

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.19, No.1, January 2008, pp.39−47 http://www.jos.org.cn
DOI: 10.3724/SP.J.1001.2008.00039 Tel/Fax: +86-10-62562563
© 2008 by Journal of Software. All rights reserved.

变量极小不可满足在模型检测中的应用
∗

陈振宇 1, 陶志红 2+, KLEINE BÜNING Hans3, 王立福 2

1(东南大学 计算机科学与工程学院,江苏 南京 210096)
2(北京大学 软件与微电子学院,北京 100871)
3(Department of Computer Science, University of Paderborn, Paderborn 33095, Germany)

Applying Variable Minimal Unsatisfiability in Model Checking

CHEN Zhen-Yu1, TAO Zhi-Hong2+, KLEINE BÜNING Hans3, WANG Li-Fu2

1(School of Computer Science and Engineering, Southeast University, Nanjing 210096, China)
2(School of Software and Microelectronics, Peking University, Beijing 100871, China)
3(Department of Computer Science, University of Paderborn, Paderborn 33095, Germany)

+ Corresponding author: Phn: +86-10-62767117, E-mail: tzh21001@ss.pku.edu.cn

Chen ZY, Tao ZH, Kleine Büning H, Wang LF. Applying variable minimal unsatisfiability in model checking.
Journal of Software, 2008,19(1):39−47. http://www.jos.org.cn/1000-9825/19/39.htm

Abstract: This paper presents a framework combining variable abstraction with bounded model checking, in order
to prove the counterexamples’ absence or establish the counterexamples’ existence. A mathematical definition of
variable minimal unsatisfiability (VMU) is introduced to drive this abstraction refinement process. The set of
variables of VMU formula is a minimal one guaranteeing its unsatisfiability. Furthermore, the authors prove that
VMU-driven refinement is valid and minimal by mathematical reasoning. Although the determining problem of
VMU is as hard as the well-known problem called minimal unsatisfiability (MU), i.e. DP-complete, the case study
has shown that VMU could be more effective than MU in variable abstraction refinement process.
Key words: minimal unsatisfiability; abstraction refinement; model checking

摘 要: 提出一个结合变量抽象和有界模型检测(BMC)的验证框架,用于证明反例不存在或输出存在反例.引入变

量极小不可满足(VMU)的数学概念来驱动抽象精化的验证过程.一个VMU公式F的变量集合是保证其不可满足性

的一个极小集合.严格证明了 VMU 驱动的精化满足抽象精化框架中的两个理想性质:有效性和极小性.虽然 VMU
的判定问题和极小不可满足(MU)一样难,即 DP完全的,该案例研究表明,在变量抽象精化过程中,VMU 比 MU 更为

有效.
关键词: 极小不可满足;抽象精化;模型检测
中图法分类号: TP301 文献标识码: A

∗ Supported by the National Natural Science Foundation of China under Grant Nos.60425206, 60773104, 60403016, 60633010 (国家

自然科学基金); in Part by the Jiangsu Planned Projects for Postdoctoral Research Funds of China under Grant No.0701003B (江苏省博

士后科研资助计划)
Received 2006-05-25; Accepted 2006-11-03

40 Journal of Software 软件学报 Vol.19, No.1, January 2008

1 Introduction

Model checking[1−3] has emerged as a promising and powerful approach of automatic verification, which has
been successfully applied to both hardware and software systems. Since model checking entails the exploration of a
potentially very large state space, the alleviation of the so-called state explosion problem has been the object of
much research.

In the past years, SAT solvers have been found to be quite efficient at producing counterexamples for systems
that are too large to allow standard model checking. Bounded Model Checking (BMC)[4] applies SAT techniques in
model checking to reduce the state explosion problem. The basic idea of BMC is to look for counterexamples of
maximum length k. It generates a propositional formula, which is satisfiable if and only if such counterexamples
exist. BMC has come to be regarded as an excellent debugging (as opposed to verification) technique. That is,
classical BMC is particularly adept at finding counterexamples, but ill-suited to prove their absence unless an upper
bound is known on the depth of the state space. Unfortunately, it is hard to be computed in general.

