ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.19, No.1, January 2008, pp.39-47 http://www.jos.org.cn
DOI: 10.3724/SP.J.1001.2008.00039 Tel/Fax: +86-10-62562563
© 2008 by Journal of Software. All rights reserved.

S ~ *
TSN A] i B R B AN F By L A
Mz HELY KLEINEBUNING Hans' T 17

YERMRE SRS S TR Mt 210096)
PAestR Bt BT 2E B JE st 100871)

%(Department of Computer Science, University of Paderborn, Paderborn 33095, Germany)
Applying Variable Minimal Unsatisfiability in Model Checking

CHEN Zhen-Yu!, TAO Zhi-Hong?*, KLEINE BUNING Hans®, WANG Li-Fu?

!(School of Computer Science and Engineering, Southeast University, Nanjing 210096, China)
2(School of Software and Microelectronics, Peking University, Beijing 100871, China)
3(Department of Computer Science, University of Paderborn, Paderborn 33095, Germany)

+ Corresponding author: Phn: +86-10-62767117, E-mail: tzh21001@ss.pku.edu.cn

Chen ZY, Tao ZH, Kleine Bining H, Wang LF. Applying variable minimal unsatisfiability in model checking.
Journal of Software, 2008,19(1):39-47. http://www.jos.org.cn/1000-9825/19/39.htm

Abstract: This paper presents a framework combining variable abstraction with bounded model checking, in order
to prove the counterexamples’ absence or establish the counterexamples’ existence. A mathematical definition of
variable minimal unsatisfiability (VMU) is introduced to drive this abstraction refinement process. The set of
variables of VMU formula is a minimal one guaranteeing its unsatisfiability. Furthermore, the authors prove that
VMU-driven refinement is valid and minimal by mathematical reasoning. Although the determining problem of
VMU is as hard as the well-known problem called minimal unsatisfiability (MU), i.e. D*-complete, the case study
has shown that VMU could be more effective than MU in variable abstraction refinement process.

Key words: minimal unsatisfiability; abstraction refinement; model checking

OE R —ASAE T AR N (BMC) I IIEAE R A THER B TG 2 R4 A2 B FI A
AR R iR (VMU) 69 205 1A R IR 5 b oAb AL 49 BB 342, — AN VMU A X F 89 8 £ A R RIE R R i Ttk
G — Ao FRAEA T VMU BR) 694510 i R b FAT AR R 7 49 AN M T R S0 Ao L & KX VMU
84) B B AR S R T i R (MU)—A£3E, Bp D 489,12 £ 01 FF A R B £ R B M AL+ VMU 1t MU £
H .

FEREE M RT3 R AR A

HEESES: TP301 XHRARIZAD: A

« Supported by the National Natural Science Foundation of China under Grant Nos.60425206, 60773104, 60403016, 60633010 ([® %X
H AR FHEIE4); in Part by the Jiangsu Planned Projects for Postdoctoral Research Funds of China under Grant No.0701003B (V1. 7744 f#
L JE BT B Bl v
Received 2006-05-25; Accepted 2006-11-03

AT hitpa/ www. jos. org. cn

40 Journal of Software #4373 Vol.19, No.1, January 2008

1 Introduction

Model checking™®! has emerged as a promising and powerful approach of automatic verification, which has
been successfully applied to both hardware and software systems. Since model checking entails the exploration of a
potentially very large state space, the alleviation of the so-called state explosion problem has been the object of
much research.

In the past years, SAT solvers have been found to be quite efficient at producing counterexamples for systems
that are too large to allow standard model checking. Bounded Model Checking (BMC)™ applies SAT techniques in
model checking to reduce the state explosion problem. The basic idea of BMC is to look for counterexamples of
maximum length k. It generates a propositional formula, which is satisfiable if and only if such counterexamples
exist. BMC has come to be regarded as an excellent debugging (as opposed to verification) technique. That is,
classical BMC is particularly adept at finding counterexamples, but ill-suited to prove their absence unless an upper
bound is known on the depth of the state space. Unfortunately, it is hard to be computed in general.

