CT.

整数对的低重量表示 JSF_3

张亚娟⁺, 祝跃飞, 况百杰

(解放军信息工程大学 信息工程学院 网络工程系,河南 郑州 450002)

Low-Weight JSF₃ Representations for Pairs of Integers

ZHANG Ya-Juan⁺, ZHU Yue-Fei, KUANG Bai-Jie

(Department of Network Engineering, Information Engineering University, Zhengzhou 450002, China)+ Corresponding author: Phn: +86-371-63530540, E-mail: springzyj@yahoo.com.cn

Zhang YJ, Zhu YF, Kuang BJ. Low-Weight JSF₃ representations for pairs of integers. *Journal of Software*, 2006,17(9):2004–2012. http://www.jos.org.cn/1000-9825/17/2004.htm

Abstract: J.A.Solinas suggested an optimal signed binary representation for pairs of integers, which is called a Joint Sparse Form (JSF). JSF is at most one bit longer than the binary expansion of the larger of the two integers, and the average joint Hamming density among Joint Sparse Form representations is 1/2. This paper extends the Joint Sparse Form by using a window method, namely a new representations, for pairs of integers, which is called Width-3 Joint Sparse Form (JSF₃). The representation is at most one bit longer than the binary expansion of the larger of the two integers, and the average joint Hamming density is 19/52. So, computing the form of uP+vQ by using JSF₃ is almost 9% faster than that by using JSF.

Key words: elliptic curve cryptosystem; ECDSA; JSF; width-3 joint sparse form (JSF₃); AJHD

摘 要: J.A.Solinas 给出了整数对的最优带符号二进制表示,称做联合稀疏表示(JSF).JSF 表示长度至多是最 大整数的二进制长度加一,其平均汉明密度为 1/2.利用窗口方法扩展了联合稀疏表示,给出了整数对的一种新表 示方法:3-宽度联合稀疏表示(JSF₃).该表示长度至多是最大整数的二进制长度加一,平均汉明密度为 19/52.因此, 利用 JSF₃ 计算 *uP+vQ* 比用 JSF 大约提高 9%的效率. 关键词: 椭圆曲线密码;ECDSA;JSF;3-宽度联合稀疏表示(JSF₃);AJHD

天確问: 補圆曲线密码,ECD3A,JSF,3- の反映 日 仲 風 夜 小 (JSF) 中 图 法 分 类 号: TP309 文献 标 识 码: A

1 Introduction

Known to all, the design of the Public Key Cryptosystem mostly depends on the particular algebra construction. The basic public-key operation in a finite field GF(q) is to compute g^a for a given element $g \in GF(q)$ and a positive integer *a*. This is typically accomplished by the binary method, based on the binary expansion of *a*.

^{*} Supported by the National Natural Science Foundation of China under Grant No.90204015 (国家自然科学基金); the National Grand Fundamental Research 973 Program of China under Grant No.G1999035804 (国家重点基础研究发展计划(973)); the Elitist Youth Foundation of Henan Province under Grant No.021201400 in China (河南省杰出青年基金)

Received 2003-11-03; Accepted 2005-07-28

The method requires approximately l/2 general multiplications and approximately l squarings (on average) $(l = \lceil \log_2 q \rceil)$.

More generally, it is commonly needed to evaluate expressions of the form $g^a h^b$. In particular, most common digital signatures (RSA, ECDSA) are verified by evaluating an expression of the above. This is typically accomplished by the Straus' Methods^[1] (also called Squaring-Multiple Method), presented by Shamir in 1985. The method requires proximately *l* general multiplications and proximately *l* squarings (on average). After then, numerous methods for speeding up scalar multiplication have been discussed in the literature; for a survey, see Ref.[2].

While on general Elliptic Curve E(GF(q)), $P=(x,y) \in E(GF(q))$, then -P=(x,-y). Thus point subtraction is as efficient as addition. This motivates the use of a signed binary expansion (allowing coefficients 0 and ±1). A particularly useful signed digit representation is the non-adjacent form $(NAF)^{[3]}$. By using a window method, one processes some other signed digit representation, called the width-w nonadjacent form $(NAF_w)^{[2-4]}$. (when w=2, NAF_w is equivalent to NAF). There is a simple and efficient algorithm for presenting NAF_w of any integer. When Computing kP, the method requires approximately l/(w+1) general point addition and l double.

Furthermore, many Elliptic Curve Cryptosystems require the computation of the form uP+vQ, where P,Q are points on an elliptic curve, and u,v are integers, such as verification schemes of ECDSA. In the following, we will call this form as multi scalar multiplications. So the efficiency of implementation depends mostly on the efficiency of evaluation of the multi scalar multiplications. Thus, fast multi scalar multiplication is essential for Elliptic Curve Cryptosystems. There are lots of research papers on the problem of speeding up uP+vQ in recent years^[2–7].

