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Abstract: It is shown in this paper by a constructive method that for any Lebesgue integrable functions defined on
a compact set in a multidimensional Euclidian space, the function and its derivatives can be simultaneously
approximated by a neural network with one hidden layer. This approach naturally yields the design of the hidden
layer and the convergence rate. The obtained results describe the relationship between the rate of convergence of
networks and the numbers of units of the hidden layer, and generalize some known density results in uniform
measure.
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1 Introduction

Various problems concerning the applications of neural networks in many different disciplines can be
converted into the problems of approximation multivariate functions by superposition of neural activation function
of the networks. Typically, a neural network with one hidden layer is expressed mathematically as

N(x):icjgo(<wj-x>+0j), xeR', s>1 (1.1)
j=1
where #,€R is the thresholds, (w;x) inner product of x and w;, w;eR’ connection weights, c;eR coefficients, and ¢ is
the neural activation function of the network. Approximating multivariate functions by networks in Eq.(1.1) has
been widely studied in recent years with various results, concerning density or complexity, established for different
situations, for instance, by Cybenko[”, Hornik!?, Anastassiou™, Leshno et al.'*!, Chui et al.’!, Chen!®”, Li®®, Cao
and Xu!®! and many others.

Simultaneous approximation of multivariate continuous functions and their partial derivatives on compact
sets was also studied in Refs.[8,10,11]. In particular, Lil®! used a constructive method based on the multivariate
Bernstein operator and gave a density result on uniform simultaneous approximation of multivariate functions and
their derivatives by neural network. All the results for simultaneous approximation, however, only concerned about
the density in uniform measure. These results therefore contribute almost nothing to answering such important
question as how many hidden-layer units are needed to approximate specific functions within certain specified error.
On the other hand, it is well known that the Z” norm to measure the quality of approximation has a penetrating
background in engineering, physics, etc.

In this paper, we will address the investigation for simultaneous approximation by neural networks with one
hidden layer in Lebesgue measure. Our main result will describe the relationship between the rate of convergence of
networks and the number of hidden layer nodes when the approximated functions are the Lipshcitz functions, which
is different from the results of Refs.[8,10,11]. Furthermore, our approach is constructive, mainly based on the
elementary Taylor expansion and the multivariate Bernstein-Durrmeyer operator (a modification of the Bernstein

operator), which is much more realizable in computations.
2 Simultaneous Approximation by Univariate Polynomials

To facilitate the following discussion, we assume that r is a fixed integer, and let
H, (x)=a,+ax+..+ax" (2.1)
denote the univariate polynomial of degree r defined on [a,b], where a; € R. In this part, we will study the
simultaneous approximation of H, and its derivatives by networks.
Theorem 2.1. Let S be a compact subset of R®,s>1. Also, let ™" e C(R),me N,p"” bounded on R,
and there exists a @ e R such that ¢ (@)#0 for 1<i<m+1. H,(x) isa univariate polynomial given in (2.1),

and 0<m<r. Then for any ¢>0, we can construct a neural network with one hidden layer, one input and

(r—m+1) units in the hidden layer: N, (x) = ZC,(p(wl.x +6), ¢;,0;€R, n=r—-m+1, such that

i=1
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(m) (m)
o

<g, 1< p<oo.
P

Proof. LetN,(x)= ZCj(p(a)jx +0), ¢;,; € R, then we can choose some appropriate ¢;, and @, i=12,..,n,
j=1

!
such that for N,ﬂ'")(0)+Nf,”’”)(0)x+...+;N£’)(O)X”"’ == a,x"™"+.+ma,=H" (x). In fact, by
(r—m)! (r—m)!

