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Abstract:  A renaming is a function mapping propositional variable to itself or its complement, a variable 
renaming is a permutation over the set of propositional variables of a formula, and a literal renaming is a 
combination of a renaming and a variable renaming. Renaming for CNF formulas may help to improve DPLL 
algorithm. This paper investigates the complexity of decision problem: for propositional CNF formulas H and F, 
does there exist a variable (or literal) renaming ϕ such that ϕ(H)=F? Both MAX(1) and MARG(1) are subclasses of 
the minimal unsatisfiable formulas, and formulas in these subclasses can be represented by trees. The decision 
problem of isomorphism for trees is solvable in linear time. Formulas in the MAX(1) and MARG(1), it is shown that 
the literal renaming problems are solvable in linear time, and the variable renaming problems are solvable in 
quadratic time. 
Key words:  complexity; renaming; minimal unsatisfiable formula 

摘  要: 改名是一个将变元映射到变元本身或它的补的函数,变元改名是公式变元集合上的一个置换,文字改
名是一个改名和一个变元改名的组合.研究 CNF公式的改名有助于改进 DPLL算法.考虑判定问题“对于给定的
CNF公式H和 F是否存在一个变元(或文字)改名ϕ,使得ϕ(H)=F?”的计算复杂性.MAX(1)和MARG(1)是极小不可
满足公式的两个子类,这两个子类中的公式可以用树表示.树同构的判定问题在线性时间内是可解的.证明了对
于 MAX(1)和 MARG(1)中的公式,文字改名问题在线性时间内可解,变元改名问题在平方次时间内可解. 
关键词: 计算复杂性;改名;极小不可满足公式 
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1   Introduction 

A literal is a propositional variable or a negated propositional variable. A clause C is a disjunction of literals, 
C=(L1∨…∨Lm), and sometimes written as a set of literals, C={L1,…,Lm}. A formula F in conjunction normal form 
(CNF) is a conjunctive of clauses, F=(C1∧…∧Cn), and sometimes written as a set of clauses, {C1,…,Cn} or a list of 
clauses, F=[C1,…,Cn]. var(F) is the set of variables occurring in the formula F and lit(F) is the set of literals over 
the variables of F. Let F be a CNF formula. A renaming of F is a function mapping propositional variable x to x or 
¬x for x∈var(F), a variable renaming of F is a permutation over var(F), and a literal renaming of F is a 
combination of a renaming and a variable renaming of F. For CNF formulas H and F, a homomorphism ϕ from 
formula H to F is a mapping from lit(H) to lit(F) and it preserves complements and clauses, i.e., ϕ(¬L)=¬ϕ(L) for 
L∈lit(H), and ϕ(C)∈F for every clause C∈H, where lit(⋅) is the set of literals over variables occurring in the 
formula, and ϕ is an isomorphism from formula H to F if ϕ is a homomorphism from formula H to F and ϕ is a 
bijection. Clearly, if formula H is homomorphic to formula F, then the unsatisfiability of H implies the 
unsatisfiability of F, and if formula H is isomorphic to formula F, then H and F have the same satisfiability. 

We are interested in isomorphism of CNF formulas for motivations of constructing some more efficient 
algorithms for satisfiability and simplifying the proofs of unsatisfiable formulas[1,2]. In Ref.[1], Krishnamurthy 
illustrated the power of symmetry for propositional proof systems. He added to the resolution calculus the rule of 
symmetry and gave short proofs for some hard formulas. For example, the pigeon hole formulas have a proof of 
polynomial size in this extended calculus. The rule of symmetry allows the following inference: If a clause f has 
been derived from a set of clauses F and ϕ is a permutation over the set of variables occurring in F, then the clause 
ϕ(f) can be inferred as the next step in the derivation. Further interesting results can be found in Urquhart’s paper[2]. 
We call a permutation of variables a variable renaming. Instead of a permutation of variables, we can make use of a 
more general renaming, namely a so called literal renaming or isomorphism. That means we have a permutation of 
variables and additionally variables can be simultaneously replaced by its complements. More formally, for 
formulas H and F with var(H)=var(F), a variable renaming φ is a one–to–one mapping ϕ: var(H)→var(F) and a 
literal renaming ϕ is a one–to–one mapping ϕ: lit(H)→ lit(F) with ϕ(¬x)=¬ϕ(x) for any variable x. The literal 
renaming of CNF formulas is the isomorphism or symmetry of CNF formulas for satisfiability. 

