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Abstract:  In this paper, a hash function with lower rate but higher efficiency is proposed and it can be built on 
insecure compression functions. The security of this scheme is proved under black-box model and some 
compression function based on block ciphers are given to build this scheme. It is also shown that key schedule is a 
more important factor affecting the efficiency of a block-cipher-based hash function than rate. The new scheme 
only needs 2 keys and the key schedule of it can be pre-computed. It means the new scheme need not re-schedule 
the keys at every step during the iterations and its efficiency is improved. 
Key words:  block cipher, hash function, collision attack, pre-image attack, second pre-image attack 

摘  要: 提出了一个基于分组密码的 hash 函数体制,它的 rate 小于 1 但却具有更高的效率,同时,这个 hash 函

数可以使用不安全的压缩函数进行构造,降低了对压缩函数安全性的要求.首先,在黑盒子模型下对这个新的体

制的安全性进行了证明,然后给出了能够用于构造该体制的使用分组密码构造的压缩函数,最后通过实验对比

发现,新 hash 函数的速度比 rate 为 1 的 hash 函数快得多.实验结果表明,除了 rate 以外,密钥编排也是影响基于

分组密码 hash 函数效率的重要因素,甚至比 rate 影响更大.该体制只有两个密钥,不需要进行大量的密钥扩展运

算,大大提高了基于分组密码 hash 函数的效率,而且该体制可以使用现有的分组密码来构造. 
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1   Introduction 

Hash function is a mapping from an input with arbitrary length to an output with fixed length which can be 
shown as follows.  

*:{0,1} {0,1}nH →  
In 1989, Merkle and Damgård independently discussed a method to construct a hash function using a compression 
function with fixed input length[1,2]. This method is called MD method or iterated method and can be described as 
follows. 
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here f is the compression function, IV is the fixed initial value of the hash function, 1 2 1, ,... lh h h −  are called chain 
values, lh  is the output, 1 2, ,... lM m m m= is the input message which is padded and divided into l blocks. One of 

the padding rules is to append 1 to the message and then append enough 0s to make the padded length a multiple of 
|mi| and finally store the length of the original message into the last block i.e. |ml|. This rule is called 
MD-Strengthening. Lai pointed out that if a hash function is not padded with MD-Strengthening, then there is an 
effective attack to find its collisions[3]. Most hash functions used in practice are based on this method, such as 
MD4[4], MD5[5], SHA-0[6], SHA-1[7] etc. These hash functions are called dedicated-designed hash functions because 
the compression functions of these hash functions are specially designed. These hash functions are very fast but the 
compression functions need to be carefully designed and the security cannot be proved in some model. Substituted 
the compression functions with block ciphers, some hash functions based on block ciphers are proposed, such as 
MDC-2[8], PGV schemes[9]. In this way, a specially designed compression function is not necessary. Because the 
block ciphers are not designed specially for hash functions, the efficiency of these hash functions is lower than 
those dedicated- designed ones. So it is important to design a secure hash function based on block ciphers and 
endeavor to improve its efficiency.  

In 1993, Preneel etc. considered all 64 hash functions based on block ciphers called PGV schemes[9]. The 
compression functions can be described as follows. 

1( , ) ( )i i af h m E b C− = ⊕  
here 1 1, , { , , }i i i ia b c h m h m− −∈ ⊕  and h0 is a fixed constant. Reference [9] gives attacks on these schemes but does 

not give a formal proof. In 2002, Black proved the security of these schemes in the black-box model and divided 
these schemes into three groups[10]. Besides the security, the efficiency is another property of block-cipher-based 
hash functions. To describe the efficiency of hash functions based on block ciphers, rate is introduced which means 
the number of blocks dealt with after running the block cipher one time. But rate is not the only factor that 
influences the efficiency of block-cipher-based hash functions; another factor is the key schedule. In many block 
ciphers, key schedule is slower than encryption and decryption. It should be noted that the rate of PGV schemes is 1 
and all secure schemes need re-schedule keys at every step. When hash functions based on block ciphers were 
initially proposed, the output length of block ciphers is 64 bit. With the development of information technology, it 
has become insecure. So some double-block-length hash functions based on block ciphers have been proposed to 
improve the security, such as Parallel-DM[11], PBGV[12], LOKI[13]. But unfortunately Knudsen etc. proved that all 
these schemes whose rate is 1 are not secure[14]. The rate of the secure schemes is less than 1. Some rate-1/2 
schemes are proved to be secure[15], but their efficiency is very low. To preserve security and improve efficiency  

