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Abstract:  In hidden Web domain, general-purpose search engines (i.e., Google and Yahoo) have their 
shortcomings. They cover less than one-third of the data stored in document databases. Unlike the surface Web, if 
combined, they cover roughly the same data. Hidden Web is a highly important information source since the content 
provided by many hidden Web sites is often of very high quality. This paper proposes a three-step framework to 
automatically identify domain-specific hidden Web entries. With those obtained query interfaces, they can be 
integrated to obtain a unified interface which is given to users to query. Eight large-scale experiments demonstrate 
that the technique can find domain-specific hidden Web entries accurately and efficiently. 
Key words:  deep Web; hidden Web; surface Web; hidden Web entry; searchable form 

摘  要: 在深度网研究领域,通用搜索引擎(比如 Google 和 Yahoo)具有许多不足之处:它们各自所能覆盖的数据量

与整个深度网数据总量的比值小于 1/3;与表层网中的情况不同,几个搜索引擎相结合所能覆盖的数据量基本没有

发生变化.许多深度网站点能够提供大量高质量的信息,并且,深度网正在逐渐成为一个最重要的信息资源.提出了

一个三分类器的框架,用于自动识别特定领域的深度网入口.查询接口得到以后,可以将它们进行集成,然后将一个

统一的接口提交给用户以方便他们查询信息.通过 8 组大规模的实验,验证了所提出的方法可以准确高效地发现特

定领域的深度网入口. 
关键词: 深度网;深度网;表层网;深度网入口;搜索表单 
中图法分类号: TP393   文献标识码: A 

1   Introduction 

According to how its data is stored, the World Wide Web can be classified into two categories that are surface 
Web and deep Web (also called hidden Web). In the surface Web, data are stored in document files; while in the 
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deep Web, data are stored in databases[1]. Unlike the surface Web, the deep Web refers to the collection of Web data 
that is accessible by interacting with a Web-based query interface, and not through the traversal of static hyperlinks. 
A July 2000 white paper[2] estimated that deep Web has 450 000 databases, 7 500 terabytes of information and 550 
billion individual documents. In contrast, the surface Web contains 19 terabytes of information and 1 billion 
individual documents. In addition, according to many studies, the size of the hidden Web increases rapidly as more 
organizations release their valuable content online through an easily used Web interface[3]. The content provided by 
many hidden Web sites is often of very high quality and can be extremely valuable to many users. The site of the US 
Patent and Trademarks Office is an example, which makes existing patent documents available in order to help 
potential inventors examine the arts which had been invented already. 

To retrieve data from online databases, three main problems should be considered. They are interface 
unification (also called interface integration), query translation and result merging. Before hidden Web database is 
queried, search system first characterizes the available search interfaces and then, given a query, it selects a subset 
of useful domain-specific search interfaces, queries them and presents results to the users. 

In this paper, we consider an overlooked problem that precedes the three main problems. It is discovering deep 
Web entries. A search system must discover a set of search interfaces or be provided with such a set before it can 
proceed with the other three steps. 

Much work has been done in each of these three areas. For each domain, the MetaQuerier[4] constructs a 
unified interface which is provided for users to query. Users send their queries via the unified interface. A mediator 
translates the queries to each specific online database and then returns the integrated query results to the users. 
Chang, et al.[5] use the parsing approach achieving above 85% accuracy for extracting query conditions across 
randomly selected deep Web sources and for query interface matching. Wu, et al.[6] develop a novel approximation 
algorithm LMax, which builds the unified interface via recursive applications of clustering aggregation. Moreover, 
they extend LMax to handle the irregularities that frequently occur in the interface schemas. 

The interface Extractor[7] can achieve a deeper understanding of Web search interfaces in the sense that more 
semantic/meta information on search interfaces can be extracted. With such semantic/meta information, the enriched 
interface schema can be used in many applications, for instance, query translation, search result extraction and 
annotation. Chang, et al.[8] pursue a source-based and rule-driven framework to implement query translation across 
different deep Web sources. On the contrary, He, et al.[9] propose a generic type-based and search-driven query 
translation framework to reach the same goal. 

A deep Web wrapper is a program that extracts contents from search results. Nakatoh, et al.[10] propose a new 
automatic generation algorithm which discovers a repetitive pattern from search results. Hedley, et al.[11] describe a 
Two-Phase Sampling (2PS) technique to detect templates and extract query-related information from the sampled 
documents of a database. Mundluru, et al.[12] give a highly effective and efficient solution for automatically mining 
result records from search engine response pages. Experimental results showed that their proposed system 
significantly outperforms MDR[13], a state-of-the-art record mining system. 