On the other hand, conservative abstractions[5] have been used to allow the BDD-based model checker to draw
conclusions on the original, concrete model by examining a simpler, abstract one. Conservative abstractions benefit
from a preservation theorem, which states that the correctness of any universal fragment formula on an abstract
model automatically implies the correctness of the formula on the concrete model. However, a counterexample on
an abstract model may not correspond to any real path, in which case it is called a spurious counterexample.
Therefore, conservative abstractions are suit for proving the counterexamples’ absence, but suffer from the spurious
counterexamples.

The opportunity of combining conservative abstraction and BMC is that the former proves the
counterexamples’ absence and the latter establishes the counterexamples’ existence. In this paper, we introduce
variable abstraction[6] to generate a small abstract model. If it fails in a spurious counterexample of length k, then
we use BMC to look for counterexamples of maximum length k in the concrete model. If it fails in finding the real
counterexamples, that is, the corresponding propositional formula is unsatisfiable, then we extract a small set of
variables, which guarantees unsatisfiability of the formula. The refined abstract model based on these variables
rules out all spurious counterexamples of maximum length k. This abstraction refinement process repeats until
proving the counterexamples' absence or existence, or model checking is infeasible.

A main challenge of this iterative abstraction refinement process is how to select variables for refinement.
Insufficient variables result in failure verification but over-many ones produce a large abstract model. To address it,
a mathematical definition of variable minimal unsatisfiability (VMU)[7] is introduced in this paper. It bridges a gap
between variable abstraction and BMC to drive this abstraction refinement process, and it gains an insight into
applications of a well-known problem called minimal unsatisfiability (MU)[8]. We present some theoretical results
and show that the deciding problem of VMU is as hard as MU, i.e., the complexity is DP-complete[9]. Moreover, we
use a two-bit counter example to explain that the VMU-driven abstraction refinement process could work
effectively.

A number of variations on iterative abstraction refinement framework have appeared[10−13]. The earlier
methods[10,11] refute one spurious counterexample in each iteration. Recently, BMC is introduced to generate an
abstraction sufficient to refute all counterexamples within a given length bound in each iteration[12]. Combined with
variable abstraction, a robust and powerful approach of abstraction refinement is presented in Ref.[13]. The authors
used conflict analysis to identify important variables for refinement. However, all existing efforts described so far
lack mathematical definitions and rigorous discussions. The key contribution of our work is the formalizations of
refinement requirements and introduction to VMU.

陈振宇 等:变量极小不可满足在模型检测中的应用 41

The paper is organized as follows. We brief some basic concepts of SAT notations in Section 2 and introduce
variable minimal unsatisfiability in Section 3. A motivation example and variable abstraction are described in
Section 4. In Section 5, we present VMU-driven abstraction refinement framework and its two requirements.
Furthermore we rigorously prove that VMU meets these two requirements exactly. The conclusion is drawn in the
last section.

2 Notation

A propositional formula is a string that represents a Boolean function, which involves some atomic Boolean
variables and logical connectives ¬(not), ∧(and), ∨(or), and etc. A propositional formula is said to be satisfiable if
there is at least one satisfying assignment, otherwise the formula is called unsatisfiable. In this paper, SAT is the
class of satisfiable formulas and UNSAT is the class of unsatisfiable formulas.

A literal l is an atomic variable x or its negation ¬x. A clause Ci is a disjunction of literals l1∨…∨lm. A cube Di
is a conjunction of literals l1∧…∧lm. A formula is in Negation Normal Form (NNF) if the only connectives in it are
∧, ∨, and ¬, where ¬ is only applied to atomic variables. A formula is in Conjunctive Normal Form (CNF) if it has
the conjunction form of clauses C1∧…∧Cn. A formula is in Disjunctive Normal Form (DNF) if it has the disjunction
form of cubes D1∨…∨Dn. A clause or a cube could be regarded as a set of literals. A CNF formula could be regarded
as a set of clauses. A DNF formula could be regarded as a set of cubes.