simultaneously, Nandi etc. proposed a 2
3

rate − scheme[16] and proved it is secure. But Knudsen proved it is as  
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secure as the secure single-block-length schemes[17]. Now the rate of secure hash double-block-length function is 
1/2 or 1/4 (MDC-4). It is obvious that the double-block-length hash functions are not efficient. The emergence of 
AES has modified this landscape, so single-block-length hash functions may satisfy the security requirement. As 
mentioned above, the block-cipher-based hash functions need re-schedule the key at every step and key schedule is 
slower than encryption. So an efficient method to construct a block-cipher-based hash function is needed. A fixed 
key seems a good idea, and some schemes with a fixed key have been proposed such as Tweakable Chain Hash 
(TCH)[18]. This kind of hash functions is called highly efficient block-cipher-based hash functions. However, Black 
proved that all block-cipher-based rate-1 hash functions are not secure if they do not rekey the block cipher[19]. 
Black pointed out that TCH could not be correctly instantiated by this efficient means.  

In this paper, we propose a new way to construct a single-block-length hash function based on block ciphers. 
All secure schemes mentioned above need a secure compression function to ensure the security of the hash 
functions. Unlike these schemes, the compression function used in the new scheme in this paper can be insecure but 
the hash function constructed with it is secure. Usually one judges by rate whether a block-cipher- based hash 
function is efficient. Larger the rate is and higher the efficiency. We analyze the factors that affect the efficiency of 
block-cipher-based hash functions and we find that besides rate, key schedule is another very important factor. A 
hash function with smaller rate may be more efficient than the ones with larger rate. 

2   Definition and Preliminaries 

    BLOCK CIPHERS. A block cipher is a map :{0,1} {0,1} {0,1}k n nE × →  where k is the key length in bits and n 

is the block length in bits. For each {0,1} , ( , )k
KK E E K∈ = •  is a permutation on {0,1}n. E−1 is its inverse. 1( )KE y−  

returns a string x such that EK (x) = y. Let Block(k, n) denote all block ciphers :{0,1} {0,1} {0,1}k n nE × → . In this  
paper, block ciphers selected from Block(k, n) are used to construct a hash function. 

BLACK-BOX MODEL. This model is the one dating back to Shannon[20]. Black etc. used it to prove the 
security of all PGV schemes. This model regards the block cipher as a black box, the adversary do not know any 
details about the block cipher and is only given access to oracle E−1 and E. Here E is a block cipher mentioned  
above and E −1 is its inverse. This model means given a fixed key {0,1} , ( , )k

KK E E K∈ = •  is a permutation on  
{0,1}n and the adversary queries the oracles E −1 and E. If the query is (K, x), E  returns y such that EK (x) = y. The 
latter on input (K, y) returns x such that EK (x) = y. 

SECURE HASH FUNCTIONS. In Ref.[14], Knudsen proposes seven attacks to analyze the security of hash 
functions. In fact, only three of these attacks are effective for hash functions, collision attack, pre-image attack and 
second pre-image attack. A secure hash function must be collision attack resistant, pre-image attack resistant and 
second pre-image attack resistant. Actually if a hash function is collision attack resistant, it is also second pre-image 
resistant[21]. Therefore, only collision attack and pre-image attack are considered in this paper. 

Definition 1 (collision attack). Given a hash function H and its initial value (IV) h0, find M and M′ where M ≠  
M′ such that 0 0( , ) ( , )H h M H h M ′= . 