A deeper understanding of the structures of CNF formulas may help to improve the DPLL-algorithm. In the 
splitting tree of the DPLL-algorithm, if two formulas are labelled at the different nodes, and one of the formulas can 
be mapped to the other one by an isomorphism, then we can replace one of the formulas by the empty clause and 
continue with the remaining formula. By variable (or literal) renaming, we can decrease the size of the splitting tree 
in the DPLL-algorithms for some hard formulas. Formally, in the splitting tree of the DPLL-algorithm, if formula Fu 
at one node u can be mapped to formula Fv at the other one node v by a variable (or literal) renaming ϕ, then we can 
replace Fu by the empty clause, and continue with the remaining formula. We have shown that the DPLL-algorithm 
with such a symmetry rule has short proofs for the pigeon hole formulas with n+1 pigeons and n holes, which is a 
class of hard formulas, and it need only O(n3) nodes in the splitting tree[3]. 

A CNF formula F is minimal unsatisfiable (MU) if F is unsatisfiable and for any clause f∈F, F−{f} is 
satisfiable. In Ref.[4], C. H. Papadimitriou and D. Wolfe showed that for every formula F one can construct a 
formula f(F) in polynomial time such that F is satisfiable if and only if f(F) is satisfiable, and F is unsatisfiable if 
and only if f(F) is minimal unsatisfiable, i.e., an unsatisfiable formula can be transformed into a minimal 
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unsatisfiable formula in polynomial time. The deficiency of CNF formula F is the difference between the number of 
clauses and the number of variables of F. It is well-known that the deficiency of MU formula is more than one[5,6]. 
For k≥1, let MU(k) be the set of minimal unsatisfiable formulas with deficiency k. The decision problem for minimal 
unsatisfiable (MU) formulas is DP-complete[4]. Fortunately, for fixed k, whether or not a formula belongs to MU(k) 
can be decided in polynomial time[5]. It has been proved in Ref.[6] that for any k,t≥1 and any formula F∈MU(t), 
there exists a formula H in MU(k) and a homomorphism φ from H to F such that φ(H)=F. Moreover, for fixed k,t≥1, 
the formula H and the homomorphism φ can be constructed in polynomial time. For a class C of CNF formulas we 
have considered the problems: 

Problem: Var−C(Lit−C,Hom−C) 
Instance: H,F∈C 
Query: Does there exist a variable renaming (literal renaming, homomorphism) ϕ from H to F: ϕ(H)=F? 
We call the problem Var−C(Lit−C,Hom−C) the variable renaming (resp. literal renaming, homomorphism)  

for C. 
We investigate the above mentioned problems for the class of minimal unsatisfiable formulas and various 

natural subclasses. The classes considered first are minimal unsatisfiable Horn formulas (Hom−MU) and MU 
formulas with fixed deficiency k. Additionally, for the homomorphism problem we consider the class MU(k,t). The 
class MU(k,t) is the set of pairs of formulas (H,F) where H∈MU(k) and F∈MU(t). Since a renaming preserves the 
number of clauses, these problems are not of interest for MU(k,t). For fixed k and t, the problem Hom−M(k,t) has an 
instance pair of formulas H∈MU(k) and F∈MU(t). The question is whether there is a homomorphism ϕ such that 
ϕ(H)=F. 

