中不公平问题及其危害为驱动,分析数据和算法中造成不公平的潜在原因,建立机器学习中的公平性抽象定义及其分类体系,进一步研究用于消除不公平的机制.可信机器学习中的公平性研究在人工智能多个领域中处于起步阶段,如计算机视觉、自然语言处理、推荐系统、多智能体系统和联邦学习等.建立具备公平决策能力的人工智能算法,是加速推广人工智能落地的必要条件,且极具理论意义和应用价值.
    43  程序智能合成技术研究进展
    顾斌,于波,董晓刚,李晓锋,钟睿明,杨孟飞
    2021, 32(5):1373-1384. DOI: 10.13328/j.cnki.jos.006200
    [摘要](2127) [HTML](543) [PDF 458.73 K](2559)
    摘要:
    近年来,随着信息技术快速发展,软件重要性与日俱增,极大地推动了国民经济的发展.然而,由于软件业务形态越来越复杂和需求变化越来越快,软件的开发和维护成本急剧增加,迫切需要探索新的软件开发模式和技术.目前,各行业在软件活动中积累了规模巨大的软件代码和数据,这些软件资产为软件智能化开发建立了数据基础.与此同时,深度学习等人工智能技术在多个领域取得的成功应用,促使研究者考虑使用智能化技术与软件工程技术相结合,解决程序自动生成问题.程序智能合成方法是程序自动生成的新途径,通过实现软件开发过程的自动化,提高软件的生产率.首先分析了软件工程的发展历程及挑战,进而研究了智能化程序合成技术领域的研究布局以及各方法的优势和劣势.最后,对程序智能合成技术加以总结,并给出了未来的研究建议.
    44  面向持续软件工程的微服务架构技术专题前言
    张贺,王忠杰,陈连平,彭鑫
    2021, 32(5):1229-1230. DOI: 10.13328/j.cnki.jos.006237
    [摘要](1703) [HTML](473) [PDF 284.13 K](1621)
    摘要:
    随着软件互联网化和服务化的高度发展,持续性(continuity)成为现代软件系统的基本特性之一,覆盖从商业策划、软件开发、运维、演化的所有环节,使得软件系统在持续稳定提供功能和服务的同时,软件系统的边界和内部结构始终处于不断变化、持续更新和适应之中,持续软件工程(continuous software engineering)由此被提出并迅速得到广泛的实践应用.微服务(microservice)架构作为一种全新的去中心化分布式架构,在软件架构层面成为适应持续软件工程发展的必然趋势,而领域驱动设计(domain-driven design,简称DDD)伴随着微服务架构的兴起也重新获得了业界的广泛关注,二者共同关注服务自顶向下的合理设计和分解.微服务架构与领域驱动设计共同支持实现现代软件系统的持续性特征.为了反映中国学者和实践者在求解以微服务架构为代表的持续软件工程所面临的架构难题和挑战过程中取得的理论、技术或实验方面的创新性、突破性的高水平研究成果,特设立此专题. 本专题采取公开征稿的方式,共收到19篇投稿并通过了形式审查.特约编辑邀请了20余位领域专家参与审稿,每篇稿件至少邀请2位评审专家并经过两轮审稿.共计10篇稿件通过第1轮评审,并在CCF中国软件大会上进行了报告.经过第2轮终审,最终有6篇论文入选本专题.其中, 论文“基于混沌工程的微服务韧性风险识别和分析”研究微服务架构系统的韧性风险识别问题,通过向系统引入随机环境扰动并观察服务性能的变化来寻找潜在韧性风险,向运维人员提供参考. 论文“面向微服务架构的开发组织适应性评估框架”通过系统化文献综述得出了使用微服务架构对组织产生的7个方面的影响,进一步提出了一个用于评估并提高开发组织对于微服务架构的适应性的评估框架. 论文“一种优化的数据流驱动的微服务化拆分方法”提出了一种自动化的微服务拆分与评估方法DFD-A,支持从数据收集分析、服务拆分到候选微服务架构评估的自动化设计过程,并实现了原型工具. 论文“一种监控系统的链路跟踪型日志数据的存储设计”基于开源的应用性能监控系统CAT,提出了一种针对tracing类型日志数据的存储设计方案,提升了存储效率和查询效率,并在美团点评线上系统中得到真实 应用. 论文“基于多源特征空间的微服务可维护性评估”提出了一种多源特征空间模型以统一表示软件维护过程中产生的多源数据.基于该模型提出了微服务代码可维护性度量,并实现了原型工具MicroEvaluator. 论文“多版本共存的微服务系统自适应演化方法”针对微服务系统中的多版本共存现象和用户/运维需求的变化,提出了最优化微服务系统演化方案的设计方法,实现了相应的编程框架以支持微服务系统自适应演化. 本专题面向持续软件工程和微服务架构的研究人员和工程实践人员,内容涵盖系统软件、软件工程等领域,反映了我国学者在以微服务架构为代表的持续软件工程方法、技术以及支持工具等方面的高水平研究成果.感谢《软件学报》编委会、中国计算机学会软件工程专委会与系统软件专委会对专题工作的指导和帮助,感谢专题全体评审专家及时、耐心、细致的评审工作,感谢踊跃投稿的所有作者.希望本专题能够对国内持续软件工程和微服务领域的科研工作有所促进.