NP (x) = colp® (wx+6) , it is not difficult to obtain that

i=1

BC=4 (2.2)

where

A N A () N A ()1

(m+1) 9 m+l1 (m+1) 0 m+1 .. (m+1) 0 m+1

g=|?  @e " (O OO e ey A=(mla,,(meDla, . ra,) .
" @)oo/ " (Ow; - 9" (O,

Now, let n=r—m+1, then B is a square matrix. We choose w, =i ,0<6<1, i=12,.,n, thus,m, # @, for

i#j . Recalling that ¢®(8)=0 gives |B|:(p(””(H)Q('"”)(H)...@(’)(H)a)l'”a);"..a)'” [[(@;-@;)#0 , which

n
1< j<i<sr—-m+l1

implies that the Eq.(2.2) has a unique solution:

C=B"4. (2.3)
For n=r-m+l,0; =jo,j=12,..,n,we have
¢(m)(g)é'm 0 1 2m nm
0 ¢(M+l)(0)§nx+l . 0 1 2m+l . nm+l
B=
0 0 @St 2n
Set
12" g _r . 0
| o el o™ ()5
D= con , E= )
. . 0 e T
1 2 eoon 0" (0)0

then B'=D"'E,and D™ isaknown nonsingular square matrix dependent only onn, m and r.Let M, be the

maximum of absolute value of the elements in D', and M, =max{(\(p(”(9) |)_l,i=m,m+1,...,r}. So, for given

6,r and m,then M, and M, are the positive constants. By (2.3), we have

|cj|SM2M3Zy:i!|a,|§_i, j=12,..,n. (2.4)

i=m

Using Taylor expansion gives N;"”(x)=N;'”)(0)+N§m+])(0)x+...+ﬁN;r)(O)x"""+R,,(x), where
r—m)!
1 ( Mr—m+l n
R (x)=—— N""(&)x™" £ela,b|. Let |p"*P(x)|<M,,then R (x) £———
= O gelap]. Let [p (0]<M, LOE )

le]-)‘+lé-r+lM0 <MS ,

r—m+l

r r—m+1
here we used (2.4) and the constant M:%M2M3MO[Zi!|ai|j[ Zj’“J. Finally, let &<
- : =

&
M+1~

i=m

then

R, (x)| < ¢ . The proof of Theorem 2.1 is complete.

3 Bernstein-Durrmeyer Operator Defined on Simplex

For description, we introduce some notations used in the sequel. Let S be a compact subset in R*,s>1.

© e

AT https/ www. jos. org. cn



1872 Journal of Software #RAFFIR  2003,14(11)

Denote by Z° the set of all non-negative multi-integers in RS. For x=(x,X,,..,x,)€R",

and m=(m;,m,,..m)eZ;, let |x| _ l,| | z m; ,x" =x"xy%..x!", and m!=m!m,!..m!. We say that
x<y, where x,yeR", if x, <y, 1<i<s. By L’(s),l< p<+wo, we denote the space of Lebesgue measurable
function on § for which the norm ||f||i =js|f(u)|pdu is finite. L”(S)=C(S) denotes the space of continuous

functions on S equipped with the maximum norm. For a smooth function f on R’ , let

D‘m‘f(x), |m| = Z}:mi, be the |m| -th order partial derivative of f . For the compact set S of R*, by §,(S), we

mean that there is an open Q (depending on f ) such that Se€Q, and D‘m‘fe L7 (Q),1< p<+o . For
fel’(§)1<p<+wo, the modulus of smoothness of f is defined by a(f,5),= sup||f(~+h)—f(-)||p. If
0<h<s

o(f,0),=0(5%), 0<a<l,then wesaythat f isthe Lipschitz functions and write f € Lip(a).

To study the simultaneous approximation of multivariate functions and their derivatives by neural networks
in Lebesgue measure, we will use a simultaneous approximation result for the Bernstein-Durrmeyer operator as an

intermediate step. Let 7 be the simplex in RS , the Bernstein-Durrmeyer operator is defined by

D)= 2 a0 (), where P (=2 |k|)' o (=R b @i, The
k|<n

polynomial operator, which was first introduced and studied by Derriennic

x - |x

21 in 1985, is an integral modification of

the well-known Bernstein operator. It is also a positive linear bounded operator form L”(T) to itself. Here we give
a result on simultaneous approximation of the operator in Lebesgue measure, which will be key in the proof of our
main result, and its proof is omitted.