For computing the form uP+vQ, J.A.Solinas suggested an optimal signed binary representation for pairs of integers, called Joint Sparse Form (JSF). JSF is at most one bit longer than the binary expansion of the larger of the two integers, and the average joint Hamming density among Joint Sparse Form representations is 1/2. This paper presents the concept of form representation of integers, brings forward Width-3 Joint Sparse Form (JSF₃), extends the JSF method by using some other signed digit representation of integers, and also proves that the average joint Hamming density(AJHD) is 19/52. So, this improvement can speed up the computation of the form uP+vQ by up to 9%, while compared to computation by using JSF.

The paper is organized as follows: Section 2 gives some preparation knowledge on the representation of integers; Section 3 first gives the definition of JSF_3 for pairs of positive integers u_1, u_2 , then proves its unique existence, and presents an algorithm for producing it, and finally shows AJHD of that is 19/52 via stochastic process; Section 4 gives the application of the technique and discusses the avenues for further work.

2 Preparation Knowledge

A given nonegative integer *n* has a common binary expansion $n=(a_1,\ldots,a_1,a_0)=\sum_{i=0}^l a_i 2^i$, $a_i=0,1$. It has another

binary expansion $n=(b_t,...,b_1,b_0)=\sum_{i=0}^{t}b_i 2^i$, $b_i \in \{0,\pm 1,\pm 3,...,\pm (2^{w-1}-1)\}$, w>0. We call it the width-w generalized (binary) expansion form of a (GF_w). Obviously, there are many such expansions. We say that GF_w is reduced if the expansion has the property that the product of any w consecutive terms is nonegative. More, the reduced GF_w is width-w non adjacent form (NAF_w) if the expansion has the property that there is at most a nonzero term of any w consecutive terms. We know, every integer has a unique $NAF_w^{[3]}$. There is also a simple and efficient algorithm for computing the NAF_w of a given integer. The NAF_w of a positive integer is at most one bit longer than its binary expansion, and the NAF_w has the minimal Hamming weight among GF_ws of n. Namely, the average Hamming

density among NAF_w is $l/(w+1)^{[3]}$.

Definition 1. A width-3 generalized expansion of n is half sparse form (HSF₃) if it satisfies the following conditions:

- 1. Of any four consecutive terms, at least two are zero;
- 2. The product of any adjacent terms equals to 0, 3, 9.

Let *n* be a positive integer, then the notation "*n* mods 8" indicates that the modular reduction 8 is to return the smallest residue in absolute value. Correspondingly for Width-3 generalized expansions of *u*, $u=(a_1,...,a_1,a_0)$, obviously, $a_0=0$ if *n* is an even number; and if *n* is an odd number, then $a_0 \in \{n \mod 8, (n+4) \mod 8, -(n \mod 8), -((n+4) \mod 8)\}$. So, we may call a_0

- 1. Fetching-Original-Value of n (*FOV*(n)), if $a_0=n \mod 8$;
- 2. Fetching-Anti-Value of n (*FAV*(n)), if a_0 =(n+4) mods 8;
- 3. Fetching-Sign-Value of n (*FSV*(n)), if $a_0 = -(n \mod 8)$;
- 4. Fetching-Number-Value of n (*FNV*(n)), if $a_0 = -((n+4) \mod 8)$.

Lemma 1. For HSF₃ for *n*, $n=(a_1,...,a_1,a_0)$, we can obtain that:

- 1. a_0 only equals to FOV(n), FAV(n), if $n=\pm 1, \pm 3 \mod 16$;
- 2. a_0 may equal to FOV(n), FAV(n), FSV(n), if $n=\pm 5 \mod 16$;
- 3. a_0 may fetch FOV(n), FAV(n), FSV(n), FNV(n), if $n=\pm7 \mod 16$.

For any four consecutive terms $(a_{j+3}, a_{j+2}, a_{j+1}, a_j)$, we use the sign of "0" as the value that is certain to be zero, and use the sign of "*" as the value that is certain to be nonzero, and use the sign of "?" as the value that is not certain. The pattern denoted by the signs of "0", "*", "?" is called pattern of a_j . It is easy to follow that if the expansion for *n* is HSF, when a_j fetches *FOV*, *FAV*, *FSV*, *FNV*, then its pattern corresponds to the form of (?,0,0,*), (0,0,*,*), (0,0,*,*).

3 JSF₃ for Pairs of Integers

We call the joint width-3 generalized expansions for integers n_0 , n_1 the width 3-joint generalized expansion form of n_0 , n_1 (JGF₃). Furthermore, we call it the reduced width-3 generalized expansion form of n_0 , n_1 (JRF₃) if both are reduced. Analogically, we call it the joint NAF₃ (JNF₃). The number of the nonzero columns of JGF₃ is called the joint Hamming weight (JHW) and the ratio of JHW to its length is its average joint Hamming density (AJHD), where n_0 , n_1 run over *l*-bit integers of *N*. It isn't difficult to see that JHW of JNF₃ is quite smaller among all JGF₃s, but it is not the smallest. Thereinafter, we give the expansion that is the smallest among JGF₃s, whose AJHD is 19/52, while that of JNF₃ is 7/16.

