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Abstract: It is shown in this paper by a constructive method that for any Lebesgue integrable functions defined on 
a compact set in a multidimensional Euclidian space, the function and its derivatives can be simultaneously 
approximated by a neural network with one hidden layer. This approach naturally yields the design of the hidden 
layer and the convergence rate. The obtained results describe the relationship between the rate of convergence of 
networks and the numbers of units of the hidden layer, and generalize some known density results in uniform 
measure. 
Key words: neural network; simultaneous approximation; hidden layer design; rate of convergence; Lebesgue 

measure 

摘  要: 用构造性的方法证明对任何定义在多维欧氏空间紧集上的勒贝格可积函数以及它的导数

可以用一个单隐层的神经网络同时逼近.这个方法自然地得到了网络的隐层设计和收敛速度的估

计,所得到的结果描述了网络收敛速度与隐层神经元个数之间的关系,同时也推广了已有的关于一

                                                             

∗ Supported by the National Natural Science Foundation of China under Grant No.69975016 (国家自然科学基金); the Foundation 

of Key Item of Science and Technology of the Ministry of Education of China under Grant No.03142 (国家教育部科学技术重点项目基

金); the Foundation of Higher School of Ningxia Province of China under Grant No.JY2002107 (宁夏高校科研基金) 
CAO Fei-Long was born in 1965. He is a professor. He received his Ph.D. degree from Xi’an Jiaotong University in 2003. His 

current research interests include neural network theory and approximation theory of function. LI You-Mei was born in 1965. She is a 
Ph.D. candidate in Institute for Information and System Sciences, Faculty of Science, Xi’an Jiaotong University. Her main research 
interest is neural network theory. XU Zong-Ben was born in 1955. He is a professor and doctoral supervisor at the Xi’an Jiaotong 
University. His research areas are artificial intelligence and its application. 

 



 1870 Journal of Software  软件学报  2003,14(11)    

致度量下的稠密性结果. 
关键词: 神经网络;同时逼近;隐层设计;收敛速度;勒贝格尺度 
中图法分类号: TP18  文献标识码: A  

1   Introduction 

Various problems concerning the applications of neural networks in many different disciplines can be 
converted into the problems of approximation multivariate functions by superposition of neural activation function 
of the networks. Typically, a neural network with one hidden layer is expressed mathematically as 

  ,  (1.1) ,)()(
1
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m
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jjj xwcxN θϕ sRx∈ 1≥s

where θj∈R is the thresholds, 〈wj·x〉 inner product of x and wj, wj∈Rs connection weights, cj∈R coefficients, and ϕ is 
the neural activation function of the network. Approximating multivariate functions by networks in Eq.(1.1) has 
been widely studied in recent years with various results, concerning density or complexity, established for different 
situations, for instance, by Cybenko[1], Hornik[2], Anastassiou[3], Leshno et al.[4], Chui et al.[5], Chen[6,7], Li[8], Cao 
and Xu[9] and many others. 

Simultaneous approximation of multivariate continuous functions and their partial derivatives on compact 
sets was also studied in Refs.[8,10,11]. In particular, Li[8] used a constructive method based on the multivariate 
Bernstein operator and gave a density result on uniform simultaneous approximation of multivariate functions and 
their derivatives by neural network. All the results for simultaneous approximation, however, only concerned about 
the density in uniform measure. These results therefore contribute almost nothing to answering such important 
question as how many hidden-layer units are needed to approximate specific functions within certain specified error. 
On the other hand, it is well known that the Lp norm to measure the quality of approximation has a penetrating 
background in engineering, physics, etc.  

In this paper, we will address the investigation for simultaneous approximation by neural networks with one 
hidden layer in Lebesgue measure. Our main result will describe the relationship between the rate of convergence of 
networks and the number of hidden layer nodes when the approximated functions are the Lipshcitz functions, which 
is different from the results of Refs.[8,10,11]. Furthermore, our approach is constructive, mainly based on the 
elementary Taylor expansion and the multivariate Bernstein-Durrmeyer operator (a modification of the Bernstein 
operator), which is much more realizable in computations. 