Definition 2 (pre-image attack). Given a hash function H and its initial value (IV) h0 and a randomly selected 
value σ, find M such that 0( , )H h M σ= .  

Definition 3 (second pre-image attack). Given a hash function H and its initial value (IV) h0 and M, find M′ ≠ 
M such that 0 0( , ) ( , )H h M H h M ′= . 

Assuming the output length of a hash function is n bit, then the complexity of finding a collision and a 
pre-image of a secure hash function should be O(2n/2) oracles and O(2n) oracles respectively i.e. the hash function is 
collision attack resistant and pre-image attack resistant. We use the collision attack advantage and pre-image attack 
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advantage defined in Ref.[10] to formally describe the security of a hash function or a compression function. 
$x S←⎯⎯  denotes the experiment of choosing a random element x from a set S. 
Definition 4 (collision resistance of a hash function). Let H be a hash function constructed with a block 

cipher E, A be an adversary. Then the advantage of A in finding a collision in H is 
1$ ,( ) Pr[ ( , ); , : ( ) ( )]H E E E E

collAdv A E Block k n M M A M M and H M H M
−

′ ′ ′= ←⎯⎯ ←⎯⎯ ≠ =  

Let q denote the amount of the most queries that A has made, we write ( ) max( ( ))coll coll
H HAdv q Adv A= . Similarly we 

define the inversion advantage to describe the inversion resistance, i.e., pre-image resistance of a hash function. 
 Definition 5 (inversion resistance of a hash function). Let H be a hash function constructed with a block 
cipher E, A be an adversary. Then the advantage of A in finding a pre-image in H is 

1$ $ ,( ) Pr[ ( , ); {0,1} ; : ( ) ]H n E E E
invAdv A E Block k n M A H Mσ σ

−
= ←⎯⎯ ←⎯⎯ ←⎯⎯ =  

The two advantages should be negligible in computation so that to get significant advantages the computation 
complexity needed are O(2n/2) oracles and O(2n) oracles respectively. The definition of collision resistance and 
pre-image resistance for a compression function has a little difference with the hash function. 
 Definition 6 (collision resistance of a compression function). Let f be a block-cipher-based compression 
function and A be an adversary. Then the advantage of A to find a collision of f is 

$( ) Pr[ ( , ); (( , ),( , )) : (( , ) ( , ) ( , ) ( , )) ( , ) ]f f
collAdv A f Block k n h m h m A h m h m f h m f h m f h m IV′ ′ ′ ′ ′ ′= ←⎯⎯ ←⎯⎯ ≠ ∧ = ∨ =  

where m is the message block used by the adversary. 
 Definition 7 (inversion resistance of a compression function). Let f be a block-cipher-based compression 
function and A be an adversary. Then the advantage of A to invert f is 

$ $( ) Pr[ ( , ); {0,1} ; ( , ) ( ) : ( , ) ]f n f
invAdv A f Block k n h m A f h mσ σ σ= ←⎯⎯ ←⎯⎯ ←⎯⎯ = . 

3   New Scheme and Its Security 

3.1   Compression function used in this scheme 

The compression function used in this scheme is defined as follows. 
( )KE a b⊕ , 

here K is the key of a block cipher, 1,i ia h b m−= = , where hi−1 is the chain value and mi is the message block. It is 

easy to see that the compression function is not secure. For any pair (hi−1, mi) and 
1

( , )
i i

h m
−
′ ′  if 

11 i ii ih m h m
−− ′ ′⊕ = ⊕ , then 

11( ) ( )
i iK i i KE h m E h m
−− ′ ′⊕ = ⊕ . If this function is used to construct a hash function in the 

MD method, the hash function is not collision resistant. This hash function is shown in Fig.1. 

M1 M2 Ml

EK EKh0 

 

Fig.1  Single-Block-Length scheme iterated with the compression function 

Any pair of messages with two blocks such that 0 1 1 0 2 2|| ( ) , || ( )K KM h c E c v M h c E c v′= ⊕ ⊕ = ⊕ ⊕  will be a 

collision for this hash function. The output is EK(v). Here c1 and c2 are different values so that M≠M′ and v is any 
constant value. It is obvious that this compression cannot be used to construct a secure hash function although it can 
be used to construct a secure MAC such as CBC. 