Definition 2. The joint width-3 generalized expansion for integers n_0 , n_1 ,

$$n_0 = (u_{0,m-1}, \dots, u_{0,1}, u_{0,0}),$$

$$n_1 = (u_{1,m-1}, \dots, u_{1,1}, u_{1,0}).$$

is called Width-3 Joint Sparse Form $(JSF_3(n_0,n_1))$, shortly noted by JSF₃, if the expansion satisfies the following conditions:

- 1. JSF₃-1: Of any four consecutive columns, at least two are zeros;
- 2. JSF_3 -2: For every row, the product of the adjacent terms is 0, 3, 9;
- 3. JSF₃-3: There are five pieces of status for interconnect of two rows:
 - a) If there exists $i \in \{0,1\}$ which satisfies $u_{i,j}u_{i,j+1}=3,9$, i.e. $u_{i,j}\neq 0$, $u_{i,j+1}\neq 0$, then $u_{1-i,j}=0$, $u_{1-i,j+1}\neq 0$.
 - b) If $u_{0,j}$, $u_{1,j}$ are not both zero, then $u_{0,j+2}=0$, $u_{1,j+2}=0$, or $u_{0,j+2}\neq 0$, $u_{1,j+2}\neq 0$. Furthermore, if $u_{0,j-2}$, $u_{0,j-1}$, $u_{1,j-2}$, $u_{1,j-1}$ are not all zero, then $u_{0,j+2}=0$, $u_{1,j+2}=0$.

- If $u_{0,i}\neq 0$, $u_{0,i+2}\neq 0$, $u_{1,i}\neq 0$, $u_{1,i+2}\neq 0$, then there exists $i \in \{0,1\}$ which satisfies $u_{i,i}u_{i,i+2}>0$, $u_{i,i+2}=\pm 3$ and c) $u_{1-i,j}u_{1-i,j+2} > 0$, $u_{1-i,j+2} = \pm 1$, or $u_{1-i,j}u_{1-i,j+2} < 0$, $u_{i,j+2} = \pm 3$.
- If $u_{0,j-2}$, $u_{0,j-1}u_{1,j-2}u_{1,j-1}$ are all zero and $u_{0,j}\neq 0$, $u_{1,j}\neq 0$, then $u_{0,j+3}u_{1,j+4}=u_{0,j+4}u_{1,j+3}=0$. d)
- e) If there exists $i \in \{0,1\}$ which satisfies $u_{i,i} \neq 0$, $u_{i,i+1} = \pm 3$, then $u_{0,i+4} = 0$, $u_{1,i+4} = 0$, $or u_{0,i+4} \neq 0$, $u_{1,i+4} \neq 0$.

Obviously, each row expansion of JSF₃ is HSF₃ of an integer.

3.1 Uniqueness of JSF₃ for pairs of integers

Theorem 1. A pair of positive integers has at most one JSF₃.

Proof: Suppose, on the contrary, that there are two distinct JSF₃:

 $n_0 = (u_{0,m-1}, \dots, u_{0,1}, u_{0,0}) = (w_{0,n-1}, \dots, w_{0,1}, w_{0,0}),$

```
n_1 = (u_{1,m-1}, \dots, u_{1,1}, u_{1,0}) = (w_{1,n-1}, \dots, w_{1,1}, w_{1,0}).
```

Since these representations are different, then $u_{i,i} \neq w_{i,i}$ for some *i*, *j*. Let g be the minimal value of j for which the two forms disagree. For i=0,1, set $k_i=(u_{i,m-1},...,u_{i,g+1},u_{i,g})=(w_{i,n-1},...,w_{i,g+1},w_{i,g})$. Since the expansions disagree at j=g, we may assume that $u_{0,g}\neq w_{0,g}$ by exchanging the roles of n_0 , n_1 if necessary. It follows that k_0 is odd, for otherwise we would have $u_{0,g}=w_{0,g}=0$. Therefore $u_{0,g}$, $w_{0,g}$ must have values ± 1 , ± 3 . Then it follows from Definition 2 that

 $(u_{0,g+3}, u_{0,g+2}, u_{0,g+1}, u_{0,g}) = (?, 0, 0, *), (0, *, 0, *), (0, 0, *, *),$

 $(w_{0,g+3}, w_{0,g+2}, w_{0,g+1}, w_{0,g}) = (?, 0, 0, *), (0, *, 0, *), (0, 0, *, *),$

and when u_{0.g}, w_{0.g}, fetch FOV, FAV, FSV, FNV, u_{1.g}, w_{1.g} also correspond to only fetching FOV, FAV, FSV, FNV if k_0, k_1 are both odd.