On the other hand, conservative abstractions'™ have been used to allow the BDD-based model checker to draw
conclusions on the original, concrete model by examining a simpler, abstract one. Conservative abstractions benefit
from a preservation theorem, which states that the correctness of any universal fragment formula on an abstract
model automatically implies the correctness of the formula on the concrete model. However, a counterexample on
an abstract model may not correspond to any real path, in which case it is called a spurious counterexample.
Therefore, conservative abstractions are suit for proving the counterexamples’ absence, but suffer from the spurious
counterexamples.

The opportunity of combining conservative abstraction and BMC is that the former proves the
counterexamples’ absence and the latter establishes the counterexamples’ existence. In this paper, we introduce
variable abstraction!® to generate a small abstract model. If it fails in a spurious counterexample of length k, then
we use BMC to look for counterexamples of maximum length k in the concrete model. If it fails in finding the real
counterexamples, that is, the corresponding propositional formula is unsatisfiable, then we extract a small set of
variables, which guarantees unsatisfiability of the formula. The refined abstract model based on these variables
rules out all spurious counterexamples of maximum length k. This abstraction refinement process repeats until
proving the counterexamples' absence or existence, or model checking is infeasible.

A main challenge of this iterative abstraction refinement process is how to select variables for refinement.
Insufficient variables result in failure verification but over-many ones produce a large abstract model. To address it,
a mathematical definition of variable minimal unsatisfiability (VMU)!" is introduced in this paper. It bridges a gap
between variable abstraction and BMC to drive this abstraction refinement process, and it gains an insight into
applications of a well-known problem called minimal unsatisfiability (MU)®. We present some theoretical results
and show that the deciding problem of VMU is as hard as MU, i.e., the complexity is DP-complete!®.. Moreover, we
use a two-bit counter example to explain that the VMU-driven abstraction refinement process could work
effectively.

A number of variations on iterative abstraction refinement framework have appeared™®**l. The earlier
methodsi*®! refute one spurious counterexample in each iteration. Recently, BMC is introduced to generate an
abstraction sufficient to refute all counterexamples within a given length bound in each iteration*?). Combined with
variable abstraction, a robust and powerful approach of abstraction refinement is presented in Ref.[13]. The authors
used conflict analysis to identify important variables for refinement. However, all existing efforts described so far
lack mathematical definitions and rigorous discussions. The key contribution of our work is the formalizations of
refinement requirements and introduction to VMU.

© PR

JAFIFTAT hitps/ www. jos. org. cn

WIRTF 5 A R i R AR A o 4 2 A 41

The paper is organized as follows. We brief some basic concepts of SAT notations in Section 2 and introduce
variable minimal unsatisfiability in Section 3. A motivation example and variable abstraction are described in
Section 4. In Section 5, we present VMU-driven abstraction refinement framework and its two requirements.
Furthermore we rigorously prove that VMU meets these two requirements exactly. The conclusion is drawn in the
last section.

2 Notation

A propositional formula is a string that represents a Boolean function, which involves some atomic Boolean
variables and logical connectives —(not), A(and), v(or), and etc. A propositional formula is said to be satisfiable if
there is at least one satisfying assignment, otherwise the formula is called unsatisfiable. In this paper, SAT is the
class of satisfiable formulas and UNSAT is the class of unsatisfiable formulas.

A literal | is an atomic variable x or its negation —x. A clause C; is a disjunction of literals l;v...vI,. A cube D;
is a conjunction of literals I;A...Al,. A formula is in Negation Normal Form (NNF) if the only connectives in it are
A, Vv, and —, where — is only applied to atomic variables. A formula is in Conjunctive Normal Form (CNF) if it has
the conjunction form of clauses CiA...AC,. A formula is in Disjunctive Normal Form (DNF) if it has the disjunction
form of cubes D,v...vD,. A clause or a cube could be regarded as a set of literals. A CNF formula could be regarded
as a set of clauses. A DNF formula could be regarded as a set of cubes.