3.2   New scheme description and its security analysis 

It has been mentioned above that it is impossible to construct a rate-1 highly efficient block-cipher-based hash 
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function. How about rate-1/2? Our scheme is a rate-1/2 hash function iterated with the compression function  
mentioned above. It can be shown in Fig.2 as follows. Here h0,1, h0,2 are two different initial values. 

1KE  and 
2KE  

denote two different and independent permutations by the definition. hl,1 and hl,2 denote the outputs of the two 
branches and g denotes the output transformation. The output of this scheme is ,1 ,2( || )l lg h h . The two branches are 

denoted by H1 and H2 respectively. 

M1 M2 Ml

M1 M2 Ml

MK1MK1 

MK2 MK2

h0,1 

h0,2 

Hl,1

Hl,2

g

 

Fig.2  New scheme in this paper 

Lemma 1. Let H′ be the hash function shown in the dash box of Fig.2. n is the block length in bit and k is the 
key length in bit. Then the advantage of finding a collision for H′ is 

( 1)( )
2

H
coll r

q qAdv q′ +
≤  

where ( , )r Min k n= and q is the number of queries. 

Proof:  We define a direct graph 
1 11 ( , )G GG V D=  to save the output of query

1KE or 
1

1
KE−  where V denotes the 

set of vertices and D denotes the set of edges. The vertex set is {0,1} {0,1} {0,1}n n nV = × × . Let ,1 ,1 ,1( , , )i i ih m y  denote 

one vertex (i denotes the i-th query and 
1,1 ,1 ,1( )i K i iy E h m= ⊕ ). An arc ,1 ,1 ,1 ,1 ,1 ,1( , , ) ( , , ) ( )i i i j j jh m y h m y i j→ ≠  is in

1GD  

if ,1 ,1i jy h= . Initially, each vertex in G1 is uncolored. When adversary A asks query
1KE or

1

1
K

E− , if ,1 0,1ih h=  the 

vertex ,1 ,1 ,1( , , )i i ih m y  is colored red else colored black. A path P in G1 is colored if all of its vertices are colored. 

Two vertices ,1 ,1 ,1( , , )i i ih m y  and ,1 ,1 ,1( , , )j j jh m y ) are colliding vertices if ,1 ,1i jy y= . So there is a collision 

of H1 if and only if there are two paths P and P′ whose vertices are colored and they begin with h0,1 and  
end with colliding vertices. Let C denote this event. We define another direct graph 

2 22 ( , )G GG V D=  to save the 

result of queries of 
2KE or 1

2

−
K

E . Its conventions are the same as G1 except that the oracle is
2KE or 1

2

−
K

E  and its 

vertex is like ),,( 2,2,2, iii ymh . We color the vertices in G2 with the same message blocks as in G1 when the vertices 

in G1 are colored. Let C′ denote the event that there are two colliding paths. So 
Pr[ ]H

collAdv ′ ′= ∧C C  

Then we give Pr[C] and Pr[C′]. Let Ci denote that the event C occurs at the i-th query. That is to say that the arcs 
queried previously form a colliding path at the i-th query. Ci occurs if and only if there exists an arc  

,1 ,1 ,1 ,1 ,1 ,1( , , ) ( , , )p p p i i ih m y h m y→  and yi,1 = y where 1,1 2,1 1,1 0,1{ , ,..., } { }iy y y y h−∈ ∪  and ,1 ,1 ,1( , , )p p ph m y  is the vertex  

queried at the p-th (p<i) query. It means that yi,1 has been queried before the i-th query. So  