Though much work has been done in those areas, little work has been done in interface discovery, especially 
since the three main problems depend on having a set of known hidden Web interfaces. The remaining paper is 
organized as follows. We review related work in Section 2. Section 3 concerns with page and form classifiers. 
Three-step framework of our hidden Web crawler is described in Section 4. Experimental results are elaborated in 
Section 5. Section 6 is concerning with conclusion and future work. 
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2   Related Work 

In recent years, the hidden Web is becoming a hot research spot. It is estimated that there are several million 
hidden Web sites, which contain a large amount of information that is of high quality[14]. The difficulties in 
automatically filling out structured Web forms have been documented in the literature[15]. The work in Ref.[16] 
describes a semi-automatic crawler called HiWE, which is aided by domain knowledge to generate reasonable 
queries for hidden Web interfaces. Cope, et al.[17] use an automatic feature generation technique to depict candidate 
forms and a C4.5 decision tree to classify them. In their two testbeds—ANU collection and random Web collection, 
they get an accuracy of more than 85% and a precision of more than 87% respectively. 

Bergholz, et al.[18] describe a crawler which starts from the Publicly Indexable Web (PIW) to find entry points 
into the hidden Web. This crawler is domain-specific and is initialized with pre-classified documents and relevant 
keywords. Luciano and Juliana[19] compose two classifiers in a hierarchical fashion to identify online databases 
among a heterogeneous set of Web forms automatically gathered by a focused crawler. In Ref.[20], they present a 
new adaptive focused crawling strategy for efficiently locating hidden Web entry points. Unfortunately, the ACHE 
framework they proposed can not handle very sparse domains efficiently. Besides, the ACHE framework is complex 
and its overhead is large. Our technique is different from theirs. Firstly, our modified best-first crawler just finds 
domain-specific hidden Web entries. Secondly, we use a three-step framework to guide our deep Web crawler in this 
paper. 

3   Page and Form Classifiers 

In order to find domain-specific hidden Web entries, we use three classifiers which work in a hierarchical 
fashion to guide our deep Web crawler. The three classifiers include form structure classifier, form text classifier 
and page text classifier. 

3.1   Form structure classifier 

A form is made up of two parts that are structural and textual parts. Consider the famous Perl CPAN Web page 
as an example, where we can find distributions, modules, documents and ID’s. The HTML source code of its form 
contained in this Web page is listed below: 

〈form method=“get” action=“/search” name=“f” class=“searchbox”〉 
〈input type=“text” name=“query” value=“” size=“35”〉 
〈br〉 in 〈select name=“mode”〉 
〈option value=“all”〉 All 〈/option〉 
〈option value=“module”〉 Modules 〈/option〉 
〈option value=“dist”〉 Distributions 〈/option〉 
〈option value=“author”〉 Authors 〈/option〉 

〈/select〉 & nbsp; 〈input type=“submit” value=“CPAN Search”〉 
〈/form〉 
When displayed in IE browser, the result is shown in Fig.1. 

 
 
 CPAN search

Fig.1  An illustrated form interface displayed in IE browser 

Allin 
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From Fig.1, we can see that a form contains not only textual contents such as ‘in’, ‘CPAN Search’, but also 
structural contents such as select elements, submission buttons. In order to identify whether a form is a 
domain-specific searchable form or not, in this paper we use form structural and textual features to train form 
structure and form text classifiers respectively. Once obtaining a form structure classifier, we can get rid of these 
non-searchable forms, such as forms for login, discussion group interfaces, mailing list subscriptions, purchase 
forms and Web-based email forms. Luciano, et al.[21] and Cope, et al.[17] demonstrate that optimum result will be 
obtained by using a decision tree to classify searchable and non-searchable forms. Accordingly, we also use decision 
tree algorithm to train a form structure classifier. 

3.2   Form text classifier 

With the aid of decision tree classifier, we can identify whether a form is a searchable form or not. To further 
ascertain if a searchable form is a domain-specific one, we must make full use of form textual features. According 
to previous researches[19,20,22], libsvm learning algorithm[22] should be used in this case. To extract textual features 
from forms, two text extracting methods are tried in this paper. One is called FT (full text) technique and the other is 
named PT (partial text) method. The FT method simply uses all HTML codes of forms and splits them using 
non-alphanumeric strings. In contrast with FT method, the PT technique extracts those textual features, which can 
be seen by our human beings (when displayed in a browser) as well as the form action attribute to which all form 
data are sent. For example: 

〈form action=“http://www.hotwire.com/car/search-options.jsp” 
method=“get” name=“searchCar”〉 
This is a form which is used for demo. 