The graph isomorphism problem consists in deciding whether two given graphs, G1=(V1,E1) and G2=(V2,E2), 
are isomorphic, i.e. whether there is a bijective mapping ϕ from V1 to V2 such that for any u,v∈V1, (u,v)∈E1 if , and 
only if (ϕ(u),ϕ(v))∈E2. 

We write A≤pB if the class A is a polynomial one reducible to the class B. A≡pB is an abbreviation for A≤pB and 
B≤pA. We use GI (resp. UGI) to denote the graph isomorphism problem for directed (resp. undirected) graphs. It is 
easy to prove GI≡pUGI. Thus, we use GI to shortly denote the graph isomorphism problem for directed or 
undirected graphs. The graph isomorphism problem GI is known to be in NP. But it is an open problem whether GI 
is NP–complete or solvable in polynomial time[9]. 

In Ref.[10], we have proved the following results. 
(1) For k≥1, the variable (and literal) renaming problems for formulas in MU(k), even if Horn formulas in 

MU(1), are equivalent to the graph isomorphism problem. 
(2) For k≥1, the homomorphism problem for formulas in MU(k), even if Horn formulas in MU(1), is 

NP-complete. 
(3) For k, t≥1, the homomorphism problem for MU(k,t) is NP-complete. 
In fact, the variable (or literal) renaming of CNF formulas describes some symmetry properties of formulas. By 

the symmetry properties of formulas, we can short the length of proof of satisfiability for formulas. However, we do 
not know exactly the complexity of the graph isomorphism problem. So, it is significant for investigating 
polynomial decidability of the variable (or literal) renamings for some subclasses of CNF. 

In order to see whether the problems will be easier for more restrictive classes, we investigate maximal and 
marginal formulas. A MU formula F is maximal if adding a new literal to any clause of F results in a satisfiable 
formula. That is strongly minimal unsatisfiable formula defined in Ref.[5]. MAX is the set of maximal MU formulas 
and MAX(k)=MU(k)∩MAX. A MU formula F is marginal if removing an occurrence of a literal from F results in a 
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non-minimal unsatisfiable formula. MARG is the set of marginal formulas and MARG(k)=MU(k)∩MARG. 
Intuitionally, a formula F in MU(k) has a formula Flow in MARG(k) as ‘lower bound’, and a formula Fup in MAX(k) 
as ‘upper bound’ for literals. The decision problems for MAX and MARG are known to be DP-complete[11,12], 
whereas the problems for fixed k are in P because the problem for MU(k) is solvable in polynomial time. 

In this paper, we will investigate variable renaming and literal renaming for formulas in MAX(1) and MARG(1). 
We consider the following problems: 

Problem: Var-MAX(1) (Var-MARG(1)) 
Instance: H,F∈MAX(1) (MARG(1)) 
Query: Does there exist a variable renaming ϕ such that ϕ(H)=F? 
Problem: Lit-MAX(1) (Lit-MARG(1)) 
Instance: H,F∈MAX(1) (MARG(1)) 
Query: Does there exist a literal renaming ϕ such that ϕ(H)=F?  
We will prove that the problems Var-MAX(1) and Var-MARG(1) are solvable in quadratic time, and the 

problems Lit-MAX(1) and Lit-MARG(1) are solvable in linear time. 

2   MU(1) Formulas 

Let F=[C1,…,Cn] be a CNF formula. The integer n, the number of clauses in the formula F, is denoted by 
#cl(F). var(F) is the set of variables occurring in formula F and #var(F) is the number of variables of the formula F. 
lit(F) is the set of literals occurring in formula F. The length (or size) of formula F is the number 
of occurrences of literals, i.e. ∑ ∈FC Clit )( , denoted by |F|. A Horn clause is one with at most one positive literal. 

A Horn formula is a conjunction of Horn clauses. We denote the number of positive (resp. negative) occurrence of x 
in F by pos(x,F) (resp. neg(x,F)), and write occ(x,F)=(pos(x,F),neg(x,F)). 