    45  多尺度目标检测的深度学习研究综述
    陈科圻,朱志亮,邓小明,马翠霞,王宏安
    2021, 32(4):1201-1227. DOI: 10.13328/j.cnki.jos.006166
    [摘要](3256) [HTML](672) [PDF 2.34 M](5399)
    摘要:
    目标检测一直以来都是计算机视觉领域的研究热点之一,其任务是返回给定图像中的单个或多个特定目标的类别与矩形包围框坐标.随着神经网络研究的飞速进展,R-CNN检测器的诞生标志着目标检测正式进入深度学习时代,速度和精度相较于传统算法均有了极大的提升.但是,目标检测的尺度问题对于深度学习算法而言也始终是一个难题,即检测器对于尺度极大或极小目标的检测精度会显著下降,因此,近年来有不少学者在研究如何才能更好地实现多尺度目标检测.虽然已有一系列的综述文章从算法流程、网络结构、训练方式和数据集等方面对基于深度学习的目标检测算法进行了总结与分析,但对多尺度目标检测的归纳和整理却鲜有人涉足.因此,首先对基于深度学习的目标检测的两个主要算法流派的奠基过程进行了回顾,包括以R-CNN系列为代表的两阶段算法和以YOLO、SSD为代表的一阶段算法;然后,以多尺度目标检测的实现为核心,重点诠释了图像金字塔、构建网络内的特征金字塔等典型策略;最后,对多尺度目标检测的现状进行总结,并针对未来的研究方向进行展望.
    46  后量子密码算法的侧信道攻击与防御综述
    吴伟彬,刘哲,杨昊,张吉鹏
    2021, 32(4):1165-1185. DOI: 10.13328/j.cnki.jos.006165
    [摘要](1577) [HTML](679) [PDF 2.07 M](3478)
    摘要:
    为了解决量子计算对公钥密码安全的威胁,后量子密码成为密码领域的前沿焦点研究问题.后量子密码通过数学理论保证了算法的安全性,但在具体实现和应用中易受侧信道攻击,这严重威胁到后量子密码的安全性.基于美国NIST第2轮候选算法和中国CACR公钥密码竞赛第2轮的候选算法,针对基于格、基于编码、基于哈希、基于多变量等多种后量子密码算法进行分类调研,分析其抗侧信道攻击的安全性现状和现有防护策略.为了深入分析后量子密码的侧信道攻击方法,按照算法核心算子和攻击类型进行分类,总结了针对各类后量子密码常用的攻击手段、攻击点及攻击评价指标.进一步地,根据攻击类型和攻击点,梳理了现有防护策略及相应的开销代价.最后,根据攻击方法、防护手段和防护代价提出了一些安全建议,并且还分析了未来潜在的侧信道攻击手段与防御方案.