Given two formulas F and F', if each satisfying assignment of F is also a satisfying one of F’, then we call F
entails F’, denoted by F|=F'. F is equivalent to F', denoted by F~F’, if and only if F|=F’ and F'|=F. F is satisfiable
equivalent to F’, denoted by F~sF', if and only if FeSAT<F'€SAT. For an arbitrary formula, there exists a standard
procedure to produce a satisfiable equivalent CNF formula in polynomial time®*. In this paper, var(F) denotes the
set of variables of F.

3 Variable Minimal Unsatisfiability

There are many applications that can benefit from extracting a small unsatisfiable core (UC) from an
unsatisfiable formula. When a propositional formula is shown unsatisfiable, a need arises to identify the causes of
its unsatisfiability in order that a feasible design may be obtainable by revising its model specifications. Smaller
unsatisfiable cores would be helpful to localize the reasons of the unsatisfiability.

A well-known problem relevant to unsatisfiable core is called minimal unsatisfiability (MU)®. A CNF formula
is minimal unsatisfiable if and only if the formula is unsatisfiable and removing an arbitrary clause will result in a
satisfiable formula, that is

MU:={FeUNSATNCNF|VF'cF:FeSAT}.

More existing work on MU could be found in Ref.[8]. Intuitively, the set of clauses of an MU formula is a
minimal set, which guarantees unsatisfiability. That is, an MU formula F is characterized by the condition that every
clause of F is used in every resolution refutation of F. Another interesting characterization is that every variable of
F is used in every resolution refutation of F. That is, the set of variables of F is a minimal set, which guarantees
unsatisfiability. It is called variable minimal unsatisfiability (VMU)[.

Firstly, we define a simple operation for NNF formulas. F[V] is a formula obtained from F by substituting each
literal I, where its variable is not in V, by true. Intuitively, F[V] is a resulting formula by hiding the variables not in
V. For a CNF formula F, F[V] is obtained from F by removing all clauses with some variables not in V. Given an
NNF formula F and a set of variables Vcvar(F), obviously F|=F[V]. Therefore, for any unsatisfiable formula F,
there is Vcvar(F), such that F[V] is satisfiable. Please notice that, if V is empty, then F[V] is true trivially. F is

PEBEEAIIGTAT hitp/ www. jos. org. cn

42 Journal of Software #4373 Vol.19, No.1, January 2008

variable minimal unsatisfiable, if and only if var(F) is a minimal set of variables which guarantees unsatisfiability
of F. The mathematical definition is described as follows.

Definition 1. Variable Minimal Unsatisfiability

VMU":={FeUNSAT|VVcvar(F):F[V]eSAT}.

In the following section, we restrict VMU formula to CNF formula and define VMU:=VMU"~CNF. Following
the definition of VMU, if FeVMU, then Fe UNSAT. Furthermore, hiding an invisible variable will lead to removing
at least one clause. Thus if FeMU, then FeVMU. Therefore, MUCVMUCUNSATL. In Ref.[9], MU is shown to be
DP-complete, where D" is the class which can be described as the difference between two NP problems. A
DP-complete problem is equivalent to solving a SAT-UNSAT problem defined as: given two formulas F and F', is it
the case that F is satisfiable and F’ is unsatisfiable? D-complete problems are both NP-hard and coNP-hard. In
Ref.[7], it is shown that the deciding problem of VMU is as hard as MU, i.e., D-complete.

Theorem 111, VMU is DP-complete.