Definition 1. (Representation matrix of a CNF formula) 
Let F=[C1,…,Cm] be a formula with n variables x1,…,xn in CNF(n,m). The n×m matrix(aij) is called the 

representation matrix of F, where 

.
,     ,0

     ,
     ,







∉¬
∈¬−

∈+
=

jii

ji

ji

ij
Cxx

Cx
Cx

a  

Sometimes we write blank for ‘0’. 
Definition 2 (variable renaming, renaming, literal renaming). 
Let H and F be formulas in CNF and var(H)=var(F) 
(1) (Variable renaming) A mapping ϕ: var(H)→var(F) is termed a variable renaming from H to F, if ϕ is a 

permutation over var(H) such that ϕ(H)=F. 
(2) (Renaming) A mapping ϕ: lit(H)→lit(F) is termed a renaming if for all L∈lit(H) we have ϕ(L)=L or ¬L and 

ϕ(¬L)=¬ϕ(L). (We assume ¬¬L=L). 
(3) (Lit_renaming) A mapping ϕ: lit(H)→lit(F) is termed a literal renaming over lit(H) if ϕ is a permutation 

over lit(H) and for all L∈ lit(H) we have ϕ(¬L)=¬ϕ(L). 
Please note that a literal renaming is the combination of a variable renaming and a renaming. 
Definition 3 (minimal unsatisfiable formula). 
Let F be a CNF formula. F is called minimal unsatisfiable if 
(1) F is unsatisfiable and 
(2) for any clause f∈F, F−{f} is satisfiable. 
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For a formula F∈CNF(n,n+k), the integer k is called the deficiency of F. For minimal unsatisfiable formulas, 

we always have k≥1[2,3]. We denote 
MU(k)={F∈CNF(n,n+k)|F is minimal unsatisfiable} 

and 
MU={F|F is minimal unsatisfiable}= . U 1

)(
≥k

kMU

In Ref.[6], it is well-known that for F∈MU(1) there exists a variable x such that occ(x,F)=(1,1), and the 
minimal unsatisfiable Horn formulas are in MU(1). 

The following theorem represents that MU(1) is an important subclass of the minimal unsatisfiable formulas. 
Theorem 1[12] (splitting theorem). 
Suppose F∈MU(k), k>1, and for every variable x, occ(x,F)≥(2,2). Let F=[(x∨f1),…,(x∨fs),Bx,C,B¬x,(¬x∨g1), 

…,(¬x∨gt)] where Bx, C, B¬x are some formulas without occurrences of x and ¬x, such that 
Fx=[f1,…,fs,Bx,C]∈MU(kx), F¬x=[g1,…,gt,B¬x,C]∈MU(k¬x) 

for some kx and k¬x. Then we have 1≤kx,k¬x<k. 
The pair (Fx,F¬x) of formulas is called the splitting pair of F on variable x. 
In Ref.[6], G. Davydov et al. introduced the complete representation of formulas in MU(1), basic matrices. 
Definition 4[6] (basic matrix).  
The following matrix with n rows and (n+1) columns defined inductively is termed a basic matrix: 
(1) (+−)is a basic matrix. 
(2) If B1 is a basic matrix, then the following matrix is basic. 

1

1

0B
b

 
 − 

. 

where b1 is a vector with (b1)j∈{0,+} and at least one +-sign. 
(3) If B2 is a basic matrix, then the following matrix is basic. 

2

20
b
B

+ 
 
 

. 

where b2 is a vector with (b2)j∈{0,−} and at least one −-sign. 
(4) If both B1 and B2 are basic matrices, then the following matrix is basic. 

1

1 2

2

0

0

B
b b

B

 
 
 
 
 

. 

where b1 is a vector with (b1)j∈{0,+} and at least one +-sign, and b2 is a vector with (b2)j∈{0,−} and at least one 
−-sign. 

The basic matrix is a complete representation of formulas in MU(1), which means that F∈MU(1) if and only if 
the representation matrix of F is a basic matrix up to a permutation of rows and columns[6]. 