Given two formulas F and F', if each satisfying assignment of F is also a satisfying one of F′, then we call F
entails F′, denoted by F|=F′. F is equivalent to F′, denoted by F≈F′, if and only if F|=F′ and F′|=F. F is satisfiable
equivalent to F′, denoted by F≈sF′, if and only if F∈SAT⇔F′∈SAT. For an arbitrary formula, there exists a standard
procedure to produce a satisfiable equivalent CNF formula in polynomial time[14]. In this paper, var(F) denotes the
set of variables of F.

3 Variable Minimal Unsatisfiability

There are many applications that can benefit from extracting a small unsatisfiable core (UC) from an
unsatisfiable formula. When a propositional formula is shown unsatisfiable, a need arises to identify the causes of
its unsatisfiability in order that a feasible design may be obtainable by revising its model specifications. Smaller
unsatisfiable cores would be helpful to localize the reasons of the unsatisfiability.

A well-known problem relevant to unsatisfiable core is called minimal unsatisfiability (MU)[8]. A CNF formula
is minimal unsatisfiable if and only if the formula is unsatisfiable and removing an arbitrary clause will result in a
satisfiable formula, that is

MU:={F∈UNSAT∩CNF|∀F′⊂F:F∈SAT}.
More existing work on MU could be found in Ref.[8]. Intuitively, the set of clauses of an MU formula is a

minimal set, which guarantees unsatisfiability. That is, an MU formula F is characterized by the condition that every
clause of F is used in every resolution refutation of F. Another interesting characterization is that every variable of
F is used in every resolution refutation of F. That is, the set of variables of F is a minimal set, which guarantees
unsatisfiability. It is called variable minimal unsatisfiability (VMU)[7].

Firstly, we define a simple operation for NNF formulas. F[V] is a formula obtained from F by substituting each
literal l, where its variable is not in V, by true. Intuitively, F[V] is a resulting formula by hiding the variables not in
V. For a CNF formula F, F[V] is obtained from F by removing all clauses with some variables not in V. Given an
NNF formula F and a set of variables V⊆var(F), obviously F|=F[V]. Therefore, for any unsatisfiable formula F,
there is V⊆var(F), such that F[V] is satisfiable. Please notice that, if V is empty, then F[V] is true trivially. F is

42 Journal of Software 软件学报 Vol.19, No.1, January 2008

variable minimal unsatisfiable, if and only if var(F) is a minimal set of variables which guarantees unsatisfiability
of F. The mathematical definition is described as follows.

Definition 1. Variable Minimal Unsatisfiability
VMU*:={F∈UNSAT|∀V⊂var(F):F[V]∈SAT}.

In the following section, we restrict VMU formula to CNF formula and define VMU:=VMU*∩CNF. Following
the definition of VMU, if F∈VMU, then F∈UNSAT. Furthermore, hiding an invisible variable will lead to removing
at least one clause. Thus if F∈MU, then F∈VMU. Therefore, MU⊂VMU⊂UNSAT[7]. In Ref.[9], MU is shown to be
DP-complete, where DP is the class which can be described as the difference between two NP problems. A
DP-complete problem is equivalent to solving a SAT-UNSAT problem defined as: given two formulas F and F′, is it
the case that F is satisfiable and F′ is unsatisfiable? DP-complete problems are both NP-hard and coNP-hard. In
Ref.[7], it is shown that the deciding problem of VMU is as hard as MU, i.e., DP-complete.

Theorem 1[7]. VMU is DP-complete.

4 Model and Abstraction

Considering a system with a set of Boolean variables V={v1,…,vn} over {false,true}. The system is modeled by
a concrete model M=(S,T,I), where:

1. S is a set of (concrete) states.
2. T⊆S×S is a transition relation.
3. I⊆S is a set of initial states.

Each state S can be represented as a cube (l1,...,ln). Each transition Tj(s,s′) can be considered as a cube
(l1,...,ln, 1l′ ,..., nl′), in which li is a literal of vi in current state s, and il′ is a literal

of vi in next state s′. The transition relation of system is the disjunction of all
Tj(s,s′), i.e. T(s,s′)=∨Tj(s,s′), thus T(s,s′) is in DNF. Similarly, I can be considered
as a DNF formula l1∧…∧ln. We say that the current state of system is s if the
assignment of system variables satisfies s. State s is an initial state if and only if
s|=I, i.e. I(s)=true. There is a transition from s to s′ if and only if (s∧s′)|=T, i.e.,
T(s,s′)=true.