    47  学习索引:现状与研究展望
    张洲,金培权,谢希科
    2021, 32(4):1129-1150. DOI: 10.13328/j.cnki.jos.006168
    [摘要](2308) [HTML](883) [PDF 1.03 M](4043)
    摘要:
    索引是数据库系统中用于提升数据存取性能的主要技术之一.在大数据时代,随着数据量的不断增长,传统索引(如B+树)的问题日益突出:(1)空间代价过高.例如,B+树索引需要借助O(n)规模的额外空间来索引原始的数据,这对于大数据环境而言是难以容忍的.(2)每次查询需要多次的间接搜索.例如,B+树中的每次查询都需要访问从树根到叶节点路径上的所有节点,这使得B+树的查找性能受限于数据规模.自2018年以来,人工智能与数据库领域的结合催生了“学习索引”这一新的研究方向.学习索引利用机器学习技术学习数据分布和查询负载特征,并用基于数据分布拟合函数的直接式查找代替传统的间接式索引查找,从而降低了索引的空间代价并提升了查询性能.首先对学习索引技术的现有工作进行了系统梳理和分类;然后,介绍了各种学习索引技术的研究动机与关键技术,对比分析了各种索引结构的优劣;最后,对学习索引的未来研究方向进行了展望.
    48  基于深度学习的语言模型研究进展
    王乃钰,叶育鑫,刘露,凤丽洲,包铁,彭涛
    2021, 32(4):1082-1115. DOI: 10.13328/j.cnki.jos.006169
    [摘要](2501) [HTML](593) [PDF 635.55 K](5208)
    摘要:
    语言模型旨在对语言的内隐知识进行表示,作为自然语言处理的基本问题,一直广受关注.基于深度学习的语言模型是目前自然语言处理领域的研究热点,通过预训练-微调技术展现了内在强大的表示能力,并能够大幅提升下游任务性能.围绕语言模型基本原理和不同应用方向,以神经概率语言模型与预训练语言模型作为深度学习与自然语言处理结合的切入点,从语言模型的基本概念和理论出发,介绍了神经概率与预训练模型的应用情况和当前面临的挑战,对现有神经概率、预训练语言模型及方法进行了对比和分析.同时又从新型训练任务和改进网络结构两方面对预训练语言模型训练方法进行了详细阐述,并对目前预训练模型在规模压缩、知识融合、多模态和跨语言等研究方向进行了概述和评价.最后总结了语言模型在当前自然语言处理应用中的瓶颈,对未来可能的研究重点做出展望.
    49  可靠多模态学习综述
    杨杨,詹德川,姜远,熊辉
    2021, 32(4):1067-1081. DOI: 10.13328/j.cnki.jos.006167
    [摘要](2344) [HTML](513) [PDF 887.21 K](3025)
    摘要:
    近年来,多模态学习逐步成为机器学习、数据挖掘领域的研究热点之一,并成功地应用于诸多现实场景中,如跨媒介搜索、多语言处理、辅助信息点击率预估等.传统多模态学习方法通常利用模态间的一致性或互补性设计相应的损失函数或正则化项进行联合训练,进而提升单模态及集成的性能.而在开放环境下,受数据缺失及噪声等因素的影响,多模态数据呈现不均衡性.具体表现为单模态信息不充分或缺失,从而导致“模态表示强弱不一致”“模态对齐关联不一致”两大挑战,而针对不均衡多模态数据直接利用传统的多模态方法甚至会退化单模态和集成的性能.针对这类问题,可靠多模态学习被提出并进行了广泛研究,系统地总结和分析了目前国内外学者针对可靠多模态学习取得的进展,并对未来研究可能面临的挑战进行展望.
