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Abstract: An efficient physically based surface sculpting method is presented in this paper for the interactive
deformation of n-sided surfaces. By minimizing an energy functional, the user is able to deform a surface by
applying different forms of forces directly, acting as virtual sculpting tools. The user is also able to define necessary
geometric constraints, so as to further control the surface shape. Compared with the traditional method that a
surface is deformed by moving the control points, this method is much more intuitive and still is very efficient.
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1 Introduction

Interactive sculpting of surfaces is an important subject of computer graphics and geometric modeling!”. Due
to the wide applications of parametric surfaces, such as Bézier and B-spline surfaces, shape control is
conventionally performed through the use of the control points. However, deforming or sculpting a complex object is
often not trivia, if the control points are used alone. Indeed it can be extremely tedious and time-consuming, if not
impossible. Many researchers have devoted a great amount of effort to make such a task more intuitive. The
free-form deformations (FFDs), developed by Sederberg and Parry!? was one of the earliest attempts along this line.
It still isthe most widely used deformation tool implemented by many geometric modeling and animation packages.
This method was later improved by Hsu et /. to allow a direct manipulation of the geometry. Using this method,
the user is able to pick up a point on a surface and move it to a new location directly. The manipulation of the control
|attice is calculated automatically. Other approaches, such as those proposed by Fowler & Bartels', share the same idea
that the user can deform the geometry directly rather than through the use of the control points. These direct
manipulation methods, despite being useful in many applications, are purely geometric, i.e. no physical properties and
their effects on the surfaces or objects are considered.

Physically based surface sculpting techniques are different in that the physical properties are closely linked to
the outcome. Usually an energy functional is formulated on the assumption that a surface or an object reaches the
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rest shape when its overall energy becomes minimum. Based on this understanding, a surface patch can be sculpted
by applying synthetic forces directly on it, as if they were from some kind of sculpting tools. Below this intuitive
user-interaction layer, the new positions of the control points of the surface patch are automatically computed.
Several methods were proposed by a number of researchers including Chui & Lai'®, Essa e al.!¥, and Fowler &
Bartels. Understandably, the introduction of physics laws makes the surface sculpting process more flexible and
more intuitive.

Although there have been a number of physically based surface sculpting approaches reported in the literature,
they are all concerned with surfaces composed of regular 3 or 4-sided patches, such as B-spline or NURBS
surfaces ™. Physically based modeling of irregular n-sided surfaces is still a gap, in spite of their indispensable
position in geometric modeling, computer aided design and computer animation!*2™17,

In this paper, we are proposing such a method, so that physical properties can be assigned to any irregular
n-sided surface patches. With our method, the user will be able to deform an irregular patch using different forms of
synthetic forces. The update of the control points of the patch will be calculated automatically by minimizing the
overall surface energy. This method will also automatically satisfy the geometric constraints, which include the
points and curves the surface patch has to pass through.

Both these constraints and the forces can be used as user-interface handles for surface sculpting. Compared
with the conventional approach of directly moving the control points, the method presented here produces more
natural deformations and are more intuitive to operate. It can move a number of control points simultaneously to
achieve a desirable surface shape.

2 n-Sided Patches and Energy Functional

An n-sided control point surface of degree m can be defined as follows

[ml2]
r(u)= Z ZBA (ur, )
j=0  minA=j

where A =(4,,4,,..,4,) represents the n-ple subscripts. u=(u,,u,,...,u,) represents the n parameters of which
only two are independent. r, stands for a control point in 3D-space R3, as shown in Fig.1. By (u) is the
associated basis function. The total number [ of the control pointsis given by

2B 11, m even
=3 pmsy? @)
%, m Odd

Fig.1 Control points and 3-sided surface m=4

For a detailed description of the n-sided control point surfaces, the reader is referred to Refs.[16,17].
The final deformed shape of a surface is the result of minimizing its potential energy. Based on the energy

© HHEREBAAIGUT http:/ www. jos. org. cn



n 17

model of a tensioned thin plate!®1 the following energy functional for an n-sided surface is suggested in this
work

E=E -E, ©)
E = ”P (”r,, (u)||2 + ||r‘,(u)||2)+ﬁ (I Mo (u)||2 +2 rw(u)"2 + rw(u)||2)Jdudv (4a)
E,=|[ 2r(u)- f(u)dudv (4b)

where u and v are two independent variables. E, represents the energy of the surface itself and its natural resistance
to deformations. It is expressed as a weighted sum of its stretching and bending terms. « and g are
non-negative and otherwise freely chosen coefficients. E, represents the energy resulting from the applied forces. A
force vector f (u) isintroduced here as a sculpting tool for the deformation of the n-sided surface.