Theorem 3.1. Suppose f €S, (T),1< p<oo,and D" f e Lip(@)0<a<l, meZ: |m/<n, then

“D‘m‘an—D"”‘f <cn?,
P

where and in the following C denotes a positive constant independent of n and f.

4 Main Result and Its Proof

In this section, we give and prove the main result of this paper. First, we give some notations that can be found
in Section 4 of Ref.[8]. Note that there are N, =C,; | | multi-integers i in Z° that satisfy 7, +i, +..+i, =p,

ps—
and there are [/, =C,; 2, multi-integers j' in Z'"' that satisfy ji+jj+..+ )., =p. Clearly N,=N,,+1,.

p+s—2

Denote by jN > ISI<I, the multi-integers j’ in Z:" that satisfy j{+ j, +..+ j'_, = p.Hence, {j/:1<I< N,}
is a set of multi-integers j/ in Z'™' that satisfy j| +j, +..+j., <p. Foreach p,let i{" = (p—|j,'|,j,’),1$lSNp .

Hence, each i’ is a multi-integer in Z® with |i,”’)| =p,1<I<N, . Define p,=(,j;), 1<1, then for each fixed

integer p >0, by setting p'” = P, 1SI<N,, we have |p}")|<1/2 for 1</<N,.

2(1+ p)

(n+s)!
n'

Secondly, we use the expression @, ,(f)= LRz,k(”)f(”)d” in the operator D,f to replace the

expression f (kj in the Bernstein operator B, f(x) = Z i (O f ( J then from Proposition 4.1 in Ref.[8] or
n

M<n

n Np
Theorem 3.1 and Proposition 3.1 in [5],it follows that D, f(x)= ZZd;”)<x~p;”)>p , where d(” are uniquely

p=01=1
determined by
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(j')ji (]’ )jﬁ (]' )f{ a® i(]))!c(m(f)
l: 2: : N? ]: _@d+n)” ] ]: (4.1)
. . iN . ' iN . . . N . p' . , '
GO G G Ly Bei) (f)
i(P)_
with ¢”(f)=—"— T q(f)M 1<I<N
1 - no . ’ == .

(n_p)!qﬁiip)) q!(lz(p) —q)! p

Our main result can now be stated as follows.

Theorem 4.1. Let S be a compact subset of R*,s>1. Also, letp € € C(R), ¢

ety C(R), " bounded on
R, and there exists a &R such that ¢(8)=0 for 1Si$|m|+1,mer. Then for any feS,(S) and

D‘m‘f € Lip(a),0<a <1, there is a neural network N(x) with one hidden layer, (n+1)(n —|m|+1) units in the
hidden layer and activation function ¢ , such that “D‘W‘N—D‘"Z‘f“ <Cn 2, |m| <n.
P
Now we prove Theorem 4.1. By the discussion in Section 2 of Ref.[8], it is sufficient to prove Theorem 4.1 in

n Np
the case S=T . LetL:ZZ|d}”)|. According to Theorem 2.1, for H, (x)=a,+ax+..+a,x" , there

p=01=1
r—m+1
is N(x)= Y. cp(wx+6),¢;,m, R, such that for j, 0<j<r , and V&>0 , ||N<’"> ~H™| <e Set
i=1 V4
n Np n—|m|+1
N(x)= ZZd;”) Z a,pb,, <x-p1(")>+9) , then this is a neural network with one hidden layer, and its number of
i=1

p=01I=1

units in hidden layer is (n+1)(n—|m|+l). Set x-pi™ =u, then <x~p1(’”>p can be written as a polynomial of n

<1/2, and setting e=n"""?0<a<l, it follows from

degree. By noting that ‘<x~p}"’> <1 for xeT, |p}")

Theorem 3.1 and Eq.(4.1) that “D‘M‘N—D‘m‘f

< “D‘m‘N—D‘m‘an
P

+”D"”‘Dn -p"y
P

<Cn™*'?*. This completes
P

the proof of Theorem 4.1.
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