We can prove that the assumption is not correct by analyzing the four cases of $u_{0,g}$, $w_{0,g}$. Because the space is limited, the details are omitted.

3.2 The existence of JSF₃ for pairs of integers

The most straightforward way to prove the existence of JSF_3 for every pair of positive integers n_0 , n_1 is to present an algorithm for producing it. 012.0

Algorithm 1. JSF₃.

Input: Nonnegative integers n_0, n_1 , not both zero.

Output: JSF₃ for integers n_0 , n_1 .

 $n_0 = (u_{0,m-1},\ldots,u_{0,1},u_{0,0})$

 $n_1 = (u_{1,m-1}, \dots, u_{1,1}, u_{1,0}), u_{i,i} \in \{0, \pm 1, \pm 3\}, i = 0, 1, 0 \le j \le m.$

- 1. Set $k_0 \leftarrow n_0, k_1 \leftarrow n_1$;
- 2. Set $j \leftarrow 0$;
- Set $u_{0,-2} \leftarrow 0$, $u_{0,-1} \leftarrow 0$, $u_{1,-2} \leftarrow 0$, $u_{1,-1} \leftarrow 0$; 3.

```
4.
      While k_0 > 0 or k_1 > 0 do
```

```
For i from 0 to 1 do
```

If k_i is even, then $u \leftarrow 0$;

Else

 $u \leftarrow k_i \mod 8$

If $k_i \equiv \pm 1, \pm 3 \mod 16$ then

If $k_{1-i} \equiv 4 \mod 8$ then $u \leftarrow (u+4) \mod 8$

If $k_{1-i} \equiv \pm 5, \pm 7 \mod 16$ and $k_i \equiv \pm 13, \pm 15 \mod 32$ and

 $u_{0,i-2} = u_{0,i-1} = u_{1,i-2} = u_{1,i-1} = 0$ then $u \leftarrow (u+4) \mod 8$ EndIf

B.CI

Elseif $k_i \equiv \pm 5 \mod 16$ then

If $k_{1-i} \equiv 4 \mod 8$ then $u \leftarrow (u+4) \mod 8$

If $k_{1-i} \equiv \pm 2 \mod 8$ then $u \leftarrow -u$

```
If k_{1-i} \equiv \pm 13, \pm 15 \mod 32 and u_{0,j-2} = u_{0,j-1} = u_{1,j-2} = u_{1,j-1} = 0 then
```

 $u \leftarrow (u+4) \mod 8$

Endif

Elseif $k_i \equiv \pm 7 \mod 16$ then

If $k_{1-i} \equiv 4 \mod 8$ then $u \leftarrow (u+4) \mod 8$

If $k_{1-i} \equiv \pm 2 \mod 8$ then

 $a_0 \leftarrow ((k_0 >> 3) + (k_0 >> 4)) \mod 2$

 $a_1 \leftarrow ((k_1 >> 3) + (k_1 >> 4)) \mod 2$

If $a_0 = a_1$ then $u \leftarrow -u$

else $u \leftarrow -((u+4) \mod 8)$

Endif

Endif

```
If k_{1-i} \equiv \pm 13, \pm 15 \mod 32 and u_{0,j-2} \equiv u_{0,j-1} \equiv u_{1,j-2} \equiv u_{1,j-1} \equiv 0 then
```

 $u \leftarrow (u+4) \mod 8$

Endif

Endif

Endif

Set $u_{i,j} \leftarrow u$;

Next *i*;

```
Set k_0 \leftarrow (k_0 - u_{0,j})/2, k_1 \leftarrow (k_1 - u_{1,j})/2;
```

Set $j \leftarrow j+1$;

EndWhile

In order to prove the desired properties of JSF_3 , it is necessary to generalize Algorithm 1 by allowing inputs JRF_3 for a pair of e_0 , e_1 .

Algorithm 2. JSF₃.

Input: JRF₃ for integers e_0, e_1 , not both zero.

 $e_0 = (e_{0,m-1}, \dots, e_{0,1}, e_{0,0}),$

 $e_1 = (e_{1,m-1}, \dots, 1, e_{1,0}). e_{i,j} \in \{0, \pm 1, \pm 3\}, i = 0, 1, 0 \le j \le m.$

Output: JSF₃ for e_0 , e_1

- 1. Set $j \leftarrow 0$;
- 2. Set $d_0 \leftarrow 0, d_1 \leftarrow 0$;
- 3. Set $u_{0,-2} \leftarrow 0$, $u_{0,-1} \leftarrow 0$, $u_{1,-2} \leftarrow 0$, $u_{1,-1} \leftarrow 0$;
- 4. Set $a_0 \leftarrow e_{0,0}, b_0 \leftarrow e_{0,1}, x_0 \leftarrow e_{0,2}, y_0 \leftarrow e_{0,3}, z_0 \leftarrow e_{0,4};$
- 5. Set $a_1 \leftarrow e_{1,0}, b_1 \leftarrow e_{1,1}, x_1 \leftarrow e_{1,2}, y_1 \leftarrow e_{1,3}, z_1 \leftarrow e_{1,4};$
- 6. Set $k_0 \leftarrow a_0 + 2b_0 + 4x_0 + 8y_0 + 16z_0$;
- 7. Set $k_1 \leftarrow a_1 + 2b_1 + 4x_1 + 8y_1 + 16z_1$;
- 8. While $k_0 > 0$ or $k_1 > 0$ do

