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Abstract ; The Unified Modeling Language (UMI.) is a general-purpose visual modeling language that is
designed to specify, visualize, construct and document the artifacts of software systems. UMI sequence
diagrams describe a collaboration of interacting objects, where the interactions are exchanges among
communicating entities in real-time and distributed systems. Like any other aspect of the specification and design
process, the specifications in UMI. sequence diagrams are susceptible to errors, and their analysis is necessary.
A tool for timing analysis of UMI. sequence diagrams is described in this paper.
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The Unified Modeling Language (UML) is a general-purpose visual modeling language that is designed to
specify, visualize, construct and document the artifacts of software systems("?). UML provides a number of
diagrams to describe particular aspects of soliware artifacts. Among these diagrams, UML sequence diagrams
describe behavioral aspects of systems. They describe a collaboration of interacting objects. where the interactions
are exchanges among communicating entitics in real-time and distributed systems. Like any other aspect of the
specification and design process, the specifications in UML sequence diagrams are susceptible to errors. and their
analysis is necessary. In this paper, we describe a tool for timing analysis of UML sequence diagrams.

The paper is organised as follows. In next section, we introduce the UML sequence diagrams and the compo-
sitions of UML sequence diagrams. The design and implementation of our analysis tool is presented in Section 2.
In Section 3, we use an example of an automatic teller machine system to illustrate the presented timing analysis.

The last section is the conclusion.
1 UML Sequence Diagrams with Timing Constraints and Their Compositions

A UML. sequence diagram describes an interaction, which is a set of messages exchanged among objects within

a coltaboration to effect a desired operation or result. Its focus is on the temporal order of the message flow. A
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UML sequence diagram has two dimensions; the vertical dimension represents time, and the horizontsl dimension
represents different objects. Each ubject is assigned a column, the messages are shown as hcrizontal, labeled
arrows. Here we consider simple UML sequence diagrams which describe exactly une scenario without any alterna-

tives and loops. For exanmple, a simple UML diagram is depicted in Fig. 1.
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Fig.1 A UML sequence diagram
1.1 UML sequence diagram with timing constraints

UML. sequence diagrams only define the temporal order of the messages communicated in systems, They lack
the precise timing constrainis when messages are sent and received. Tu previous work™ %), timing analysis of UML
sequence diagrams and of message sequence charts has been restricted to timing constraints that just consist of time
intervals on the occurrence time of events. Here we consider more general and expressive timing constraints.

By events we mean message sending, message receiving, creating an object, or deleting an object. Each event
is given a name which represents its occurrence time, So, timing constraints can be deseribed by boolean expres-
sions on event names. Here we let any timing constraint be of the form

auopleg—e s o le —e Y., Fode,—e )by
where ey.e'0ve11€’ 1. .. e, .2’ are event names, a.& and cysfyv. .. 1Co are real numbers (b may be o). For analyzing
UML sequence disgainey we formalize UML seqgience diagrams as follows,

Definition 1. A UML sequence diagram is a tuple D= (0,E,V,C) where

(s a finite st of ohjecta:

E is & finite set of events corresponding 10 sending a message, receiving a message, creating an object, and
deleting an object;

V is a finite set whose elements are of the form {e,¢') where ¢ and ¢’ are in K and ¢’ 7¢. which represents a
visual order displayed in s

C is a set of boolean exprassions » which represents the timing constraints enforced on D.

For example, the UML diagram depicted in Fig. 1 can be represented by the tuple OB,V ,C) whete

O={obj, .0bjy0bj:} .

k= {P—l RTINS PR IRV IS

V={C(e1se2)5 (e, 03}, Ceq.24), (egres Vs (erva; }olesrer)  (2r0e5)} > and

C={2e,—e, 55, 2(ey—e3) — ey —es 1 20},
We use event secuences to represent the untimed hehaviour of UML sequence diagrams. Any event sequenec is of
the form ey ™ ¢, 7 ... 7 e, which represents that ¢, takes place alter ¢; for any (0</<m— 1).

Definition 2. For any UML sequence diagram D= {((}, E,V,), an event sequence £, 2 " ... ~ €. i an
untimed behaviour of D if and unly if the {ullowing condiiien holds:

-all cvents in K oceur in the sequence, and each event occurs only once. i.e. {egsf)r - e =E and ¢;7%¢,
for any i, jUi5£7,0607, j<{m) : and

—€9s27s- - . 1€, sarisly the visual order defined by V', i.e. for any e; and e:, if (e/e;) €V, then 0=Zi<j<Im.