Definition 5 (Representation graph of a formula in MU(1)). 
Let F be a formula with n variables in MU(1) and M=(mij)n×(n+1) is the representation matrix of F. The directed 

label graph G=(V,E,λ) is termed the representation graph of F, where V=(1,2,…,n,n+1), E={(i,j)|mki=+ and mkj=− 
for some 1≤k≤n,1≤i,j≤(n+1)} and λ(i,j)=k if mki=+ and mkj=−. 

Example 1. The formula F=[(x1∨x2),¬x1,(¬x2∨x3),(x4∨x5),(¬x3∨¬x4∨x5),¬x5] is in MU(1). The representation 
matrix M and the representation graph G of F are respectively. 
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 + −
 

+ − 
 + + − 

      

1 2

② ③ 

3

4④ ⑤ 
5 5

⑥  

3   Renaming Problems for Formulas in MAX(1) 

We know that the isomorphism problem for trees is decidable in linear time[13]. We will show that formulas in 
MAX(1) and MARG(1) can be associated to trees in this section and next section. 

In this section, we investigate the complexities of variable renaming problem and literal renaming problem for 
formulas in MAX(1). We prove that the variable and the literal renaming problems for formulas in MAX(1) are 
solvable in quadratic time, and the literal renaming problem for formulas in MAX(1) is solvable in linear time.  

Lemma 1. Let F be a formula with n variables in MAX(1), then there is a unique variable x such that pos(x,F)+ 
neg(x,F)=n+1. 

Proof:  Induction on n. It is clear for n=1. For n>1, let M be the basic matrix of F. Then, M is one of the 
following basic matrices: 

1

1

0B
b

 
 − 

, 2

20
b
B

+

 


  and  

1

1 2

2

0

0

B
b b

B

 

 
 

 
  . 

where b1 is a vector with (b1)j=+, and b2 is a vector with (b2)j=−. From the structure of the above matrices, we see 
that only variable x corresponding to the row containing b1 (or b2) satisfies the condition: pos(x,F)+neg(x,F) is equal 
to the number of columns in the matrix. By the induction hypothesis, we get a unique variable x for which 
pos(x,F)+neg(x,F)=n+1. □ 

We call the variable x in Lemma 1 the axis variable of F. Note that the axis variable x is the unique variable 
occurring in every clause of F. 

Let x be the axis variable of F. Then F is of the forms [(x∨f1),…,(x∨fp),(¬x∨g1),…,(¬x∨gq)], where 
p+q=#var(F)+1 and F|x=[f1,…,fp] and F|¬x=[g1,…,gq], where F|x=F(x=0) and F|¬x=F(x=1). Clearly, if p,q>1, then 
(F|x,F|¬x) is the unique splitting pair ofFonx, both F|x and F|¬x are maximal, and var(F|x)∩var(F|¬x)=∅. If p=1 and 
q>1, then F|¬x is maximal. If p>1 and q=1, then F|x is maximal. 

Based on Lemma 1, a formula F in MAX(1) can be associated only to a binary tree TF. 
Example 2. The formula F=[(x1∨x2∨x4),(¬x1∨x2∨x4),(¬x2∨x3∨x4),(¬x2∨¬x3∨x4),(¬x4∨x5),(¬x4∨¬x5∨x6), 

(¬x4∨¬x5∨¬x6)] is in MAX(1). The representation matrix MF and the binary tree TF associated to F are respectively. 
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es)

In the binary tree TF, labels at internal nodes correspond to variables in F, and the order of axis variables 
during the recursive splitting of the formula corresponds to the order searching internal nodes of TF in middle root 
search. A leave of TF corresponds to a clause of F, and the path from the root to the leave is associated to this 
clause. The edge from internal node to its left child is associated to a positive occurrence of the variable 
corresponding to the internal node, and the edge from internal node to its right child is associated to a negative 
occurrence of the variable corresponding to the internal node. For example, let 3r be the right child of node 3, then 
the path from the root to 3r corresponds to the clause: (x4∨¬x2∨¬x3). 