For *i* from 0 to 1 do

If k_i is even then $u \leftarrow 0$

Else SIMILAR TO Algorithm 1 Set $u_{i,j} \leftarrow u$ Set $\beta_{i,j} \leftarrow (u_{i,j-2}, u_{i,j-1}, d_i, e_{i,j}, e_{i,j+1}, e_{i,j+2}, e_{i,j+3}, e_{i,j+4})$ Next *i* Set $S_j \leftarrow (\beta_{0,j}, \beta_{1,j})$ Set $d_0 \leftarrow (d_0 + a_0 - u_{0,j})/2$, $d_1 \leftarrow (d_1 + a_1 - u_{1,j})/2$ Set $a_0 \leftarrow b_0$, $b_0 \leftarrow x_0$, $x_0 \leftarrow y_0$, $y_0 \leftarrow z_0$, $z_0 \leftarrow e_{0,j+5}$ Set $a_1 \leftarrow b_1$, $b_1 \leftarrow x_1$, $x_1 \leftarrow y_1$, $y_1 \leftarrow z_1$, $z_1 \leftarrow e_{1,j+5}$ Set $j \leftarrow j+1$ (if j > m, let $e_{i,j}=0$) Set $k_0 \leftarrow d_0 + a_0 + 2b_0 + 4x_0 + 8y_0 + 16z_0$ Set $k_1 \leftarrow d_1 + a_1 + 2b_1 + 4x_1 + 8y_1 + 16z_1$ EndWhile

It is easy to check that, in the special case in which the $e_{i,j}$'s are "ordinary" unsigned bits, Algorithm 2 is equivalent to Algorithm 1. So the correctness of the Algorithm 2 insures that of the Algorithm 1.

We call the vectors S_j the states of the algorithm, The output vector $(u_{0,j},u_{1,j})$ is a function of the state S_j . Thus we may describe the action of Algorithm 2 as follows: the j^{th} iteration of the Do loop inputs the state S_{j-1} , outputs

 $(u_{0,j-1}, u_{1,j-1})$, and changes the states to S_j , namely, $S_{j-1} \xrightarrow{(u_{0,j-1}, u_{1,j-1})} S_j$.

Let $\tau_{i,j}=d_i+e_{i,j}+2e_{i,j+1}+4e_{i,j+2}+8e_{i,j+3}+16e_{i,j+4}$. We next enumerate the possible values for the state and all the states are divided into the following 24 cases of the difference of S_i (see Tables 1 and 2).