〈/form〉 
In the above form, the action attribute value is: 

http://www.hotwire.com/car/search-options.jsp 
which is also extracted by the PT method. 

In order to use these extracted textual features, some pre-processing steps are needed. First, all characters other 
than alphanumeric ones are replaced by a space character; second, uppercase characters, if any, are converted to 
their lower case equivalents; third, stop words, if any, are removed, using CPAN[23] Perl package 
Lingua::EN::StopWords; fourth, each word in the remaining texts is stemmed, using CPAN Perl package 
Lingua::Stem::En; finally, TFIDF[24] is used to transform each training example into its corresponding vector. The 
same procedure is also applied to page text classifier (see Section 3.3). Using those extracted textual features, we 
can train a SVM classifier which can be used to identify whether a searchable form is domain-specific or not. 

3.3   Page text classifier 

To decide automatically whether a Web page is relevant or not, we use a page text classifier. Given a Web page, 
we first obtain its corresponding plain texts. After that, some pre-processing steps (see Section 3.2) are needed in 
order to use these texts to train a SVM classifier. 

With these three classifiers on hand, we can apply them to guiding a focused crawler to find deep Web entries: 
• First, using the page text classifier to decide whether the Web pages corresponding to the given URLs are 

relevant or not; 
• Second, if a Web page is relevant, we extract searchable forms from it with the aid of the form structure 

classifier; 
• Third, if the relevant Web page contains searchable forms, we further use the form text classifier to 
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ascertain whether they are domain-specific or not. 
The reason why we use classifiers in this hierarchical fashion is that the hierarchical composition of classifiers 

leads to modularity. In this case, a complex problem is decomposed into simpler sub-components and each is 
devoted to a subset of the hypothesis. This has several merits: 

• First, the overall classification process is not only accurate but also robust; 
• Second, we can apply to each part a learning method that is best suited for the feature set of the partition. 

4   Three-Step Framework 

Figure 2 shows the high-level architecture proposed in this paper. 
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Fig.2  The high-level architecture proposed in this paper 

Note that the best-first crawler used in this paper is a variation of the best-first crawler proposed in Ref.[22]. In 
Ref.[22], they make no difference about URLs which lie in a on-topic page; whereas we give URLs priorities 
according to the following formula 

a×page_score+b×anchor_score. 
Here, we let a and b take the same value one. The detailed procedure about our deep Web crawler is displayed 

in Fig.3. 
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Fig.3  The detailed procedure of our three-step framework 
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Here we make an assumption: unless the home page of a Web site is relevant to a database domain, the Web 
site can not contain domain-specific deep Web entries. The reason why we make such an assumption is that we want 
our crawler to crawl in a promising search space and consequently improve its efficiency. In the following part, we 
will simply explain our three-step framework: 

• First, given a URL, we find out its corresponding home page and decide whether this home page is 
domain-specific. Our crawler only finds deep Web entries in those sites which contain domain-specific 
home pages; 

• Second, in each domain-specific Web site, our crawler crawls within it until depth>=3 or the total number 
of pages threshold>=100 is visited. Note that the reason why we set depth<3 is that Web databases tend to 
locate shallowly in their sites and the vast majority of them (approximately 94%) can be found at the top 3 
levels[16]. Besides, in order to protect our crawler from getting trapped in some sites, we set a threshold for 
visiting maximum Web pages per site. 

5   Experimental Results 

TEL-8 Query Interfaces[25] dataset is used to train a form classifier. This dataset contains the original interfaces 
extracted from eight representative domains, which are Airfares, Automobiles, Books, CarRentals, Hotels, Jobs, 
Movies and MusicRecords. Table 1 shows the instances’ distributions of the eight representative database domains. 

Table 1  The instances’ distributions of the eight database domains. 223 sources in all 
Domain Sources Domain Sources 
Airfare 20 Auto 28 
Book 43 Rental 13 
Hotel 34 Job 20 
Movie 32 Music 33 

 

5.1   Training form structure classifier 

In this paper, our form structure classifier is trained by using decision tree algorithm. The decision tree training 
data are collected as follows: we extract 223 searchable forms (see Table 1) from TEL-8 Query Interfaces as 
positive examples and manually gather 318 non-searchable forms as negative ones. 