Theorem 2. The problem Var-MAX(1) is solvable in quadratic time. 
Proof:  Let F and H be two formulas in MAX(1). If #var(F)≠#var(H), then F cannot be renamed into H. If F 

can be renamed into H, then the axial variable xf of F must be mapped to the axial variable xh of H, and pos(xf,F)= 
pos(xh,H). Finally, we split F and H on axial variables respectively and apply the induction to the splitted formulas. 

We now consider the following algorithm. 
Algorithm 1. (var_renaming for MAX(1)) 
Input: Formula F and H in MAX(1). 
Output: Yes or No. 
procedure Var_ren(F,H); 
begin 

nf:=#var(F); nh:=#var(H);   
if nf≠nh then return No; 
if (nf==1) then return Yes; 
xf:= the axial variable of F; 
xh:= the axial variable of H; 
posf:=pos(xf,F); negf:=neg(xf,F); 
posh:=pos(xh,H); negh:=neg(xh,H); 
if posf≠posh then return No; 
if posf=1 then call ; ( )

f hx xVar_ren F H¬ ¬| , |

if negf=1 then call ; ( )
f hx xVar_ren F H| , |

if  ( ( ) Yes) ( ( ) Y
f h f hx x x xVar_ren F H & Var_ren F H¬ ¬| , | = | , | =

then return Yes; 
return No; 

end; 
Let F and H be formulas with n variables in MAX(1), and let x and y be the axial variables of F and H, 

respectively. It is easy to prove that: There exists a var_renaming ϕ with ϕ(F)=H if and only if ϕ(x)=y, pos(x,F)= 
pos(y,H) and there are two variable renamings, ϕ+ and ϕ−, with ϕ+(F|x)=H|y and ϕ−(F|¬x)=H|¬y. Therefore, there 
exists a variable renaming ϕ with ϕ(F1)=F2 if and only if Algorithm 1 returns Yes. Please note that we can compute 
the axial variable x of F and the pair (F|x,F|¬x) in O(n) time. The number of recursive calls is O(n). Thus, the 
complexity of Algorithm 1 is O(n2), where n=#var(F). Therefore, the problem MAX(1)-VR is solvable in quadratic 
time. □ 

Note in variable renaming that we must consider the difference of positive and negative literals, which 
corresponds to the difference of the left and right children of internal node. This is why we do not apply directly the 
method of tree isomorphism. 

Theorem 3. The problem Lit-MAX(1) is solvable in linear time. 
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Proof:  Based on Lemma 1, we can associate a MAX(1) formula F with n variables to a binary tree TF with n 

internal nodes and n+1 leaves, and each internal node has exactly two children. Note in literal renaming that the 
sign of literals can be ignored. Let F and H be formulas with var(F)=var(H) in MAX(1). We associate F and H to 
binary trees TF and TH, respectively. Thus, there exists a literal renaming φ from H to F if and only if TH is 
isomorphic to TF. We know that the isomorphism problem for binary trees is solvable in linear time. Therefore, the 
problem Lit-MAX(1) is solvable in linear time. □ 

Corollary 1. The homomorphism problem for formulas in MAX(1) is solvable linear time. 
Proof:  Let F be a formula in MAX(1). By the induction on n=#var(F) and the basic matrix, it can easily be 

proved that: For any different clauses f and g, there exists exactly one pair of complementary literals, L and ¬L, 
such that L∈f and ¬L∈g. Thus, any homomorphism for a formula in MAX(1) must be a literal renaming. □ 

4   Renaming Problems for Formulas in MARG(1) 

In this section, we investigate the complexities of variable renaming problem and literal renaming problem for 
formulas in MARG(1). We prove that the variable renaming problem for formulas in MARG(1) is solvable in 
quadratic time, and the literal renaming problem for formulas in MARG(1) is solvable in linear time. 