The surface expression (1) can be rephrased as

ruy=v’z, (5

where V is the column vector of all control points and Z(u) is a column vector of all the Zheng & Balll*® basis
functions.
Inserting (5) into the integral (4a) results in the following quadratic form
E =VTKV, (6)

where E; is called the fairness norm. K, an /x/ symmetric matrix, is called the stiffness matrix, whose entries

are calculated by evaluating the integral (4a). Thisis given by

K=a K+ K, @)
K.=[[2.2,7+2,2," )dudv )
K,=[[z.25 +22,2],+2,2], )dudh @)

Once the degree, m, of an n-sided surface is given, the entries of the matrices K; and K, are constants
evaluated from (8).
Substituting (5) into (4b), we have

E,=2VTF (9)
whereV isthe vector of the control points. And

F=[[ - f(u)dudv (10)

is a column vector, called the force vector, whose entries are vectors in R® taking the form ”Bl (u) f (u)dudv .
Combining (6) and (9), we have the following compl ete expression of the energy functional
E=VIKV-2V'F (11)

Eq.(11) is a quadratic form with respect to the control point vectors V. Minimising (11) gives the following
equation:
KV =F (12)
The solution to (12) is a set of control point vectorsV used to generate the deformed r-sided surface.
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3 User Interaction Handles——Physical Forces

In the expression of the force vector
F=[[ - f(u)dudv (13)

Z(u) is a column vector of all the Zheng & Ball'®! basis functions. f(u) is the net effect of all the applied
forces, which may be spring forces, repulsion forces, gravitational forces, inflation forces, etc. as discussed in Refs.

[7,10,19,20]. The initial shape of the n-sided surface is defined by the control point vectors Vo=(..., r,?, ..)T and the
force density fg(u) of the distribution forces. Then by (12), we have
KVo=F (14)

where Fy = [ Z- f,(u)dudv .
As a set of forces fp(u) makes the n-sided surface take a particular shape in the space o®, when we change

these forces to a new value fy(u) = fg(u) + Af (u), the control point vectors will move to new locations

V=(...,I,,.)" . Inserting it into (13), we have
F=[[ Z-(fo(u)+AT (u))dudv (15)
Considering (13) and (15) gives

KV = [[ Z-(fo(u)+4T (u))dudv

or KV =Fy+ [[ Z-4f (u)dudv (16)

Af (u) isthe density of the distribution forces to be applied to the initial n-sided surface. Once Af (u) isgiven, a
new set of control points V will arrive by the resolution of the linear system (16).
There are a number of different forms of forces we can use for sculpting a surface patch. In the following
sections, we are discussing both the forms and their applications of the applied forces.
3.1 Discreteforces
For aforce applied on asurface point r(ug), Af(u) can berepressed as
Af (u) = f(u—ug)s(u—ug) 17
where 6 (u—ug,v—vg) isthedeltafunction.
A simple example is to connect a surface point r(ug) to aspace point P with an ideal Hookean spring whose
stiffness is k. Then we have
AF () = k(P 7 (ug) ) (u— ug) (18)
3.2 Continuous forces

For aforce applied on an area of the n-sided surface r(u), Af(u) isexpressed as

_Jf(u) (,v)eD
Af(u)_{ 0 (u,v)eD (19)

where D C R? isan areain the domain of surface r(u) .
In practice, a force as a sculpting tool can be applied on an area surrounding a surface point r(ug) with
radius p . For such areaforces, Af (u) can be expressed by (see Fig.2):

2
Af (u) = (azp +ai10+ ao)no
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4—_ 2p _-V < 2 > < 2 P
=0, a=0 =0, a=0 =0, a=0

Fig.2 Alternative forces applied

4 Geometric Constraints

Using synthetic forces as a sculpting tool can be nicely complimented by linear constraints. Constraints specify
conditions that the surface has to satisfy and therefore provide extra user-interface tools for surface deformation.
Such constraints usually include interpolated points, curves and surface normal constraints”+*9.

The process of constraint satisfaction leads to the determination of some unknowns. In another word, this
process reduces the degrees of freedom (DOF) of the whole system, and hence leaves fewer DOF for further
manipulation. Considering the quadratic system (11), the solution to the constraints imposed on the surface will
result in a smaller unconstrained system, of similar nature. Thus proper treatment of these constraints allows faster
deformation to be produced.

We suppose the number of constraints is less than the number of variables. Linear constraints are generally
expressed as

AV =b (21)
where V is the vector of [ variables (degree of freedom). 4 is a kX[ matrix of coefficients, k is the number of
constraints (k<1). If k>I, there are redundant constraints in (21). Each row of the matrix 4 represents a linear
constraint on V.

By solving system of constraints (21), the variable vector V will be transformed into a new one W where the
number of variables is reduced from / to j. Here j=I-rank(4) < 1.

Suppose g, (i=12,..,/) isaset of basis vectors in the null space of Eq.(21). V, is a particular solution for
Eqg.(21). Then the general solution to (21) can be given by
j E_
V => w0, +V,, for an arbitrary real valuew,

i=1
We denote G=(9,,9,,9;), an I X; matrix formed by all basis vectors g,. W is a vector with j

unconstrained variables W, . Then we have
V=GW +V, (22)

As we have seen, redundant constraints in system (21) are removed in this process.
Inserting Eq.(22) into the system (11), a new energy function with respect to the unconstrained variables W can
be obtained as the following.