1 ,1 ,1 ,1Pr[ ] Pr[ ( ) ] ( {0,2,3,..., 1}).i K i i jE h m y j i= ⊕ = ∈ −C  

It can be deduced that Pr[Ci]=1 and Pr[C]=1. Because for any 1,1 2,1 1,1 0,1{ , ,..., }iy y y y h−∈ ∪ , a message block mi 

can be computed by 
1

1
,1( )K iE y h− ⊕ . After the vertices queried in the i-th query have been colored in G1, we color the 

i-th queried vertices in G2. Let i′C  denote the event that C′ occurs. As in G1, i′C  occurs if and only if there exists 
an arc ,2 ,2 ,2 ,2 ,2 ,2( , , ) ( , , )p p p i i ih m y h m y→  and ,2iy y′= , where 1,2 2,2 1,2 0,2{ , ,..., }iy y y y h−′∈ ∪  and ,2 ,2 ,2( , , )p p ph m y  is  

the vertex queried at the p-th (p<i) query. It means that yi,2 has been queried before the i-th query. So 
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2 ,2 ,2 ,2Pr[ ] Pr[ ( ) ] ( {0,2,3,..., 1})i K i i jE h m y j i′ = ⊕ = ∈ −C . 

To get a collision for the hash function, we need Ci and i′C  occur simultaneously. So if Ci occurs when y=yj,1, 
where j<i, then i′C should satisfy ,2jy y′ = . Let y0,1 denote h0,1 and y0,2 denote h0,2, we have 

2 1

2 1

1

,2 ,2 ,2 ,1 ,1 ,1
0

1
1 1

,2 ,2 ,1 ,1
0

1

1
0

Pr[ | ] Pr[ ( ) | ( ) ]

Pr[ ( ) ( ) ]

1
2 2

K K

i

i i K i i j K i i j
j

i

j i j i
j
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r r
j

E h m y E h m y

E y h E y h

r
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−

=

−
− −

=

−

−
=

′ = ⊕ = ⊕ =

= = = =

≤ ≤
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∑

∑

∑
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here r = Min(k,n). Let q denote the total queries of 
1KE  or 1

1

−
KE  and 

2KE or 1
2

−
K

E . Then 

 

0

Pr[ ] Pr[ | ] Pr[ ]
Pr[ | ]

Pr[ | ]
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i i
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Adv ′

=

′ ′= ∧ = ⋅
′≤

′= ∑

C C C C C
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( 1) .
2r r

q q
+

+
=  □ 

H′ is a double-block-length hash function. We use a function g to transform it into a single-block-length scheme. 
 Lemma 2. If g is collision resistant, let H denote the whole hash function described in Fig.2. Then the 

advantage of finding a collision for H is 

( , )H H g
coll coll collAdv Min Adv Adv′= . 

Proof:  There are two kinds of collisions for H. 

1. H′ has a collision. In this case, g must have a collision because the input of g is the same. H H
coll collAdv Adv ′= . 

2. The outputs of H′ do not include collisions. In this case, H g
coll collAdv Adv= . 

In conclusion, ( , )H H g
coll coll collAdv Min Adv Adv′= . □ 

Lemma 3. If g is pre-image resistant, let H denote the whole hash function described in Fig.3. Then the 
advantage of inverting H is 

H g
inv invAdv Adv≤ . 

Proof:  Given an output of H, We firstly need to find the pre-image of g and then find the pre-image of H′. So 
if g is pre-image resistant, H is pre-image resistant. □ 

The following theorem can be concluded from the lemmas mentioned above. 
Theorem 1. If g is collision resistant and pre-image resistant, the hash function H described in Fig.2 is a secure 

hash function. 
Proof:  It can be concluded from the lemmas. □ 
In practice, g can be substituted by a secure compression function, for example, one of the secure PGV  

schemes. In this paper, we use 
,1 ,2 ,2( )

lh l lE h h⊕  to substitute g. At first glance, the new scheme looks similar with  

the wide-pipe schemes proposed in Ref.[22] by Lucks etc. Actually Wide-pipe schemes are proposed to resist the 
multi-collision attack and the compression functions used in those schemes are secure. But this scheme is not the 
case. We concentrate on how to construct a new hash function based on block ciphers and improve its efficiency. 