S_j	$\beta_{0,i}$	$\beta_{1,i}$	Form-of-Fetch-Value
$B_{0,0}$	$t_{0,j} \equiv 0 \mod 4$	$t_{1,j} \equiv 0 \mod 4$	(0,0)
$B_{0,1}$	$t_{0,j} \equiv 4 \mod 8$	$t_{1,j} \equiv 1 \mod 2$	(0, FAV)
$B_{0,2}$	$t_{0,j} \equiv 0 \mod 8$	$t_{1,j} \equiv 1 \mod 2$	(0, FOV)
$B_{0,3}$	$t_{0,j} \equiv \pm 2 \mod 8$	$t_{1,j} \equiv \pm 1, \pm 3 \mod 16$	(0, FOV)
$B_{0,4}$	$t_{0,j} \equiv \pm 2 \mod 8$	$t_{1,j} \equiv \pm 5 \mod 16$	(0, FSV)
$B_{0,5}$	$t_{0,j} \equiv \pm 2, \pm 6 \mod 32$	$t_{1,j} \equiv \pm 7 \mod 32$	(0, FSV)
$B_{0,6}$	$t_{0,j} = \pm 2, \pm 6 \mod 32$	$t_{1,j} \equiv \pm 9 \mod 32$	(0, FNV)
$B_{0,7}$	$t_{0,j} \equiv \pm 10, \pm 14 \mod 32$	$t_{1,j} \equiv \pm 7 \mod 32$	(0, FNV)
$B_{0,8}$	$t_{0,j} \equiv \pm 10, \pm 14 \mod 32$	$t_{1,j} \equiv \pm 9 \mod 32$	(0, FSV)
$B_{1,0}$	$t_{0,j} \equiv 0 \mod 2$	$t_{1,j} \equiv 0 \mod 2$	(0,0)(*1)
$B_{1,1}$	$t_{0,j} \equiv 1 \mod 2$	$t_{1,j} \equiv 4 \mod 8$	(FAV,0)
$B_{1,2}$	$t_{0,j} \equiv 1 \mod 2$	$t_{1,j} \equiv 0 \mod 8$	(FOV,0)
$B_{1,3}$	$t_{0,j} \equiv \pm 1, \pm 3 \mod 16$	$t_{1,j} \equiv \pm 2 \mod 8$	(FOV,0)
$B_{1,4}$	$t_{0,j} \equiv \pm 5 \mod 16$	$t_{1,j} \equiv \pm 2 \mod 8$	(FSV,0)
$B_{1,5}$	$t_{0,j} \equiv \pm 7 \mod 32$	$t_{1,j} \equiv \pm 2, \pm 6 \mod 32$	(FSV,0)
$B_{1,6}$	$t_{0,j} \equiv \pm 9 \mod 32$	$t_{1,j} \equiv \pm 2, \pm 6 \mod 32$	(FNV,0)
$B_{1,7}$	$t_{0,j} \equiv \pm 7 \mod 32$	$t_{1,j} \equiv \pm 10, \pm 14 \mod 32$	(FNV,0)
$B_{1,8}$	$t_{0,j} \equiv \pm 9 \mod 32$	$t_{1,j} \equiv \pm 10, \pm 14 \mod 32$	(FSV,0)
$B_{2,0}$	$t_{0,j} \equiv 1 \mod 2$	$t_{1,j} \equiv 1 \mod 2$	(FOV, FOV)(*2)
$B_{2,1}$	$t_{0,j} \equiv \pm 13, \pm 15 \mod 32$	$t_{1,j} \equiv \pm 5, \pm 7 \mod 16$	(FAV, FAV)(*3)
$B_{2,2}$	$t_{0,j} \equiv \pm 5, \pm 7 \mod 16$	$t_{1,j} = \pm 13, \pm 15 \mod 32$	(FAV, FAV)(*3)
$B_{2,3}$	$t_{0,j} \equiv \pm 1, \pm 3 \mod 32$	$t_{1,j} \equiv \pm 1 \mod 2$	(FOV, FOV)(*3)
$B_{2,4}$	$t_{0,j} \equiv \pm 13, \pm 15 \mod 32$	$t_{1,j} \equiv \pm 1, \pm 3 \mod 16$	(<i>FOV</i> , <i>FOV</i>)(*3)
$B_{2,5}$	$t_{0,j} \equiv \pm 5, \pm 7 \mod 16$	$t_{1,j} \neq \pm 13, \pm 15 \mod 32$	(FOV, FOV)(*3)

Table 1 State-Table

S_j	$u_{0,j}$	$u_{1,j}$	S_{j+1}	S_j	$u_{0,j}$	$u_{1,j}$	S_{j+1}
$B_{0,0}$	0	0	$B_{0,0}, B_{1,0}$	$B_{1,0}$	0	0	(*4)
$B_{0,1}$	0	±1,±3	$B_{1,0}$	$B_{1,1}$	±1,±3	0	$B_{1,0}$
$B_{0,2}$	0	±1,±3	$B_{0,0}$	$B_{1,2}$	±1,±3	0	$B_{0,0}$
$B_{0,3}$	0	±1,±3	$B_{1,2}$	$B_{1,3}$	±1,±3	0	$B_{0,2}$
$B_{0,4}$	0	± 3	$B_{2,0}$	$B_{1,4}$	<u>±3</u>	0	$B_{2,0}$
$B_{0,5}$	0	±1	$B_{2,0}$	$B_{1,5}$	±1	0	$B_{2,0}$
$B_{0,6}$	0	± 3	$B_{2,0}$	$B_{1,6}$	±3	0	$B_{2,0}$
$B_{0,7}$	0	± 3	$B_{2,0}$	$B_{1,7}$	<u>±3</u>	0	$B_{2,0}$
$B_{0,8}$	0	± 1	$B_{2,0}$	$B_{1,8}$	± 1	0	$B_{2,0}$
$B_{2,0}$	±1,±3	±1,±3	$B_{0,0}$	$B_{2,3}$	±1,±3	±1,±3	$B_{0,0}$
$B_{2,1}$	±1,±3	±1,±3	$B_{1,0}$	$B_{2,4}$	±1,±3	±1,±3	$B_{0,0}$
B _{2,2}	±1,±3	±1,±3	$B_{1,0}$	B _{2,5}	±1,±3	±1,±3	$B_{0,0}$

Table 2State-Following-Table

Note: (*1) means at least one isn't divisible by 4; (*2) means $u_{0,j-2}$, $u_{0,j-1}$, $u_{1,j-2}$, $u_{1,j-1}$ are not all zero; (*3) means $u_{0,j-2}$, $u_{0,j-1}$, $u_{1,j-2}$, $u_{1,j-1}$ are all zero, and $t_{1,j} \neq \pm 13, \pm 15 \mod 32$ means $t_{1,j} = \pm 1, \pm 3 \mod 32$, or $t_{1,j} = \pm 5, \pm 7 \mod 16$; (*4) indicates that any state is a possible successor to state $B_{1,0}$, excluding $B_{0,0}$, $B_{1,0}$.