4 Model and Abstraction

Considering a system with a set of Boolean variables V={v,...,v,} over {false,true}. The system is modeled by
a concrete model M=(S,T,1), where:

1. Sis aset of (concrete) states.

2. TcSxS is atransition relation.

3. IcSis a set of initial states.

Each state S can be represented as a cube (ly,...,I,). Each transition Tj(s,s") can be considered as a cube

(I, lny 1 .o 1), in which 1 is a literal of v; in current state s, and I is a literal
of v; in next state s’. The transition relation of system is the disjunction of all

M Ti(s,s"), i.e. T(s,8")=VTj(s,s'), thus T(s,s’) is in DNF. Similarly, I can be considered
as a DNF formula I3 A ... Al,. We say that the current state of system is s if the
g Q assignment of system variables satisfies s. State s is an initial state if and only if
s|=I, i.e. I(s)=true. There is a transition from s to s’ if and only if (sAs’)|=T, i.e.,

Fig.1 Atwo-bit t
ig wo-bit counter T(s.5')=true.

An example of a two-bit counter is shown in Fig.1. V={xy,x»}, in which x, is the left bit variable and x; is the
right bit variable. S={s¢,51,52,S3}, in Which Sg=(—X3,—X1), S1=(—X2,X1), S2=(X2,—X1), S3=(X2,X1); 1(S)=(—X2A—X1); and
T(5,8")=(—XoA=X1A—1 X5 A X)V(—XoAXaA Xo A X)V (XaA—XgA Xy A X)V (XoAXgA— Xy A= X).
4.1 Variable abstraction

For a realistic system, the number of variables is usually more than hundreds even thousands. In order to
reduce the state space, we use variable abstraction to construct a conservative abstract model. We extract a set of
variables from V (called visible variables), denoted by V. V? corresponds to the part of the system that is currently
believed to be important for verifying the desired property. V'=V-V? is the set of invisible variables.

In this paper, we adopt a minor revision of variable abstraction!® in model checking. An abstraction of s on V2,
denoted by s[V?], is defined by removing all literals of invisible variables for s represented as a cube. A variable
abstraction function h over V2 for the system is defined as h(s)=s[V?®]. Given two concrete states s and s', they are
equivalent over h if and only if h(s)=h(s’). An abstraction function h could be considered as a surjection h: S—S?,
which maps a concrete state in S to an abstract state in S* The abstraction of system is modeled by an abstract
model M?=(S%T2,1%), where:

1. S*={s%FseS:h(s)=s"} is a set of abstract states.

PEBEEAIIGTAT hitp/ www. jos. org. cn

WIRTF 5 A R i R AR A o 4 2 A 43

2. T={(s%s"®)|3s,5' €S. T(s,8")ANh(s)=s?Ah(s")=s"? } is an abstract transition relation.

3. 1P={s%3sel. h(s)=s} is a set of initial abstract states.

s[V®] could be considered as s? Similarly, T(s,s")[V¥]=T3(s[V®],s'[V?])=T%(s%s'?), T[V?]=T% I[V?]=I% and
M[V?¥]=M?. M? is a conservative abstraction, that is, all behaviors in M are preserved in M2, It is formalized as the
following preservation theorem.

Theorem 25! If M is a concrete model and M? is a corresponding abstract model, then for each universal
fragment formula f,

M?|=f=M|=f.

Fig.2 shows two variable abstract models. For the left one, the set of visible variables is {x;}, i.e. hiding the

invisible variable x,. Therefore,
12(s) = =%, T?(s,8) = () A—=X) V (=% A X)) -
For the right one, the set of visible variables is {x,}, i.e. hiding the invisible variable x;. Therefore,

12(5) = =%, T?(5,8") = (X, A Xp) Vv (X A =X5) V (—Xy A X5) V (X, A —X5)

=) <=Cr

(@ M2:Vvi={x} (b) M3:Vi={x;}
Fig.2 Two abstract models

5 VMU-Driven Abstraction Refinement Framework

Many existing efforts describe iterative abstraction refinement process in model checking™ %!, In this paper,
we present an abstraction refinement process driven by unsatisfiable cores (UC). This framework is shown in Fig.3.