3.3   Efficiency of the new scheme 

At the first glance, the efficiency of this scheme is not high, because the rate of this scheme is only l/(2l+1) 
which is less than 1/2 where l is the number of message blocks. As we have pointed out not only rate but also key 
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schedule will influence the efficiency of the hash functions based on block ciphers, and the key schedule may be 
more important. The new scheme in this paper need not re-schedule the keys at every step. It can highly improve the  
efficiency. We compare the efficiency of the scheme in this paper with a PGV scheme. 

1
( )

ih i iE m m
−

⊕  is picked  

from PGV schemes as the compared scheme. To facilitate the comparison, we use AES-128 to implement both of 
the block-cipher-based schemes. The operating system is Windows XP SP2, CPU is Intel Celeron 1.7GHz and the 
compiler is VC++ 6.0. The result is shown in the table as follows. 

Table 1  Time collapsed to process messages with different size 
 16 (MB) 32 (MB) 48 (MB) 64 (MB) 80 (MB)

New scheme (s) 0.65 1.332 1.963 2.774 3.605 
PGV (s) 1.181 2.454 3.545 4.636 5.708 

The number from row 2 to row 3 in Table 1 denotes how much time the hash function cost to process the 
messages with different size. From Table 1 we note, with the increasing of message blocks, more and more key 
schedules are needed for PGV schemes and the time needed increases faster than our scheme. Our scheme need not 
key schedules except at the beginning and the last step. So our scheme is more efficient than the PGV scheme 
although its rate is less than that of the PGV scheme.  

Figure 3 intuitively describes the efficiency comparison of the two schemes. The thick line denotes the PGV 
scheme and the thin line denotes our scheme. Actually when the message is small, PGV scheme is more efficient. 
But if the message has more than three blocks, then our scheme is more efficient.  

Data (MBlocks) ×106
1 2 3 4 5 6 7

1 

0 

2 

3 

4 

5 

6 

7 

Ti
m

e 
(s

) 

New scheme
PGV scheme

 
Fig.3  New scheme in this paper 

It can be concluded from above that key schedule is a more important factor than rate which affects the 
efficiency of block-cipher-based hash functions. But block ciphers are not designed for hash functions, they are used 
in encryption and MAC where keys are kept secret and need not re-schedule. In the experiment, we find if the rate 
of a block-cipher-based hash function is 1 and it needs not re-schedule the keys, it is as efficient as SHA-1, for 
example the TCH scheme. Unfortunately, it has been proved not secure. The efficiency of the scheme in Fig.3 can 
be improved more higher. For the two branches are parallel, They can be computed simultaneously on the 
multi-CPU computer. 

A well known method to construct a MAC with hash functions is to include a secret key as part of the input of 
a hash function such as ( , ) ( , || )MAC K M H IV K M= . If the hash function H is based on MD method, there exists 
an extension attack to forge a MAC without the secret key. Given ( , ) ( , || )MAC K M H IV K M= , one can forge 

)),||,(()||,( yMKIVHHyMKMAC =  

Coron etc. modified MD method to resist this attack. The new scheme in this paper can also resist this attack, 
because the chain values of it are double-block-length while its output is single-block-length. 
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3.4   What kind of compression function can be used 

The compression function used in the new scheme does not have to be secure. In PGV schemes, there are many 
insecure compression functions. Which can be used in the new scheme? Actually the compression function used in 
this paper is a special instance of the 36-th scheme in PGV schemes. We give a table to describe which one can be 
used in this scheme. 