It is easy to verify the following by checking all the cases. As a result, we have the following values for S_{j+1} for each S_j . All the following states are shown in Table 2. Finally, it will be useful to further combine the above 24 states into six as follows (see Table 3).

 Table 3
 Simple-State-Following-Table

S_j		$u_{0,j} = u_{1,j} = 0$	S_{j+1}
C_0	$B_{0,0}$	YES	C_{0}, C_{1}
C_1	$B_{1,0}$	YES	C_2, C_3, C_4, C_5
C_2	$B_{0,1}, B_{1,1}, B_{2,1}, B_{2,2}$	NO	C_1
C_3	$B_{0,2}, B_{1,2}, B_{2,0}$	NO	C_0
C_4	$B_{0,3}, B_{0,4}, B_{0,5}, B_{0,6}, B_{0,7}, B_{0,8}$	NO	C_3
C_4	$B_{1,3}, B_{1,4}, B_{1,5}, B_{1,6}, B_{1,7}, B_{1,8}$	NO	C_3
C_5	$B_{2,3}, B_{2,4}, B_{2,5}$	NO	C_0

Theorem 2. Algorithm 1 always outputs the Width-3 Joint Sparse Form for its inputs.

Proof: It is straightforward to verify that the expansion produced by the Algorithm 2 is in fact JGF for n_0 , n_1 . It remains to prove that this expansion satisfies the terms of Definition 2. The process is similar to that.

3.3 Efficiency of JSF₃ for pairs of integers

Now, Our primary task is to prove that AJHD of JSF_3 is 19/52. It is easy to see that GF_3 is at most one bit longer than the ordinary binary expansion. As a result, JSF_3 is at most one bit longer than the binary expansion of the larger of the two integers.

Theorem 3. The average joint Hamming density among Joint 3-Sparse Form representations is 19/52.

Proof: Let state space $\Gamma = \{G_i | i=0,1,\ldots,10,11\}$, where,

$G_0 = \{ S_n \in C_0 S_{n-1} \in C_5 \},\$	$G_1 = \{S_n \in C_0 S_{n-2} \in C_4\}$	$G_2 = \{ S_n \in C_0 S_{n-1} \notin C_5, S_{n-2} \notin C_4 \},\$
$G_3 = \{S_n \in C_1 S_{n-1} \in C_2\}$	$G_4 = \{ S_n \in C_1 S_{n-1} \in G_1 \},\$	$G_5 = \{S_n \in C_1 S_{n-1} \in C_2\}$
$G_6 = \{S_n \in C_1 S_{n-1} \notin (G_1 G_2 C_2) \},$	$G_7 = \{S_n \in C_2\},\$	$G_8 = \{S_n \in C_3 S_{n-1} \in C_4\},\$
$G_9 = \{S_n \in C_3 S_{n-1} \notin C_4\},\$	$G_{10} = \{S_n \in C_4\},\$	$G_{11} = \{S_n \in C_5\}$

Obviously, a stochastic process $\{S_n|n\geq 0\}$ output by Alg.2 takes values in a countable set Γ , and is a homogeneous Markov Chain in terms of Γ (see definition in page 252 of Ref.[8]). So, let $p_{i,j}$ denote the *transition probabilities* $p_{i,j}(n)$, where $p_{i,j}(n)=P\{S_{n+1}\in G_j|S_n\in G_i\}$. $\{p_{i,j}\}$ forms the following transition matrix P (next page). From transition matrix P, for any two states $G_i, G_j \in \Gamma$, the state G_i is equivalent to G_j , so $\{S_n|n\geq 0\}$ is irreducible, and for any G_j , it is

nonrecurrent. Therefore, the chain exists stationary distrubution $\{\pi_j, G_j \in \Gamma\}$, and $\lim_{m \to \infty} \left(\frac{1}{m} \sum_{n=1}^m p_{i,j}^{(n)}\right) = \pi_j$, where $p_{i,j}^{(n)} = P\{S_{(m+n)} \in G_j | S_m \in G_i\}, (G_i, G_j \in , m \ge 0, n \ge 1)$. From the equations below, which π_j (j=0,1,...,11) satisfies^[8],

 $(\pi_0, \pi_1, \dots, \pi_{11}, 1) = (\pi_0, \pi_1, \dots, \pi_{11})(P, g).$

where g=(1,1,1,1,1,1,1,1,1,1,1), and the symbol denotes matrix transposition. We get the solution (9/130, 4/65, 1/5, 17/260, 3/65, 11/260, 3/20, 17/260, 4/65, 7/65, 4/65, 9/130).