An example of a two-bit counter is shown in Fig.1. V={x1,x2}, in which x2 is the left bit variable and x1 is the
right bit variable. S={s0,s1,s2,s3}, in which s0=(¬x2,¬x1), s1=(¬x2,x1), s2=(x2,¬x1), s3=(x2,x1); I(s)=(¬x2∧¬x1); and

T(s,s′)=(¬x2∧¬x1∧¬ 2x′ ∧ 1x′)∨(¬x2∧x1∧ 2x′ ∧¬ 1x′)∨(x2∧¬x1∧ 2x′ ∧ 1x′)∨(x2∧x1∧¬ 2x′ ∧¬ 1x′).

4.1 Variable abstraction

For a realistic system, the number of variables is usually more than hundreds even thousands. In order to
reduce the state space, we use variable abstraction to construct a conservative abstract model. We extract a set of
variables from V (called visible variables), denoted by Va. Va corresponds to the part of the system that is currently
believed to be important for verifying the desired property. VI=V−Va is the set of invisible variables.

In this paper, we adopt a minor revision of variable abstraction[6] in model checking. An abstraction of s on Va,
denoted by s[Va], is defined by removing all literals of invisible variables for s represented as a cube. A variable
abstraction function h over Va for the system is defined as h(s)=s[Va]. Given two concrete states s and s', they are
equivalent over h if and only if h(s)=h(s′). An abstraction function h could be considered as a surjection h: S→Sa,
which maps a concrete state in S to an abstract state in Sa. The abstraction of system is modeled by an abstract
model Ma=(Sa,Ta,Ia), where:

1. Sa={sa|∃s∈S:h(s)=sa} is a set of abstract states.

Fig.1 A two-bit counter

s2 s3

s1 s0
M

0,0 0,1

1,1 1,0

陈振宇 等:变量极小不可满足在模型检测中的应用 43

2. Ta={(sa,s′a)|∃s,s′∈S. T(s,s′)∧h(s)=sa∧h(s′)=s′a } is an abstract transition relation.
3. Ia={sa|∃s∈I. h(s)=sa} is a set of initial abstract states.

s[Va] could be considered as sa. Similarly, T(s,s′)[Va]=Ta(s[Va],s′[Va])=Ta(sa,s′a), T[Va]=Ta, I[Va]=Ia, and
M[Va]=Ma. Ma is a conservative abstraction, that is, all behaviors in M are preserved in Ma. It is formalized as the
following preservation theorem.

Theorem 2[5]. If M is a concrete model and Ma is a corresponding abstract model, then for each universal
fragment formula f,

Ma|=f⇒M|=f.
Fig.2 shows two variable abstract models. For the left one, the set of visible variables is {x1}, i.e. hiding the

invisible variable x2. Therefore,

1 1 1 1 1() , (,) () ()a aI s x T s s x x x x′ ′ ′= ¬ = ∧ ¬ ∨ ¬ ∧ .

For the right one, the set of visible variables is {x2}, i.e. hiding the invisible variable x1. Therefore,

2 2 2 2 2 2 2 2 2() , (,) () () () ()a aI s x T s s x x x x x x x x′ ′ ′ ′ ′= ¬ = ∧ ∨ ∧ ¬ ∨ ¬ ∧ ∨ ¬ ∧ ¬

(a) 1
aM : Va={x1} (b) 2

aM : Va={x2}

Fig.2 Two abstract models

5 VMU-Driven Abstraction Refinement Framework

Many existing efforts describe iterative abstraction refinement process in model checking[10−13]. In this paper,
we present an abstraction refinement process driven by unsatisfiable cores (UC). This framework is shown in Fig.3.

Fig.3 Abstraction refinement framework

Initially, the set of visible variables Va includes the variables involved in the desired property f. Then, an
abstraction function h is given. To construct an abstract model Ma, it can be computed directly from the description
language of the original system, by hiding the invisible variables not in Va.