    50  面向领域的软件系统构造与质量保障专题前言
    潘敏学,魏峻,崔展齐
    2021, 32(4):887-888. DOI: 10.13328/j.cnki.jos.006230
    [摘要](1350) [HTML](451) [PDF 283.26 K](1602)
    摘要:
    软件是推动新一代信息技术发展的驱动力.随着互联网、云计算、人工智能等技术的快速发展,软件与物联网、区块链、自动驾驶等众多领域的融合进一步加强,正引领并促进这些领域向数字化、智能化发展,为社会、经济的加速演进和创新发展带来了新的契机.因此,面向领域的软件技术不仅是软件领域,也是众多其他领域国内外学者的关注焦点和研究重点.与传统的软件系统相比,面向领域的软件系统(简称领域软件)带来了研究与应用上的新挑战.面对领域软件的特点和需求,如何有效地构造领域软件,实现领域应用的软件定义与智能化,如何通过验证、分析、测试等多种手段严格保障系统控制行为的正确性、实时性、协同性等重要质量特性,是一个重大挑战. 本专题采取自由投稿的方式,共收到37篇投稿,其中36篇通过了形式审查.特约编辑邀请了30位领域专家参与审稿,每篇稿件至少邀请2位专家进行评审,每篇稿件都经过两轮审稿.共计16篇稿件通过第1轮评审,并在CCF软件工程专业委员会、系统软件专业委员会、形式化方法专业委员会年会2020 CCF中国软件大会(Chinasoft)上进行了报告.经过第2轮终审,最终有10篇论文入选本专题.其中,   论文“基于反例确认的CPS不确定性模型校准”研究了CPS中不确定性模型的准确性问题,提出了一种基于反例确认的校准方法以提高不确定性模型的准确度并精化CPS系统模型的验证结果.   论文“安全关键异构软件混合建模及代码生成方法”提出了一种AADL和SDL的混合建模方法,支持以自底向上的方式对安全关键软件系统进行混合建模,并给出了面向多核处理器平台的代码自动生成方法.   论文“基于环境建模的物联网系统TAP规则生成方法”提出了一种基于环境建模的TAP规则生成方法,自动地基于环境模型从服务需求中推导系统行为,检测系统行为的完整性与一致性,并最后转换为TAP规则.   论文“区块链赋能的高效物联网数据激励共享方案”提出了一个高效的区块链物联网数据激励共享框架,利用分片技术构建能够并行处理数据共享交易的异步共识区,并在云/边缘服务器和分片异步共识区上部署高效的共识机制,从而提高数据共享交易的处理效率.   论文“时空轨迹数据驱动的自动驾驶场景元建模方法”提出一种面向自动驾驶领域的时空轨迹数据元建模方法以实现数据的统一、处理与重用,并基于自动驾驶安全场景建模语言ADSML讨论了如何使用ADSML实现场景实例化.   论文“基于深度学习的混合模糊测试方法”提出了一个基于深度学习将符号执行与模糊测试相结合的混合测试方法,并实现了相应的混合测试工具SmartFuSE.   论文“一种结构信息增强的代码修改自动转换方法”基于深度学习提出了一种结构信息增强的代码修改自动转换方法,增强了模型对代码的结构信息和依赖信息的捕获能力,从而提升了代码修改自动转换的准确性.   论文“融合代码与文档的软件功能特征挖掘方法”提出了一种融合代码与文档的软件功能特征挖掘方法.通过迭代挖掘软件源代码和以Stack Overflow讨论帖为代表的软件文档,自动提取开源软件的功能特征描述,并构造层次化的软件功能特征视图.   论文“基于偶然正确性概率的错误定位技术”通过对基于代码覆盖的错误定位技术中可疑度的计算方法进行修正,提出了一种错误定位技术,以消除偶然正确性现象对错误定位技术的影响.   论文“面向神经机器翻译系统的多粒度蜕变测试”提出了一种基于蜕变测试的多粒度测试框架,用于在没有参考译文的情况下评估神经机器翻译系统的翻译质量及其翻译鲁棒性.   本专题面向领域软件的研究人员和工程人员,内容涵盖领域软件的需求分析、设计与建模、开发与构造、测试与验证等领域,反映了我国学者在相关领域的高水平研究成果.感谢《软件学报》编委会、CCF软件工程专委会、系统软件专委会、形式化方法专委会对专题工作的指导和帮助,感谢专题全体评审专家及时、耐心、细致的评审工作,感谢踊跃投稿的所有作者.希望本专题能够对领域软件的科研工作有所促进.