2   Simultaneous Approximation by Univariate Polynomials 

To facilitate the following discussion, we assume that r is a fixed integer, and let 

  (2.1) r
rr xaxaaxH +++= ...)( 10

denote the univariate polynomial of degree r  defined on [ ]ba, , where Rai ∈ . In this part, we will study the 
simultaneous approximation of  and its derivatives by networks. rH

Theorem 2.1. Let  be a compact subset of . Also, let  bounded on S 1, ≥sRs ∈+ )1(mϕ )(,),( iNmRC ϕ∈ R , 

and there exists a R∈θ  such that  for 10)()( ≠θϕ i 1+≤≤ mi .  is a univariate polynomial given in (2.1), 
and . Then for any 
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then EDB 11 −− = , and  is a known nonsingular square matrix dependent only on n, m and 1−D r . Let  be the 
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2M

1−D { }mmiM i 1,,|))((|max 1)(
3 +== −θϕ r,..., . So, for given 

r,θ  and , then  and  are the positive constants. By (2.3), we have m 2M 3M

 .,...,2,1,!32 njaiMMc i
r

mi
ij =≤ −

=
∑ δ  (2.4) 

Using Taylor expansion gives ),()0(
)!(

1...)0()0()( )()1()()( xRxN
mr

xNNxN r
mrr

n
m

n
m

n
m

n +
−

+++= −+ where 

[ baxN
mr

xR mrr
nr ,,)(

)!1(
1)( 1)1( ∈
+−

= +−+ ξξ ] . Let 0
)1( )( Mxr ≤+ϕ , then )(xRr 0

11

1

1
1

)!1(
Mjc

mr
M rr

n

j
j

mr
++

=

+−

∑+−
≤ δ δM≤ ,  

here we used (2.4) and the constant 

















+−

= ∑∑
+−

=

+

=

+− 1

1

1
032

1
1 !

)!1(

mr

j

r
r

mi
i

mr

jaiMMM
mr

MM . Finally, let 
1+

<
M
εδ , 

then ε<)(xRr . The proof of Theorem 2.1 is complete. 

3   Bernstein-Durrmeyer Operator Defined on Simplex  

For description, we introduce some notations used in the sequel. Let  be a compact subset in . S 1, ≥sRs
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To study the simultaneous approximation of multivariate functions and their derivatives by neural networks 
in Lebesgue measure, we will use a simultaneous approximation result for the Bernstein-Durrmeyer operator as an 
intermediate step. Let T  be the simplex in , the Bernstein-Durrmeyer operator is defined by 

where
k

The 

polynomial operator, which was first introduced and studied by Derriennic[12] in 1985, is an integral modification of 
the well-known Bernstein operator. It is also a positive linear bounded operator form  to itself. Here we give 
a result on simultaneous approximation of the operator in Lebesgue measure, which will be key in the proof of our 
main result, and its proof is omitted. 

Theorem 3.1. Suppose ≤≤ pT 1),( , and D m  then  

−DDD , 

where and in the following C denotes a positive constant independent of n and f. 

4   Main Result and Its Proof 

In this section, we give and prove the main result of this paper. First, we give some notations that can be found 
in Section 4 of Ref.[8]. Note that there are  multi-integers i  in  that satisfy , 
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Our main result can now be stated as follows. 
Theorem 4.1. Let  be a compact subset of . Also, letS 1, ≥sRs ϕ ∈∈C(R), ∈+ )1( mϕ  )(),( iRC ϕ  bounded on 
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逻辑、组合逻辑等）；数据理论（演绎数据库、关系数据库、面向对象数据库等）；计算机数学（符号计算、

数学定理证明、计算几何等）；并行算法（分布式并行算法、大规模并行算法、演化算法等）。 
4．征文截止日期：2004 年 5 月 1 日 
5．论文投寄地址：（430033）武汉 海军工程大学信息与电气学院 张志祥 收 

联系电话：027-83443985,83443984（张志祥，贲可荣） 
电子信箱：tcs2004@vip.sina.com; hgzzx@163.com 
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