When an abstract model Ma is generated, in each iteration, we check whether the abstract model satisfies the
property f with a BDD-based model checker[15]. If Ma satisfies f, then M satisfies f. However, if Ma does not satisfy
f, we could not draw any conclusion, since the abstract counterexample may be spurious. A spurious path is an
abstract path, which does not have any corresponding concrete path. For example, suppose f1=AF(x1==true) and

f2=AF(x2==true). We do model checking 1
aM (Fig.2(a)) with f1, and the answer is “yes”, i.e., 1

aM |=f1, then M|=f1

(M is the concrete model in Fig.1). On the other hand, we do model checking 2
aM (Fig.2(b)) with f2, and the

0
as

0 1 0 1
1
as 0

as 1
as

M|=f

Refinement: New Va

|= Infeasible

|≠

Va

f

M

Ma Ma|=f? F(M,f,k) UC

M|≠fFailure

UNSAT

SAT

44 Journal of Software 软件学报 Vol.19, No.1, January 2008

answer is “no”, i.e., 2
aM |≠f2, then it produces an abstract counterexample πa= 0

as 0
as 0

as …. Actually, this

counterexample is spurious and we will explain later.
An excellent technique of verifying counterexamples is bounded model checking (BMC)[4], which focuses on

the search for counterexamples of bounded depth k. Effectively, the problem is translated into a propositional
formula F(M,f,k):=F(M,k)∧F(f,k), such that the formula is satisfiable if and only if there exists a counterexample of
maximum length k. F(M,k):=I(s0)∧ 1

0
k
i

−
=∧ T(si,si+1) is a propositional formula corresponding to a path in M, F(f,k) is a

propositional formula of translation of a property f. More details could be found in Ref.[4].

Consider an example of a two-bit counter (M) in Fig.2. F(M,k)=I(s0)∧ 1
0

k
i

−
=∧ T(si,si+1), in which, I(s0)=(¬ 0

2x ∧

¬ 0
1x), T(si,si+1)=(¬ 2

ix ∧¬ 1
ix ∧¬ 1

2
ix + ∧ 1

1
ix +)∨(¬ 2

ix ∧ 1
ix ∧ 1

2
ix + ∧¬ 1

1
ix +)∨(2

ix ∧¬ 1
ix ∧ 1

2
ix + ∧ 1

1
ix +)∨(2

ix ∧ 1
ix ∧¬ 1

2
ix + ∧

¬ 1
1
ix +). For the property specification f=¬f2=EG(x2==false), F(f,k)= 1

0
k
i

−
=∧ ¬ 2

ix . For the property of a loop path, it is

required to conjunct with k
loopF = 1

0
k
j
−
=∨ (sk=sj). Thus, F(M,f,k)=F(M,k)∧F(f,k)∧ k

loopF . It is not difficult to check that

F(M,f,k) is unsatisfiable with k≤3 and it is satisfiable with k=4. M|=f, thus M|≠f2.
When Ma does not satisfy f, an abstract counterexample a

kπ of length k is reported from model checker. We

use BMC to verify whether the corresponding propositional formula F(M,f,k) is satisfiable. If F(M,f,k) is satisfiable,

then there exist some real counterexamples of maximum length k. If F(M,f,k) is unsatisfiable, then a
kπ is spurious.

That means the abstract model based on Va is too coarse and it fails to prove the desired property. An unsatisfiable
core (UC) needs to be extracted from F(M,f,k) to produce a new set of visible variables Va, which is used to refine
the abstract model. Furthermore, in order to generate a small abstract model, Va is required to be minimal ideally.
Thus Va must meet the following requirements:

• R1 (valid refinement): The refined abstract model Ma based on Va rules out all spurious counterexamples
of maximum length k, i.e., F(Ma,f,k) is unsatisfiable.

• R2 (minimal refinement): For any V′a⊂Va, the refined abstract model M’ based on V′a contains at least one
spurious counterexample of maximum length k, i.e., F(M′,f,k) is satisfiable.

This abstraction refinement process repeats until proving the counterexamples’ absence or existence, or model
checking is infeasible (e.g. memory is overflow). In principle, minimal refinement is not necessary. Though it could
result in better performance, we have to weigh this against the cost of additional work. This comparison would not
be discussed in this paper. In our abstraction refinement process, it is required that Va meets R1 and R2 ideally.