Refinement: New V?

f
l » UNSAT
I—va’ /i S V& 4 p| FMAK uc
SAT
M |=| Infeasible

Fig.3 Abstraction refinement framework

Initially, the set of visible variables V? includes the variables involved in the desired property f. Then, an
abstraction function h is given. To construct an abstract model M?, it can be computed directly from the description
language of the original system, by hiding the invisible variables not in V2.

When an abstract model M? is generated, in each iteration, we check whether the abstract model satisfies the
property f with a BDD-based model checker™. If M? satisfies f, then M satisfies f. However, if M? does not satisfy
f, we could not draw any conclusion, since the abstract counterexample may be spurious. A spurious path is an
abstract path, which does not have any corresponding concrete path. For example, suppose f;=AF(x;==true) and
f,=AF(x,==true). We do model checking M} (Fig.2(a)) with f;, and the answer is “yes”, i.e., M|=f;, then M|=f;
(M is the concrete model in Fig.1). On the other hand, we do model checking M3 (Fig.2(b)) with f,, and the

PEBEEAIIGTAT hitp/ www. jos. org. cn

44 Journal of Software #:#F373& Vol.19, No.1, January 2008

answer is “no”, i.e., MJ|#f,, then it produces an abstract counterexample z°=si si s Actually, this
counterexample is spurious and we will explain later.

An excellent technique of verifying counterexamples is bounded model checking (BMC)™!, which focuses on
the search for counterexamples of bounded depth k. Effectively, the problem is translated into a propositional
formula F(M,f,k):=F(M,k)AF(f,k), such that the formula is satisfiable if and only if there exists a counterexample of
maximum length k. F(M,k):=1(So)A Al T(Si,Si+1) is a propositional formula corresponding to a path in M, F(f,k) is a
propositional formula of translation of a property f. More details could be found in Ref.[4].

Consider an example of a two-bit counter (M) in Fig.2. F(M,K)=1(So))A Al T(Si,Si+1), in Which, 1(sg)=(= X3 A
= x0), T(Si,Si+1)= (= X5 A= X A= XA X T)V(= X A XA XS A= XTIV A= XA XA XTIV A X A XS A
— x*). For the property specification f=—f,=EG(x,==false), F(f,k)= A*2— x} . For the property of a loop path, it is
required to conjunct with F =i (s=s)). Thus, F(M,fK)=F(M.k)AF(f.k)a Fy,, - It is not difficult to check that
F(M,fK) is unsatisfiable with k<3 and it is satisfiable with k=4. M|=f, thus M|=f,.

When M? does not satisfy f, an abstract counterexample 7z; of length k is reported from model checker. We
use BMC to verify whether the corresponding propositional formula F(M,f) is satisfiable. If F(M,fk) is satisfiable,
then there exist some real counterexamples of maximum length k. If F(M,f k) is unsatisfiable, then =z is spurious.
That means the abstract model based on V? is too coarse and it fails to prove the desired property. An unsatisfiable
core (UC) needs to be extracted from F(M,fk) to produce a new set of visible variables V?, which is used to refine
the abstract model. Furthermore, in order to generate a small abstract model, V? is required to be minimal ideally.
Thus V? must meet the following requirements:

e R1 (valid refinement): The refined abstract model M® based on V@ rules out all spurious counterexamples

of maximum length k, i.e., F(M?fk) is unsatisfiable.

e R2 (minimal refinement): For any V'?°cV?, the refined abstract model M’ based on V'? contains at least one

spurious counterexample of maximum length k, i.e., F(M’,f,k) is satisfiable.

This abstraction refinement process repeats until proving the counterexamples’ absence or existence, or model
checking is infeasible (e.g. memory is overflow). In principle, minimal refinement is not necessary. Though it could
result in better performance, we have to weigh this against the cost of additional work. This comparison would not

be discussed in this paper. In our abstraction refinement process, it is required that V* meets R1 and R2 ideally.
5.1 VMU-Driven refinement meets R1 and R2

When BDD-based model checker*® verifies the abstract model M? if M=f (otherwise verification is
finished), then an abstract counterexample of length k is produced, thus F(M?fk) is satisfiable. If this
counterexample is spurious (otherwise verification is finished), then F(M,f,k) is unsatisfiable.