    51  GPU数据库核心技术综述
    裴威,李战怀,潘巍
    2021, 32(3):859-885. DOI: 10.13328/j.cnki.jos.006175
    [摘要](1936) [HTML](658) [PDF 2.40 M](3267)
    摘要:
    GPU以其超高速计算能力和超大数据处理带宽受到数据库厂商及研究人员的青睐,以GPU计算为核心的数据库分支(GDBMS)蓬勃发展,以其吞吐量大、响应时间短、成本低廉、易于扩展的特点,与人工智能、时空数据分析、数据可视化、商务智能交互融合能力,彻底改变了数据分析领域的格局.将对GDBMS的四大核心组件——查询编译器、查询处理器、查询优化器和存储管理器进行综述,希望促进未来的GDBMS研究和商业应用.
    52  支撑人工智能的数据管理与分析技术专刊前言
    陈雷,王宏志,童咏昕,高宏
    2021, 32(3):601-603. DOI: 10.13328/j.cnki.jos.006187
    [摘要](1673) [HTML](479) [PDF 385.65 K](1619)
    摘要:
    近年来,支撑人工智能的数据管理与分析技术正成为大数据和人工智能领域研究的热点问题之一.利用和发展数据管理与分析理论技术,为提升人工智能系统全生命周期的效率和有效性提供基础性支撑,必将进一步促进基于大数据的人工智能技术发展与其在更大范围的推广应用.本专刊聚焦在数据管理与人工智能融合发展的过程中,数据库技术对人工智能的优化支撑作用,包括两方面:(1) 传统数据管理分析的理论技术对人工智能的数据和计算过程的优化;(2) 传统数据管理系统设计理念对开发通用且易用型人工智能平台的促进作用.因此,需要利用和发展现有数据库理论,构建形成新的技术和系统经验.专刊重点立足于数据库核心技术,探讨数据管理与分析技术对人工智能研究发展推动作用,特别是数据管理分析的理论技术对人工智能在数据和计算密集环节的优化,以及数据管理系统设计理念与开发经验对构建通用型人工智能平台的促进作用,重点关注数据管理与分析技术对人工智能在数据存储、算法优化、模型管理、模型服务、系统构建等方面的支撑作用. 本专刊公开征文,共收到投稿36篇.论文均通过了形式审查,内容涉及支撑人工智能的数据管理、分析、系统与应用.特约编辑先后邀请了 60多位专家参与审稿工作,每篇投稿至少邀请2位专家进行评审.稿件经初审、复审、NDBC 2020会议宣读和终审共4个阶段,历时6个月,最终有17篇论文入选本专刊.根据主题,这些论文可以分为5组.
    53  区块链共识协议综述
    夏清,窦文生,郭凯文,梁赓,左春,张凤军
    2021, 32(2):277-299. DOI: 10.13328/j.cnki.jos.006150
    [摘要](4912) [HTML](850) [PDF 621.64 K](4478)
    摘要:
    共识协议作为区块链的核心技术,近年来已经得到学术界和产业界的广泛重视,并取得了一系列研究成果.当前,关于共识协议的综述研究一般将共识协议作为整体进行比较分析,缺乏对共识协议中主要步骤的解耦与比较.将共识协议分为出块节点选举和主链共识两个主要步骤,并针对每个步骤进行协议间的分析比较.在出块节点选举部分,主要讨论工作量证明和权益证明,分析其中存在的问题以及相应解决方案的分类比较.在主链共识部分,针对概率性共识和确定性共识,总结其安全目标,并进行安全性分析比较.通过对区块链共识协议的系统梳理,最后总结共识协议的发展现状和发展趋势,以及未来的重要研究方向.

    当期目录


    文章目录

    过刊浏览

    年份

    刊期

    联系方式
    • 《软件学报 》
    • 主办单位:中国科学院软件研究所
                       中国计算机学会
    • 邮编:100190
    • 电话:010-62562563
    • 电子邮箱:jos@iscas.ac.cn
    • 网址:http://jos.org.cn/
    • 刊号:ISSN 1000-9825
    •           CN 11-2560/TP
    • 国内定价:70元
    您是第位访问者
    版权所有:中国科学院软件研究所 京ICP备05046678号-3
    地址:北京市海淀区中关村南四街4号,邮政编码:100190
    电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
    技术支持:北京勤云科技发展有限公司

    京公网安备 11040202500063号