5.1 VMU-Driven refinement meets R1 and R2

When BDD-based model checker[15] verifies the abstract model Ma, if Ma|≠f (otherwise verification is
finished), then an abstract counterexample of length k is produced, thus F(Ma,f,k) is satisfiable. If this
counterexample is spurious (otherwise verification is finished), then F(M,f,k) is unsatisfiable.

For example, we use a BDD-based model checker[15] to verify whether 2
aM (Fig.2(b)) satisfies the property

f2=AF(x2==true), and it returns the answer “no”, i.e., 2
aM |≠f2, then it produces an abstract counterexample

3
aπ = 0

as 0
as 0

as . Then we check whether F(M,f,2) is satisfiable by a SAT solver, in which M is the model in Fig.1 and

f=¬f2=EG(x2==false). For more details, It is not difficult to see that F(M,f,2) is unsatisfiable, thus 3
aπ is a

spurious counterexample.
Intuitively, Ma is a conservative abstraction of M, that is, any behavior in M will be preserved in Ma. Please

notice that F(M,f,k)=I(s0)∧ 1
0

k
i

−
=∧ T(si,si+1)∧F(f,k), F(Ma,f,k)=Ia(0

as)∧ 1
0

k
i

−
=∧ Ta(a

is , 1
a
is +)∧F(f,k), I⇒Ia and T⇒Ta.

Therefore, F(M,f,k)⇒F(Ma,f,k). If F(M,f,k) is unsatisfiable and F(Ma,f,k) is satisfiable, then Ma must contain some
spurious counterexamples of maximum length k.

陈振宇 等:变量极小不可满足在模型检测中的应用 45

When BMC verifies the counterexamples of maximum length k, a propositional formula F(M,f,k) is generated.
And it is always converted into a CNF formula to be input in a SAT solver. For simplicity, we consider F(f,k) as a
CNF formula. For F(M,k), the initial predicate I and the transition relation T are represented in DNF in this paper.
For a DNF formula, there exist two popular approaches to generate CNF formula. One is distribution law. A DNF
formula F could be converted into a logical equivalent CNF formula, denoted by F≈CNFd(F). However, the length
of CNFd(F) formula may grow exponentially. The other is substitution method. There is a standard procedure
(TREE-CNF in page 31 of Ref.[14]) to produce a satisfiable equivalent CNF formula, denoted by F≈sCNFs(F). The
length of CNFs(F) only grows polynomially. This construction will be introduced some new variables, denoted by
Vn in this paper. The basic idea of this method will be described here. For example, a DNF formula F=(l1∧l2)∨C, in
which C represents other clauses. We introduce a new variable v to substitute (l1∧l2). Thus, (¬v∨l1)∧(¬v∨l2)∧(v∨C).
Such substitution repeats until a CNF formula CNFs(F) is generated. Moreover, F is satisfiable if and only if
CNFs(F) is satisfiable[14].

For the formula of bounded model checking, we convert it into a logical equivalent CNF formula as follows:

CNFd(F(M,k))=CNFd(I(s0))∧ 1
0

k
i

−
=∧ CNFd(T(si,si+1)), and CNFd(F(M,f,k))=CNFd(F(M,k))∧F(f,k).

The satisfiable equivalent translation CNFs(F) is similar.
Lemma 1. Given a concrete model M and an abstract model Ma based on Va, then

F(Ma,k)≈CNFd(F(M,k))[Va], F(Ma,k)≈sCNFs(F(M,k))[Va∪Vn].

Proof: Please notice that F(Ma,k)=Ia(0
as)∧ 1

0
k
i

−
=∧ Ta(a

is , 1
a
is +)=I(s0)[Va]∧ 1

0
k
i

−
=∧ T(si,si+1)[Va].

For CNFd, we use distribution law to convert a DNF formula into a logical equivalent CNF formula. That is
CNFd((a∧b)∨c)=(a∨c)∧(b∨c). This distribution law works on each subformula of DNF formula until a CNF formula
is generated. It is not difficult to see that removing a literal from a clause in DNF formula is logical equivalent to
removing a clause, which contains this literal, in CNFd formula.