E=W'"(G"KG)W +2W'(G"KV,-G"F) +(V, KV, - 2V, F)
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Thisis also a quadratic form with respect to W. Minimising it leads to the following solution
G"KGW = G"F -G"KV,

Inserting Eq.(15) into it, we have

G'KGW =G Fy~G" KV, + G [[Z -4 f (u)dudv (23)
Solving Eq.(23) gives a new set of control points for the resulting deformed surface.
A special case: if no constraints exist, G is an identity matrix and therefore V = W in Eq.(22). System (23) is

identical to system (16).

In practice, the constraints may be:

e Moving a surface point to a new position. Suppose a surface point r(ug) = ZBx(uo)rf is to be moved to a
A
new position r!, where r;? are theinitial control points of the surface. Then, the following constraint must be
added into Eq.(21).

Y By (ug)ry =1t (24)
py

That means arow of the matrix 4 corresponds to Eq.(24).
e Preserving surface points. In the above case, if the new position is identical to the origina point

r(ug) = ZB,v(uo)r,EJ , then the following constraint must be added into Eq.(21).
A

2By (Ug)r =r(Up) (25)
)

e Preserving surface curves. Suppose r(t(s)):Z‘,B;V(t(s))r;fJ is a curve on the initial surface,
A

t(s) = t(u(s),v(s)) . If the surface interpolates the curve, following Ref.[7], the following constraints are added

into Eq.(21): _ _
AV =b (26)
Arowof A is given by
4, =] [2 B, (t(s))rs JB (t(s))ds (279)
The corresponding entry in the vector 5 is
by =] [; B, (t(s))rf]b'n (t(s))ds (270)

For each control point, there is a constraint equation in (26). Typically, as mentioned in Ref.[7], most of these
constraints are redundant. In the procedure of calculating the matrix G, the redundant constraints can be reduced.

5 Calculation of Control Points

In this section, let us discuss the solvabhility of system (23).

In the literature, it was assumed that there were enough degrees of freedom in V to satisfy a constrained
Eq.(21). In fact, this may not be true if too many constraints are introduced into the system. One way to increase the
degrees of freedomin V is by degree elevation, which leaves enough DOF to satisfy the constraintsin Eq.(21).
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The symmetric stiff matrix X is semi-positive definite rather than positive definite. It is possible that the linear
system (23) is not solvable. In this case, aleast square solution to system (23) should be used instead.

The calculation of the stiff matrix is a one-off task. It should not be considered as a sculpting cost. For each
pair of n and m, we need only calculate it once. Therefore once the degree and number of sides of a surface are
known, surface deformation can be achieved very quickly. In addition, by using the symmetry of the n-parameters
as outlined below, the computation is even more efficient:

(1) Setting u, =u, =---=u, , we can get the central point in the parametric domain.

(2) In the domain of definition, subdivide the patch by connecting the central point with the middle point of
each edge. This subdivides an n-sided patch into n 4-sided areas.

(3) In each area, we integrate (8) using Gaussian formulae.

6 Implementation

We have implemented the above-described method on a PC workstation using the OpenGL library to render the
surfaces. Although we haven't calculated the exact sculpting time in the following examples, it won't take a second
to sculpt the models in a PI11800 PC workstation due to the fact that the stiff matrix is already prepared before the
sculpting procedure.

The procedure of surface deformation is shown as in Fig.3. Figure 3 (left) shows an initial 5-sided planar
patch. In Fig.3 (middle) three upward forces and one downward force are applied on four surface points
simultaneously as indicated by the arrows. Two circular points are preserved during the deformation of the surface.
In Fig.3 (right), the forces are applied once more to make the surface deform further.

!

Fig.3 (Left) Initial 5-sided patch. (Middle and right) Deformed 5-sided patch. Arrows
show the forces applied on surface points. Circular points kept fixed during deforming

The physically based method has also been applied to a model shown in Fig.4. Figure 4 (top) shows an initial
model with 3- and 5-sided patches. As shown in Fig.4 (bottom), two forces are applied on two surface points (not
control points) on the 5-sided surface patch. Arrows indicate the applied forces on surface points. While the 5-sided
patch is deformed, its boundary curves and the surface normal along these curves are preserved.

In Fig.5, adiagram is given to illustrate the procedure of the algorithm of surface deformation.
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Surface to be Surface with
deformed constraints
Geometric
constraints
aoolied

-

Physical forces applied

Minimizing
peformed | < 1| " suface

energy
Fig.4 A model with 3- and 5-sided
surface patches (left). Deformed model (right). ) )
Arrows show the forces applied on surface points Fig.5 Procedure of surface deformation

7 Conclusions and Discussion

In this paper, we have presented an efficient method for interactively sculpting irregular n-sided surfaces. By
minimizing an energy functional, the control points of an n-sided surface are automatically computed. The applied
forces and necessary geometric constraints can be used as user interface handles, and it is therefore much more
intuitive and meaningful than direct moving the control points.

Different types of forces are discussed and their expressions are given, which can be used as effective sculpting
tools.

Further research could involve the investigation of an efficient algorithm for the computation of the force
vectors when continuous forces are applied.
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