Based on the characterization of basic matrix of formulas in MARG(1), it is easy to prove the following lemma.  
Lemma 2. Let F be a formula in MARG(1). Then, for every variable x∈#var(F) we have occ(x,F)=(1,1). 
By Lemma 2, we can associate a formula F to a directed graph GF with labels, which is the representation 

graph of F. Based on the basic matrix of F and the induction, we can show that GF has no cycle and the resulting 
undirected graph by deleting the directions of edges in GF is a tree. 

Example 3. The formula F=[(x1∨x3∨x5),x2,(¬x1∨¬x2),x4,(¬x3∨¬x4),¬x6] is in MARG(1). The representation 
matrix M and the representation graph G of F are respectively 

1 2 3 4 5 6
1
2
3
4
5

+ − 
 + − 
 + −
 

+ − 
 + − 

   13

5⑥ ② ① 

③ ⑤ ④ 4
2 

Theorem 4. The problem Lit-MARG(1) is decidable in linear time. 
Proof:  Let F=[C1,…,Cn+1] be a formula with variables x1,…,xn in MARG(1). By Lemma 2, every variable in F 

occurs exactly once positively and once negatively. Then, the representation graph GF of F contains exactly n edges, 
and the different edge has different labels. Based on the basic matrix of F and the induction, we can show that GF 
has no cycle and the resulting undirected graph by deleting the directions of edges in GF is a tree. So, we can 
introduce a new node at each edge to replace the label on the edge. Formally, we define an undirected graph TF=(VF, 
EF), where VF={x1,…,xn,c1,…,cn+1} and EF={(ci,xk),(xk,cj)|xk∈Ci,¬xk∈Cj,1≤k≤n,1≤i,j≤n+1}. 

Thus, TF is a tree, and we have the fact: deg(xk)=2 for every 1≤k≤n. It shows that every vertex xk is an internal 
node of TF. 

Let H and F be formulas with var(H)=var(F) in MARG(1), and let TH and TF be the associated trees, 
respectively. By the structures of TH and TF, we have that there exists a lit_renaming ϕ with ϕ(H)=F if and only if 
TH is isomorphic to TF. Note that both TH and TF contain 2n+1 nodes. Therefore, the problem Lit-MARG(1) is 
decidable in O(n) time, since the tree isomorphism problem is solvable in linear time. □ 

Theorem 5. The problem Var-MARG(1) is decidable in quadratic time. 
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Proof:  Let F=[C1,…,Cn+1] be a formula with variables x1,…xn in MARG(1). Similar to the proof for the 

problem Lit-MARG(1), we now associate F to an undirected graph T=(V,E) in O(n2) time as follows: 

(1) We define V var var var cl var var clV V V V V V V+ − ∗ ∗
+ −= ∪ ∪ ∪ ∪ ∪ ∪

},...,1
−−
nx },...,,...,,...,{ 212

1
1
1

* ++
+ =

n
nn

n
var yyyyV

∗

3

, where Vvar={x1,…,xn}, Vcl={c1,…,cn+1},  

, , , , and V  

, we have |V|=2n

=+
varV

,,{ 2
1

1
1 cc},...,{ 1

++
nxx

},..., 2
1

1
1 ++ nn cc

{− =var xV },...,,...,,...,{ 111
1

1
1

* ++
− =

n
nn

n
var zzzzV *

cl =
2+9n+3. 