For example, we use a BDD-based model checker®® to verify whether M (Fig.2(b)) satisfies the property
f,=AF(x,==true), and it returns the answer “no”, i.e., Mj |=f,, then it produces an abstract counterexample
73 =55 5 sq . Then we check whether F(M,f,2) is satisfiable by a SAT solver, in which M is the model in Fig.1 and
f=—f,=EG(x,==false). For more details, It is not difficult to see that F(M,f,2) is unsatisfiable, thus =i is a
spurious counterexample.

Intuitively, M? is a conservative abstraction of M, that is, any behavior in M will be preserved in M? Please
notice that F(M,f,K)=1(so)A A T(s1,8i41)AF(F,K), FIMAEK)=12(S2)A AR TA(S, 82,)AF(f k), I=1* and T=T?,
Therefore, F(M,f,K)=F(M?fk). If F(M,fk) is unsatisfiable and F(M?fk) is satisfiable, then M? must contain some
spurious counterexamples of maximum length k.

© HIHEREBEIIZIT http/ www. jos. org. cn

MRIRF SR FAN T i R AR A A W 4 R) 45

When BMC verifies the counterexamples of maximum length k, a propositional formula F(M,fk) is generated.
And it is always converted into a CNF formula to be input in a SAT solver. For simplicity, we consider F(f,k) as a
CNF formula. For F(M,k), the initial predicate | and the transition relation T are represented in DNF in this paper.
For a DNF formula, there exist two popular approaches to generate CNF formula. One is distribution law. A DNF
formula F could be converted into a logical equivalent CNF formula, denoted by F~CNF4(F). However, the length
of CNF4(F) formula may grow exponentially. The other is substitution method. There is a standard procedure
(TREE-CNF in page 31 of Ref.[14]) to produce a satisfiable equivalent CNF formula, denoted by F~,CNF(F). The
length of CNF4(F) only grows polynomially. This construction will be introduced some new variables, denoted by
V" in this paper. The basic idea of this method will be described here. For example, a DNF formula F=(l;Al)vC, in
which C represents other clauses. We introduce a new variable v to substitute (I;Al,). Thus, (=vvi))A(=vvI)A(vvC).
Such substitution repeats until a CNF formula CNF¢(F) is generated. Moreover, F is satisfiable if and only if
CNF(F) is satisfiable!**!,

For the formula of bounded model checking, we convert it into a logical equivalent CNF formula as follows:

CNF4(F(M,k))=CNFq4(I(sg)) A A3 CNF4(T(5,5i+1)), and CNF4(F(M,f,k))=CNF4(F(M,K))AF(f k).

The satisfiable equivalent translation CNFs(F) is similar.

Lemma 1. Given a concrete model M and an abstract model M? based on V2, then

F(M® k)~CNF4(F(M,k))[V®], F(M? k)~sCNFs(F(M,k))[VAZV"].

Proof: Please notice that F(M®k)=12(s2)A AKIT3(s?, s,)=1(So) [V*]A A T(si,8i1) [V

For CNF, we use distribution law to convert a DNF formula into a logical equivalent CNF formula. That is
CNF4((anb)vec)=(avc)a(bvc). This distribution law works on each subformula of DNF formula until a CNF formula
is generated. It is not difficult to see that removing a literal from a clause in DNF formula is logical equivalent to
removing a clause, which contains this literal, in CNF4 formula.

For CNF, we use substitution law to convert a DNF formula into a satisfiable equivalent CNF formula. That is
CNF((IiAl)vC)=(=vvI)A(=vvI)A(vvC). This substitution law works on each subformula of DNF formula until a
CNF formula is generated. It is not difficult to see that removing a literal from a clause in DNF formula is
satisfiable equivalent to removing a clause, which contains this literal, in CNF¢ formula. (I

Now we draw a conclusion that the new set of variables, which is generated from VMU-driven refinement,
meets R1 and R2.