For CNFs, we use substitution law to convert a DNF formula into a satisfiable equivalent CNF formula. That is
CNFs((l1∧l2)∨C)=(¬v∨l1)∧(¬v∨l2)∧(v∨C). This substitution law works on each subformula of DNF formula until a
CNF formula is generated. It is not difficult to see that removing a literal from a clause in DNF formula is
satisfiable equivalent to removing a clause, which contains this literal, in CNFs formula. □

Now we draw a conclusion that the new set of variables, which is generated from VMU-driven refinement,
meets R1 and R2.

Theorem 3. Given a concrete model M and an abstract model Ma. If F(M,f,k) is unsatisfiable and F(Ma,f,k) is
satisfiable, that is, Ma contains at least one spurious counterexample of length k, then there exists a
Vmin⊆var(F(M,f,k)), such that CNFd(F(M,f,k))[Vmin]∈VMU (resp. to CNFs), and Vmin meets R1 and R2.

Proof: The existence of Vmin is obvious. Now, we prove that Vmin meets R1 and R2. Suppose min
aM is the

refined abstract model based on Vmin.
(1) Vmin meets R1.

CNFd(F(M,f,k))[Vmin]∈VMU
⇒CNFd(F(M,f,k))[Vmin]∈UNSAT
⇒CNFd(F(min

aM ,f,k))∈UNSAT (by lemma 1)

⇒ F(min
aM ,f,k)∈UNSAT

(2) Vmin meets R2.
CNFd(F(M,f,k))[Vmin]∈VMU
⇒∀V′⊂Vmin: CNFd(F(M,f,k))[V′]∈SAT
⇒CNFd(F(M′a,f,k))∈SAT (by lemma 1)

46 Journal of Software 软件学报 Vol.19, No.1, January 2008

⇒F(M′a,f,k)∈SAT
(M'a is the refined abstract model based on V')
The proof of CNFs is similar. □

5.2 Comparison between MU and VMU

In general, there exists no efficient procedure to solve MU and VMU (DP-complete problems are both NP-hard
and coNP-hard). Many methods for finding small unsatisfiable cores have been developed in recent years. In
Refs.[16,17], they use information from a SAT salver’s resolution procedure to find unsatisfiable cores. Their
experimental results show that their procedures are successful for finding small unsatisfiable cores for the instances
tested. Although the theoretic results on VMU and MU are similar, we believe that extraction of VMU would be
more practical than MU in our abstraction refinement framework, based on the following observations:

• In an unsatisfiable CNF formula, the variables are often far less than the clauses. Extraction based on
variables would be easier than clauses.

• (a) F∈UNSAT⇒∃F″⊆F'⊆F: F′∈VMU∧F″∈MU; (b) MU⊂VMU⊂UNSAT. VMU is a generalization of MU.
That means, for a minimal set of variables which guarantees unsatisfiability, extraction of VMU would be
potentially easier than MU.

For example, the transition relation in Fig.1 has nearly 50 clauses for CNFd(T(si,si+1)) and 17 clauses for
CNFs(T(si,si+1)). Consequently, there are many potential subformulas that must be considered for MU. However, for

the extraction of VMU subformulas, we only consider the subsets of { 1
ix , 2

ix , 1
1
ix + , 1

2
ix + }, actually the subsets of

{x1,x2}.

6 Conclusion

In this paper, we describe a VMU-driven abstraction refinement framework, which uses variable abstraction to
prove the counterexamples’ absence and uses BMC to establish the counterexamples’ existence. Two requirements
of this framework, valid refinement and minimal refinement are introduced. A novel contribution of this paper is
that we introduce VMU in abstraction refinement and prove that VMU meets the two requirements in a rigorous way.
Furthermore, a case study and some observations are shown that VMU could be more practical than MU in this
abstraction refinement framework.

Acknowledgement The authors would like to thank Prof. DING De-Cheng and Prof. XU Bao-Wen for their
valuable discussions and thank the anonymous referees for their helpful comments and suggestions.