Let its absorbing probabilities $p_j(n)=p\{S_n \in G_j\}, j=0,1,...,11$, and initial distribution probabilities $\{p_j\}=p\{S_0 \in G_j\}, j=0,1,...,11$ of the chain, then the vector of $(u_{0,j},u_{1,j})=(0,0)$ is the output by $G_{j,j}=0,1,...,6$. So AJHD is given by

$$\begin{split} \Sigma &= \sum_{j=7}^{11} \lim_{m \to \infty} \frac{1}{m} \sum_{n=1}^{m} p_j(n) = \sum_{j=7}^{11} \lim_{m \to \infty} \left(\frac{1}{m} \sum_{n=1}^{m} \sum_{G_i \in \Gamma} p_{i,j}^{(n)} p_i \right) \\ &= \sum_{j=7}^{11} \sum_{G_i} P_i \left(\lim_{m \to \infty} \left(\frac{1}{m} \sum_{n=1}^{m} p_{i,j}^{(n)} \right) \right) = \sum_{j=7}^{11} \lim_{m \to \infty} \left(\frac{1}{m} \sum_{n=1}^{m} p_{i,j}^{(n)} \right) \\ &= \sum_{j=7}^{11} \pi_j. \end{split}$$

Therefore Σ =19/52. The AJHD of τ -NJSF is 19/52.

4 Applications to ECC

The execution time of ECC schemes such as the ECDSA is typically dominated by point multiplications, In ECDSA, there are two types of point multiplications kP, where P is fixed (signature generation), and uP+vQ, where P is fixed and Q is not known a priori (signature verification). Using the above algorithm technique, the latter type can be sped up by precomputing some data for points, such as 2P, 2Q, 3P, 3Q, $P\pm Q$, $P\pm 3Q$, $3P\pm Q$, $3P\pm 3Q$, and storing some data for points such as P, Q, 3P, 3Q, $P\pm Q$, $P\pm 3Q$, $3P\pm 2Q$, $3P\pm 3Q$, and storing some data for points such as P, Q, 3P, 3Q, $P\pm Q$, $P\pm 3Q$, $3P\pm 3Q$. Adapting the fast Shamir Method by using JSF₃ yields a technique which requires approximately l doublings and 19l/52 general additions (on average). In other words, that sometimes works almost 9% faster than that by using the Joint Sparse Form.

The front type can also be sped up. The simplest approach is described below. Suppose that the order *r* of the private key space is less than 2^{2l} . Let $Q=2^lP$ then $k=a+b2^lQ$, thus compute k=aP+bQ, one applies Alg.1 to generate JSF₃ for integers *a*, *b*. This technique of computing it by using JSF₃ requires approximately 2*l* doublings and 191/52, a saving of approximately 33*l*/52 general additions over the addition-subtraction method, and approximately 7*l*/52

S.CI

over that by using the Joint Sparse Form. If the Elliptic Curves are particular curves, as Koblitz Curves, there may the form with width-3, analogous to JSF₃. So, it would be of interest to construct the form which can be applied to Koblitz Curves.

References:

- [1] Cohen H. A Course in Computational Algebraic Number Theory. Berlin: Springer-Verlag, 1993.
- [2] Gordon DM. A survey of fast exponentiation methods. Journal of Algorithms, 1998,27(1):129-146.
- Brown M, Hankerson D, Lopez J, Menezes A. Software implementation of NIST elliptic curves over prime fields. In: Naccache D, ed. Topics in Cryptology—CT-RSA 2001. LNCS 2020, Berlin: Springer-Verlag Heidelberg, 2001. 250–265.
- [4] Avanzi R. On multi-exponentiation in cryptography. 2003. http://citeseer.ist.psu.edu/avanzi02multiexponentiation.html
- [5] Bernstein DJ. Pippenger'2 exponentiation algorithm. 2002. http://cr.rp.to/papers.html
- [6] Ciet M, Lange T, Sica F, Quisquater JJ. Improved algorithms for efficient arithmetic on elliptic curves using fast endomorphisms. In: Biham E, ed. Advances in Cryptology-Eurocrypt 2003, LNCS 2656. Berlin, Heidelberg: Springer-Verlag, 2003. 388–400.
- [7] Morain F, Olivos J. Speeding up the computations on an elliptic curve using addition-subtraction chains. Informatique Theorique et Applications/Theoritical Informatics and Applications, 1990,24(6):531–543.
- [8] Chung KL. Elementary Probability Theory with Stochastic Processes. 3rd ed. Berlin: Springer-Verlag, 1978.

ZHANG Ya-Juan was born in 1974. She is a Ph.D. candidate at the Information Engineering University. Her current research area is information security.

KUANG Bai-Jie was born in 1976. He is a docent at the Department of Network Engineering, Information Engineering University. His current research area is information security.

ZHU Yue-Fei was born in 1962. He is a professor and doctoral supervisor at the Department of Network Engineering, Information Engineering University. His research area is information security.