Table 2  Classification table for some PGV schemes 
ind j hi = Secure
1 4 Ev (mi) ⊕v N 
2 8 Ev (mi) ⊕mi N 
3 20 Ev (hi−1) ⊕v N 
4 28 Ev (hi−1) ⊕hi−1 N 
5 52 Ev (v) ⊕ v N 
6 56 Ev (v) ⊕ mi N 
7 60 Ev (v) ⊕ h i−1 N 
8 12 Ev (mi) ⊕ h i−1 N 
9 16 Ev (mi) ⊕ mi ⊕ h i−1 N 

10 64 Ev (v) ⊕ mi ⊕ h i−1 N 
11 24 Ev (h i−1) ⊕ mi Y 
12 32 Ev (h i−1) ⊕ h i−1 ⊕ mi Y 
13 36 Ev (h i−1 ⊕ mi) ⊕v Y 
14 40 Ev (h i−1 ⊕ mi) ⊕mi Y 
15 44 Ev (h i−1 ⊕ mi) ⊕ h i−1 Y 
16 48 Ev (h i−1 ⊕ mi) ⊕ h i−1 ⊕ mi Y 

Here ind is the index in this paper, j is its corresponding index in Ref.[10], N and Y denote insecure and secure 
respectively. For example the 8-th scheme in this table, its output is independent of the sequence of the message 
blocks. If a hash function H is construct with this compression function, then 

1 2 21 2

1 2

( ,( , ,..., )) ( ,( , ,..., ))

( ) ( )... ( )
l i i i

v v v l

H IV m m m H IV m m m

E m E m E m IV

=

= ⊕ ⊕
 

where 1 2{ , ,..., }li i i  is a permutation on {1,2,…,l}. If it is used in our scheme, it is easy to find the collisions for the 

two branches simultaneously. The 9-th scheme and 10-th scheme are the same as the 8-th. The first 7 schemes do 
not include both chain values and message blocks. They are also not secure. Liskov proposed a method to construct 
an ideal hash function with the weak compression functions[23]. This can be described as follows. 

0 0 3 0 2 0 1

1 1 1 2 1 1 1

( ,..., ( , ( , ( , )))...)
( ,..., ( , ( , ( , )))...)

l

l l l

Mid f m f m f m f m IV
Out f m f m f m f m IV− −

=

=
 

f0 and f1 are two weak compression functions. Weak compression function was defined in Ref.[23] as follows. 
Definition 8 (Weak compression function). Let there be two oracles f −1 and f *. On querying f −1 on input 

(x,z), the oracle returns a random value y such that f(x,y) = z. On querying f * on input (y,z), the oracle return a 
random value x such that f(x,y) = z. f is a weak compression function. 

The security of the 9-th scheme in this table is stronger than weak compression functions, but if it is used to  

construct Liskov’s scheme, it is not secure. Let 
0

0
0 1( )v i i if E m m h −= ⊕ ⊕  and 

1

1
1 1( )v i i if E m m h −= ⊕ ⊕ . Let HW 

denote the hash function constructed with them in Liskov’s way and 1 2, ,..., lM m m m= . Then there exists 

1 2
, ,...,

li i iM m m m′ =  such that ( ) ( )W WH M H M ′= , where 
1 2

( , ,..., )
li i im m m  is a permutation on 1 2, ,..., lm m m . 

Similarly, for the 8-th scheme, It is the same case. The other schemes marked by ‘N’ in Table 2 are weaker than 
weak compression function. So the compression function for Liskov’s scheme should be carefully selected. It does 
not indicate that Liskov’s scheme is not good. In fact, Liskov’s scheme gave a good idea to construct a hash 
function with an insecure compression function. 
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4   Conclusion 

In this paper, we proposed a new hash function based on block ciphers and analyzed its security. In practice, 
the scheme in this paper is easily implemented. Firstly one selects a message block as the first key K1, then one uses 
a function s to transform the message block to K2 where K1≠K2. Function s is easily implemented, for example s(x) 
= x⊕v where v is a non-zero constant. Although the rate of our scheme is not high, the efficiency of it is still higher 
than those PGV schemes. From the experiment, we find that key schedule is a more important factor that affects the 
efficiency of block-cipher-based hash functions, especially when the message is very large. Unlike the ordinary 
iterated hash functions, this hash function is constructed with an insecure compression function. We analyzed the 
insecure PGV schemes and divided them into two groups by the security. We found that some of these insecure 
compression functions cannot be used to construct our scheme. 
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