Theorem 3. Given a concrete model M and an abstract model M?. If F(M,f k) is unsatisfiable and F(M?fk) is
satisfiable, that is, M? contains at least one spurious counterexample of length k, then there exists a
Vmincvar(F(M,f,k)), such that CNF4(F(M,f,k))[Vminle VMU (resp. to CNF), and Vi, meets R1 and R2.

Proof: The existence of V,,, is obvious. Now, we prove that V.,;; meets R1 and R2. Suppose M

2 is the
refined abstract model based on V.
(1) Vmin meets R1.
CNF¢(F(M,£K)[VminleVMU
=CNFg(F(M,f,k))[Vimin] e UNSAT
=CNFy4(F(M3;, ,fk))eUNSAT (by lemma 1)
= F(MZ, ,Fk)cUNSAT
(2) Vmin meets R2.
CNF4(F(M,£,K)[Vimin] eVMU
=YV 'SVpin: CNF(F(M,f,K))[V']eSAT

=CNF4(F(M",fk))eSAT (by lemma 1)

© HIHEREBEIIZIT http/ www. jos. org. cn

46 Journal of Software #:#F373& Vol.19, No.1, January 2008

=F(M"? fk)eSAT
(M is the refined abstract model based on V')
The proof of CNF; is similar. O

5.2 Comparison between MU and VMU

In general, there exists no efficient procedure to solve MU and VMU (DP-complete problems are both NP-hard
and coNP-hard). Many methods for finding small unsatisfiable cores have been developed in recent years. In
Refs.[16,17], they use information from a SAT salver’s resolution procedure to find unsatisfiable cores. Their
experimental results show that their procedures are successful for finding small unsatisfiable cores for the instances
tested. Although the theoretic results on VMU and MU are similar, we believe that extraction of VMU would be
more practical than MU in our abstraction refinement framework, based on the following observations:

e In an unsatisfiable CNF formula, the variables are often far less than the clauses. Extraction based on

variables would be easier than clauses.

e (a) FEUNSAT=3F"'cF'cF: F'eVMUAF"eMU; (b) MUCVMUCUNSAT. VMU is a generalization of MU.
That means, for a minimal set of variables which guarantees unsatisfiability, extraction of VMU would be
potentially easier than MU.

For example, the transition relation in Fig.1 has nearly 50 clauses for CNF4(T(s;,Si+1)) and 17 clauses for

CNF4(T(si,5i+1)). Consequently, there are many potential subformulas that must be considered for MU. However, for
the extraction of VMU subformulas, we only consider the subsets of {x, x}, x**, x;*'}, actually the subsets of

{X11X2}-
6 Conclusion

In this paper, we describe a VMU-driven abstraction refinement framework, which uses variable abstraction to
prove the counterexamples’ absence and uses BMC to establish the counterexamples’ existence. Two requirements
of this framework, valid refinement and minimal refinement are introduced. A novel contribution of this paper is
that we introduce VMU in abstraction refinement and prove that VMU meets the two requirements in a rigorous way.
Furthermore, a case study and some observations are shown that VMU could be more practical than MU in this
abstraction refinement framework.

Acknowledgement The authors would like to thank Prof. DING De-Cheng and Prof. XU Bao-Wen for their
valuable discussions and thank the anonymous referees for their helpful comments and suggestions.

References:

[1] Clarke EM, Grumberg O, Peled DA. Model Checking. Cambridge: The MIT Press, 1999.

[2] Lin HM, Zhang WH. Model checking: Theories, techniques and applications. Acta Electronica Sinica, 2002,30(12A):1907-1912
(in Chinese with English abstract).