For each form in the sample dataset, we count the following features: number of checkboxes; number of file 
inputs; number of hidden tags; number of image inputs; number of submission methods (get and post); number of 
select elements; number of password tags; number of radio tags; number of word ‘search’ within form tag or 
submission button; number of text elements; number of textarea elements and number of word ‘email’ in input 
elements’ name or value. The distributions about all those features in searchable and non-searchable forms are 
displayed in Table 2. From Table 2, we can draw the following conclusions: 

• Searchable forms have a large number of checkboxes and items (options) in selection lists. 
• No-Searchable forms have a large number of password tags and ‘email’ in input elements’ name or value. 

Using these structural features, we can train a decision tree classifier. 
Two tools are used to construct a form structure classifier: Weka j48 algorithm[26] and Algorithm::SVMLight 

Perl package[23]. In Weka, the precision of the decision tree classifier is 0.948 718. The decision tree generated by 
Weka is displayed in Fig.4. In fact, we use Perl package Algorithm::SVMLight in this paper to train a decision tree 
classifier and its precision is 0.948 717 948. Obviously, these two tools have the similar results according to our 
experiments. Nevertheless, in Algorithm::SVMLight current implementation, only discrete-valued attributes are 
supported and consequently it outputs a large number of rules. In fact, it outputs 122 rules in all. Additionally, we 
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think that the decision tree misclassifies an instance if it can not decide, to which category this instance belongs. 

Table 2  Features’ distributions of searchable and non-searchable forms 
Feature/Category Searchable Non-Searchable Ratio 

checkbox 
email_yes 

file 
hidden 
image 

method_get 
option 

password 
radio 

search_yes 
text 

textarea 

2.39 
0.01 
0.00 
4.45 
0.36 
0.47 

12.64 
0.02 
0.48 
0.36 
3.00 
0.02 

0.18 
0.12 
0.00 
1.63 
0.21 
0.40 
0.17 
0.10 
0.10 
0.09 
1.01 
0.07 

13.04:1 
1:13.13 

− 
2.72:1 
1.73:1 
1.16:1 

74.23:1 
1:5.86 
4.76:1 
3.94:1 
2.97:1 
1:2.98 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4  The decision tree generated by Weka j48 algorithm using form structural features 

5.2   Training form text classifier 

According to FT and PT methods (see Section 3.2), we can extract form textual features from forms. Five most 
frequent features obtained by FT and PT techniques are presented in Table 3. Table 3 shows that the PT method 
extracts more valuable features than the FT technique does. 

Table 3  Five most frequent features extracted by FT and PT methods respectively 
Method Category Textual features (Feature: Frequency) 

FT 

Airfare 
Auto 
Book 
Rental 
Hotel 
Job 

Movie 
Music 

option: 8113 value: 4161 td: 1181 id: 1069 class: 993 
option: 5673 value: 3002 td: 1520 tr: 716 class: 498 
option: 10997 value: 5753 td: 1538 tr: 788 name: 421 
option: 6396 value: 3199 td: 892 pm: 550 class: 520 
option: 13048 value: 6271 class: 1377 div: 1358 td: 1265 
option: 7423 value: 3868 u: 775 td:680 tr: 413 
option: 6995 value: 3616 div: 1200 class: 1181 td: 734 
option: 8090 value: 679 td:516 record: 456 font: 323 

PT 

Airfare 
Auto 
Book 
Rental 
Hotel 
Job 

Movie 
Music 

pm: 419 airlin: 279 air: 124 am: 102 airwai: 100 
docum: 108 car: 105 leas: 84 search: 63 make: 56 
search: 130 titl: 110 book: 95 author: 75 new: 72 
pm: 402 option: 202 am: 168 airport: 144 car: 143 
hotel: 234 pm: 228 island: 151 new: 135 room: 84 
job: 207 new: 125 locat: 84 servic: 82 island: 81 
press: 211 book: 123 s: 109 video: 107 entertain: 107 
record: 456 music: 226 sub: 156 search: 97 new: 80 
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Using those extracted textual features, we finally finish training eight SVM classifiers. The precisions of the 
eight SVM classifiers are shown in Table 4. Since PT method extracts more valuable textual features than FT 
technique does, we can use them train a more accurate classifier. Table 4 indicates that no matter what category is, 
using the PT method can always obtain a more accurate classifier than the FT technique can. 