We vse timed event seguences Lo represent the hehaviour of UM, sequence diagrams, A timed event sequence

15 of the form (eseia) ™ (e1081) 7 ... " (emstn) whete ¢ is an cvent and £ is a nonncgative real namber for any
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#00ixIm ), which describes that e, takes place ¢, time units after the system starts, then e, takes place t, time

units after e, takes place. so an and so forth, at last ¢, takes place ¢, time units alter e, -, takes place. Tt follows

1
that for any ¢ (0<i<im), the occurrence time of ¢ is >,_,.-.:,.
=0
n

Let 7{g)= Er, for anv timed event sequence e=~Cegrtad ™ (e1sts) " v vr ™ (€msbm).
(=0

i

Definition 3. A timed event sequence o= (¢5st,) " L& £1) " ... " {en+t.) is 2 behaviour of 2 UML sequence
riagram D={(0,E.V,C} if and only if the following condition holds ;

—ep " e1” ... e,represents an untimed behaviour of D, and

"
—tartis .. sbe satisfy the timing constraints described by €, i.e. for any boolean expression a< }_m_‘ (Ji—
i=3

Firshin €y asleody o8~ 1 - 40,56 where for each 1(0€0Sn). o fi=¢;
s ' {um+zm+...+z, if >k
~ s Ftag . gy A Sk

and f1,=¢:, then

Let L(I3) dengte the sel of the limed event sequences representing the behaviour of .

For describing timing censtraints on the occurrence time of events, we introduce a special event € which repre-
sents the start of system. For any UML sequence diagram D= (. E,V,() such that €€ E. any timed event
sequenice 1n £ (D) 12 of the form

LT I P R 70 R CH S 1
1.2 Compositions of UML. sequence diagrams

A simple UML sequence diagram describes exactly one scenario, For deseribing multiple scenarios and
specifying real-time systems . we need to consider the compositions of UML sequence diagrams. At the moment the
UML sandard does not define compositions of UUMI. sequence diagrams. Here we suggest to introduce high-level
graphs, which are similar w0 High-Level MSCs defined in the message sequence chart standard”’, to describe
compositions of UML sequence diagrams. Far simplicity, “simple UMIL sequence diagram” is abbreviated to
“SUD”, while “composition of UM sequence diagrams” is abbreviated 10 “CUD™.

The compositions of UML sequence diagrams can be described by a hierarchical graph. For example, Fig. 2
shows a composition of UML sequence diagrams, which deseribes a simple connection essahlishment protoeo! in 2
telecommunication system exampled in Ref. [47, In Fig. 2, there are thiee simple UML diagrams (D, ,,0;) and
a high-level graph (77,3 which desecribes the composition of these SUDs. I}, describes a connection request, I}k
describes the successful establishment of the connection, and I, deseribes an unsuccessful establishment of the
connection. ol is 4 service provider, ebj; is a local protocol machine, and 0df, is a remote protocol machine. D,
describes the composition of 17,0, and Dy : the iterating branch describes a repeated rcqu;:st 1o establish the can-
nection, while the non-iterating branch describes a successful connection establishment. For describing the timing
constraints enforced on between two events in different UML sequence diagrams, a set of boolean expressions of
the form a<e—¢'<0h can be uscd as a complemen:.

Definition 4. A composition of UMI. sequence diagrame (CUT) is a tuple S= (17, N .suce,ref . M) where

7 is a finite ser of SUDs satisfying that for any D= (0. E,V ,CYEL und I’ = (', E' V' ,CIEU, if DFEL,
then ENE' =3

N= (r YULL A 1L} is a finite ser of nodes partitioned into the three sets: singleron-se( of start node, interme-

diate nodes. and singleton-set of end node, respecctively;

suec ZN X N is the relation which reflects the connectivity of the nodes in N such that any node in N is
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Fig. 2 A compositions of UML. sequence diagrams

reachable from the start node and that the end node is reachable from any node in N

ref T~ is a function that maps each intermediate node to a UML sequence diagram in U ; and