References:
[1] Clarke EM, Grumberg O, Peled DA. Model Checking. Cambridge: The MIT Press, 1999.

[2] Lin HM, Zhang WH. Model checking: Theories, techniques and applications. Acta Electronica Sinica, 2002,30(12A):1907−1912

(in Chinese with English abstract).

[3] Su KL, Luo XY, Lu GF. Symbolic model checking for CTL*. Chinese Journal of Computers, 2005,28(11):1798−1806 (in Chinese

with English abstract).

[4] Biere A, Cimatti A, Clarke EM, Strichman O, Zhu Y. Bounded Model Checking. Advances in Computers. Academic Press, 2003.

58.

[5] Clarke EM, Grumberg O, Long DE. Model checking and abstraction. ACM Trans. on Programming Languages and Systems, 1994,

16(5):1512−1542.

[6] Kurshan RP. Computer-Aided Verification of Coordinating Processes. Princeton University Press, 1994.

陈振宇 等:变量极小不可满足在模型检测中的应用 47

[7] Chen ZY, Ding DC. Variable minimal unsatisfiability. In: Proc. of the Theory and Applications of Models of Computation. LNCS

3959, Springer-Verlag, 2006. 262−273.

[8] Zhao XS. Complexity results on minimal unsatisfiable formulas—A survey. In: Proc. of the 9th Asian Logic Conf. Novosbirsk,

2005. 301−319.

[9] Papadimitriou CH, Wolfe D. The complexity of facets resolved. Journal of Computer and System Science, 1988,37(1):2−13.

[10] Chauhan P, Clarke EM, Kukula J, Sapra S, Veith H, Wang D. Automated abstraction refinement for model checking large state

spaces using sat based conflict analysis. In: Proc. of the Conf. on Formal Methods in Computer Aided Design. LNCS 2517,

Springer-Verlag, 2002. 33−51.

[11] Chen ZY, Zhou CH, Ding DC. Automatic abstraction refinement for Petri nets verification. In: Proc. of the 10th IEEE Int’l on

High-Level Design Validation and Test Workshop. 2005. 168−174.

[12] McMillan KL, Amla N. Automatic abstraction without counterexamples. In: Proc. of the Workshop on Tools for Algorithms for

Construction and Analysis of Systems. LNCS 2619, Springer-Verlag, 2003. 2−17.

[13] Gupta A, Strichman O. Abstraction refinement for bounded model checking. In: Proc. of the 17th Int’l Conf. on Computer Aided

Verification. LNCS 3576, Springer-Verlag, 2005. 112−124.

[14] Kleine Büning H, Lettmann T. Propositional Logic: Deduction and Algorithms. Cambridge University Press, 1999.

[15] Cimatti A, Clarke EM, Giunchiglia F, Roveri M. NuSMV: A new symbolic model checker. Int’l Journal on Software Tools for

Technology Transfer, 2000,2(4):410−425.

[16] Zhang L, Malik S. Extracting small unsatisfiable cores from unsatisfiable Boolean formula. In: Proc. of the 6th Int’l Conf. on

Theory and Applications of Satisfiability Testing (SAT 2003). 2003. http://research.microsoft.com/users/lintaoz/papers/

SAT_2003_core.pdf

[17] Li XW, Li GH, Shao M. Formal verification techniques based on boolean satisfiability problem. Journal of Computer Science and

Technology, 2006,20(1):38−47.

附中文参考文献:
[2] 林惠民,张文辉.模型检测:理论、方法与应用.电子学报,2002,30(12A):1907−1912.

[3] 苏开乐,骆翔宇,吕关锋.符号化模型检测 CTL*.计算机学报,2005,28(11):1798−1806.

CHEN Zhen-Yu was born in 1978. He is a
post-doctor at the School of Computer
Science and Engineering, Southeast
University. His current research areas are
formal verification and software testing,
etc.

 KLEINE BÜNING H was born in 1948.
He is a professor at the Paderborn
University. His research areas are SAT
problems and software engineering, etc.

TAO Zhi-Hong was born in 1965. His
research areas are software engineering and
model checking, etc.

WANG Li-Fu is a professor at the Peking University. His
research areas are software engineering, etc.