Table 4  Precisions of SVM classifiers trained with form textual 
features that are extracted by the FT and PT methods respectively 

Category FT method PT method 
Airfare 0.918 2 0.936 4 
Auto 0.947 6 1.0 
Book 0.927 3 0.963 6 
Rental 0.954 5 0.963 6 
Hotel 0.933 3 0.938 1 
Job 0.940 9 0.968 2 

Movie 0.927 3 0.977 3 
Music 0.9 0.968 2 

 

5.3   Training page text classifier 

In order to train page text classifier, this paper gets its positive training data from the online open directory 
project (http://dmoz.org/). We use a Perl script program to fill out the searchable form and extract URLs from its 
returned result pages automatically. As for negative training data, we get them from DMOZ (http://rdf.dmoz.org/). 
DMOZ consists of sixteen categories, which are Arts, Business, Computers, Games, Health, Home, Kids_and_ 
Teens, News, Recreation, Reference, Regional, Science, Shopping, Society, Sports and World. We get rid of four 
categories of them in our experiments. They are Kids_and_Teens, Reference, Regional and World. The number of 
URLs in each category is shown in Table 5. 

Table 5  The number of URLs in each DMOZ category 
Arts Business Computers Games Health Home 

585 924 511 620 285 336 123 758 131 050 33 555
News Recreation Science Shopping Society Sports

235 704 120 308 213 014 235 160 269 864 154 921

In DMOZ, each example looks like this: 
〈ExternalPage about= 

“http://www.airwise.com/airports/us/SLC/index.html”〉 
〈d:Title〉 

Salt Lake City Airport - airwise.com 
〈/d:Title〉 
〈d:Description〉 

Information about the airport including airlines, 
ground transportation, parking, weather and airport 
news. 

〈/d:Description〉 
〈topic〉 

Top/Regional/North_America/United_States/Utah/ 
Localities/S/Salt_Lake_City/Transportation/Airports 

〈/topic〉 
〈/ExternalPage〉 
This paper uses the content of ‘d:Description’ element and the Web page corresponding to the ‘about’ 
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ExternalPage attribute to obtain a negative training example. 
In order to be more representative, we derive URLs from each category according to its size. Since the ‘Arts’ 

category has the largest number of URLs, we get the most number of URLs from it. Excluded these URLs which 
can not be downloaded, the number of positive and negative examples which we use to train a page classifier for 
each category is listed in Table 6. Using these training data, we can finish training page classifiers. The precisions of 
these page classifiers are shown in Table 6. 

Table 6  The number of positive and negative train data for each category as well as 
the precision of its corresponding page classifier 

Category Positive Negative Precision 
Airfare 
Auto 
Book 
Rental 
Hotel 
Job 

Movie 
Music 

116 
2 512 
1 568 
913 

1 708 
1 706 
1 601 

22 

316 
3 564 
3 325 
2 282 
2 721 
3 178 
3 124 

87 

0.961 9 
0.946 3 
0.913 5 
0.973 7 
0.994 1 
0.979 1 
0.900 4 

0.87 
 

5.4   Using the three-step framework to find deep Web entries 

We conduct eight large-scale experiments with our hidden Web crawler. For each category, we initialize our 
crawler with 100 seeds that are extracted from the DMOZ as the starting point. We save those pages and their 
corresponding URLs if the following two conditions are satisfied at the same time. First, they are judged to be 
relevant by page and form text classifiers. Second, each page contains at least one domain-specific deep Web entry. 
Since MusicRecords databases are very sparsely distributed, our best-first focused crawler only locates 50 deep Web 
entries for it. For other categories, our crawler finds 100 deep Web entries for each of them. Five deep Web entries 
about Airfares category which are located by our crawler are listed below: 

http://www.aircanada.ca/ 
http://www.itn.net/ 
http://www.aircharter.com/ 
http://www.orbitz.com/ 
http://www.nwa.com/ 
At last, we manually verify whether the deep Web entries located by our crawler are what we want. The 

precisions of all these categories are shown in Table 7. 

Table 7  The precisions of deep Web entries for each category 
Domain Precision Domain Precision 
Airfare 0.90 Auto 0.88 
Book 0.91 Rental 0.95 
Hotel 0.94 Job 0.81 
Movie 0.86 Music 0.80 

6   Conclusion and Future Work 

In this paper, a three-step framework is proposed to automatically identify domain-specific hidden Web entries. 
To verify its effectiveness and efficiency, eight large-scale experiments are conducted. Experimental results 
demonstrate that our method can find domain-specific deep Web entries accurately and efficiently. The average 
precision of the eight representative domains is 0.88. 

In the near future, experiments on a larger number of categories are required in order to further assess the 
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effectiveness of our proposed technique. Additionally, with those obtained query interfaces, we will integrate them 
to obtain a unified interface and give it to users to query. Users don’t have to hunt some domain-specific sources 
and learn the details for querying each resource. 
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