(2) We define , where 0 1 1 2E E E E E E+ −= ∪ ∪ ∪ ∪ 0 {( ) ( ) |i k k j k i k jE c x x c x C x C+ −= , , , ∈ ,¬ ∈ , 1≤k≤n, 1≤i,j≤n+1}, 

}1 {( ) |1 1 2}i
k kE x y k n i n+ += , ≤ ≤ , ≤ ≤ + , 1 {( ) |1 1 1}i

k kE x z k n i n− −= , ≤ ≤ , ≤ ≤ + , 1 2
2 {( ) ( ) |1 1}k k k kE c c c c k n= , , , ≤ ≤ +  and 

. 3 {( ) ( ) |1 }k k k kE x x x x k n+ −= , , , ≤ ≤

Based on the proof of Theorem 4 and the construction of T, T is a tree and we have 

(a) deg( )=n+4 for every 1≤k≤n; +
kx

(b) deg( )=n+3 for every 1≤k≤n; −
kx

(c) deg(xk)=2 for every 1≤k≤n; 
(d) 3≤deg(ck)≤n+2 for every 1≤k≤n+1; 

(e) deg(v)=1 for every var var clv V V V∗ ∗ ∗
+ −∈ ∪ ∪ . 

Our idea is to identify positive literals and negative literals, and to distinguish nodes corresponding to the 
variables and nodes corresponding to clauses by different degrees of vertices. 

Let H=[C1,…,Cn+1] and F=[ C1′ ,…, 1+′nC ] be formulas over variables x1,…xn in MARG(1), and let TH and TF the 

associated trees. By the structures of TH and TF, we will show that there exists a variable renaming ϕ with ϕ(H)=F if 
and only if TH is isomorphic to TF. 

(⇒) Suppose that there exists a variable renaming ϕ with ϕ(H)=F. We have a permutation πv over {1,…,n} and 
a permutation πc over {1,…,n+1} such that ( )( )

vkx xπ kϕ =  for 1≤k≤n and ( )( )
c iiC C πϕ = ′  for 1≤i≤n+1. 

By the construction of TH, we have that for any variable xk, xk∈Ci and ¬xk∈Cj if, and only if  ( ) (i k k jc x x c+ −, , , ),

)( ) (k k k kx x x x+, , , −  are edges in TH. 

Now we define an isomorphism φ with φ(TH)=TF as follows: 
(1) ( )( )

vk kx xπφ = , ,  (1≤k≤n); ( )( )
vk kx x+ += πφ ( )( )

vkx xπφ − −= k

(2) )()( ii c
cc πφ ′=  1≤i≤n+1; 

(3)  for (1≤k≤n) and (1≤p≤n+2); ( )( )
v

p p
ky yπφ = k

k

i

(4)  for (1≤k≤n) and (1≤p≤n+1); ( )( )
v

p p
kz zπφ =

(5)  1≤i≤n+1 and p=1,2. ( )( )
c

p p
ic cπφ =

(⇐) Let φ be an isomorphism with φ(TH)=TF. By the difference of degrees of nodes, we have that φ(Vvar)=Vvar, 
( )var varV Vφ + += , , and φ(V( )var varV Vφ − = −

cl)=Vcl. The restriction 
varVφ |  is the desired variable renaming, since xk∈Ci and 

¬xk∈Cj if, and only if there is a unique path, , from ci k kc x x x c+ −
j i to cj through xk. Please note that TH contains 3n2+ 

9n+3 nodes. Thus, the problem Var-MARG(1) is decidable in O(n2) time, since the isomorphism problem for trees is 
solvable in linear time. □ 

5   Conclusions 

The variable (or literal) renaming of formulas is helpful for improving proof system and DPLL algorithm. 
From Refs.[3,10], we know that the variable renaming and literal renaming problems for formulas in MU(1) are 
related closely to the graph isomorphism problem. So, it is significant for investigating solvable variable and literal 

  



 1526 Journal of Software 软件学报 Vol.17, No.7, July 2006   

 
renaming problems in polynomial time. In this paper, we investigate variable and literal renaming problems for two 
subclasses, MAX(1) and MARG(1), of minimal unsatisfiable formulas. We have proved that the literal renaming 
problems for formulas in MAX(1) and MARG(1) are solvable in linear time, and the variable renaming problem for 
formulas in MAX(1) and MARG(1) are solvable in quadratic time. 

For k≥2, it is still open whether the variable and literal renaming problems for formulas in MAX(k) and 
MARG(k) are solvable in polynomial time. 
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