[3] Su KL, Luo XY, Lu GF. Symbolic model checking for CTL*. Chinese Journal of Computers, 2005,28(11):1798-1806 (in Chinese
with English abstract).

[4] Biere A, Cimatti A, Clarke EM, Strichman O, Zhu Y. Bounded Model Checking. Advances in Computers. Academic Press, 2003.
58.

[5] Clarke EM, Grumberg O, Long DE. Model checking and abstraction. ACM Trans. on Programming Languages and Systems, 1994,
16(5):1512-1542.

[6] Kurshan RP. Computer-Aided Verification of Coordinating Processes. Princeton University Press, 1994.

© PR

CPAFIITAT hip:/ www. jos. org. cn

WIRTF 58 S A R i R AR A o 44 5 A 47

[71 Chen ZY, Ding DC. Variable minimal unsatisfiability. In: Proc. of the Theory and Applications of Models of Computation. LNCS
3959, Springer-Verlag, 2006. 262-273.

[8] Zhao XS. Complexity results on minimal unsatisfiable formulas—A survey. In: Proc. of the 9th Asian Logic Conf. Novosbirsk,
2005. 301-319.

[9] Papadimitriou CH, Wolfe D. The complexity of facets resolved. Journal of Computer and System Science, 1988,37(1):2-13.

[10] Chauhan P, Clarke EM, Kukula J, Sapra S, Veith H, Wang D. Automated abstraction refinement for model checking large state
spaces using sat based conflict analysis. In: Proc. of the Conf. on Formal Methods in Computer Aided Design. LNCS 2517,
Springer-Verlag, 2002. 33-51.

[11] Chen ZY, Zhou CH, Ding DC. Automatic abstraction refinement for Petri nets verification. In: Proc. of the 10th IEEE Int’l on
High-Level Design Validation and Test Workshop. 2005. 168-174.

[12] McMillan KL, Amla N. Automatic abstraction without counterexamples. In: Proc. of the Workshop on Tools for Algorithms for
Construction and Analysis of Systems. LNCS 2619, Springer-Verlag, 2003. 2-17.

[13] Gupta A, Strichman O. Abstraction refinement for bounded model checking. In: Proc. of the 17th Int’l Conf. on Computer Aided
Verification. LNCS 3576, Springer-Verlag, 2005. 112-124.

[14] Kleine Bining H, Lettmann T. Propositional Logic: Deduction and Algorithms. Cambridge University Press, 1999.

[15] Cimatti A, Clarke EM, Giunchiglia F, Roveri M. NuSMV: A new symbolic model checker. Int’l Journal on Software Tools for
Technology Transfer, 2000,2(4):410-425.

[16] Zhang L, Malik S. Extracting small unsatisfiable cores from unsatisfiable Boolean formula. In: Proc. of the 6th Int’l Conf. on
Theory and Applications of Satisfiability Testing (SAT 2003). 2003. http://research.microsoft.com/users/lintaoz/papers/
SAT_2003_core.pdf

[17] Li XW, Li GH, Shao M. Formal verification techniques based on boolean satisfiability problem. Journal of Computer Science and
Technology, 2006,20(1):38-47.

M B 325 2 SRk
[2]1 AREERS, K SO AR R B . J5 vk S Y H L T 2444, 2002,30(12A):1907-1912.
[81 FRTFSR, I8, B OB A S A B RUR U CTL* 7S HL2% 4, 2005,28(11):1798-1806.

CHEN Zhen-Yu was born in 1978. He is a
post-doctor at the School of Computer
Science and Engineering, Southeast
University. His current research areas are

KLEINE BUNING H was born in 1948.
He is a professor at the Paderborn
University. His research areas are SAT
problems and software engineering, etc.

formal verification and software testing,
etc.

TAO Zhi-Hong was born in 1965. His

research areas are software engineering and

model checking, etc.
WANG Li-Fu is a professor at the Peking University. His
research areas are software engineering, etc.

@ HaE

BEA A WESET hips/ www. jos. org. cn