M is a finite set of timing constraints of the form a<le—¢'<(b where ¢ and &' occur 1n different SUDs and 0
asib (& may be ==),

For a CUD S=(U,N ssucc,ref, M), a path segmen: i3 a sequence of intermediate nodes v, ™ v, ~ ... * w, saris-
fying that (v, ,2:) € suce for any 1 {2<5i<{n). A path segment is called simple if all its nodes are distinct. A path

is a path segment v, " v, * ... ” v, such that (—i_,'v.)esucc and (z,, | )& succ. A simple path is a path which is e

simple path segment. For a simple path segmentv,” v, ... " v,, if there is v,.(1<i<n) such that (v, ,v;) € succ,
then the seguence v~ vy, " ... " v.is a loop and v; is a loop-start node.

To avoid the ambiguity in interpreting timing constraints related to loops, timing constraints are not allowed
to combine event occurrences inside and outside of a loop, 1. e., for a CUD § = (U N.succ,ref M), all timing
constraints in M of the form e<ie —¢ =b must satisfy the following condition.

—for any loop vy ™ v " ... " w.. if e ocenrs in ref To) (15755m) and ¢ does not occur in any ref (v ) (1<
i), then there is no simple path segment v, ~ v’ " ... "~ v, such that ¢ occurs in ref(+';}, « does not oceur in any
ref (o' Y (1<) . and that v, =v,;

—for any loop vy~ wp ™ ... " v, if € otcurs in ref(v) (1<i<m) and ¢ does not occur in any ref (v, ) ({ <<
m ). then there is no simple path segment v*, " v/, ~ ... ~ o', such that v, =25 e oceurs in ref (.}, and that ¢
does not occur in any ref (') (1<Kk<n); and

—for any loop ey ™ w:” ... " vn, if € oceurs in ref{v;) and &' occurs in ref(v;), then 1s{j<li<{m.

We interpret the timing constraints in CUDs by local semantics: select one path at a time and anafyze its
timing requirements, independently of other paths that may branch out of the selected one. We define the be-
haviour of a CUD S as the timed event sequences which are the concatenation of the timed event sequences repre-
senting the behavioar of the UML sequence diagrams which make up S. We use = to denote the concarenarian uf
sequences.

Definition 8. For a CUD 5=, N,succ.ref .M), a timed event sequence o==(egs20) ~ (ers213 " o o0 ™ Censta)
represents 2 behaviour of 3 if and anly if the following condition holds:

—there is a path o, " »,” ...~ 7, such that 6=a," 0;~ ... " 6., where ¢; is a behaviour of ref{w;) for each i
(1<ii<im); and

—a satisfies any timing constraint expressed by all boulean expressions in M, i.e. s for any a<{ (f— /1 )<B€
M, for any 7, jO<i<(j<(n) such that /' =e,,f=¢;, and that there is no * (G<Ck<(J) satisfying f=e:V f' =ex,

et e b S

Definition 6. For any CUD S= (I, N.succ.ref .M}, for any path segment p=v," v;" ... " 7, let L(p) be

the set of all timed event sequences which arc of the form o= (eq,2,) = (e1,1) " ... "~ (enst.) and satisfy that

—o=¢," 6, ... " 0., where g, is a behaviour of ref(v;) for each 7 (1=5/<m); and
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2.3 Algorithms in the toal

Ir the teol, we have implemented two algorithms corresponding to the two kinds of UML sequence diagrams.
2.3.1 Algorithm for checking timing consistency of simple UUML sequence diagram

In section 1.1, we know a UML sequence diagram D is timing consistent if and only if L{D)#&. Let D==
(0,EV.C} be a UML sequence diagrams E={eq:¢(s. .+ r€m} . and £ represent the nreurrence time of ¢ for any {
(0=5i<Cm). By Definition 3, for any (e~¢'JEV, t;—£,5.0 where e=¢, and ¢’ =¢,, and for any timing constraint in
c

agico(fo— P+ li—F+. . e lfe—f0<s,
fyefis- .. oL, must satisfy ]
aszcefyto b+, . Fedash,

where for any ¢ (0<é<(n), if fi=e¢, and /', =¢, then §,={,— 1., which form a group of linear inequalities on #5,
f1s. .. +tn s denoted by Ip{i)). Hence. the problem of checking I} for timing consistency can be solved by checking
whether the group I/p(I)) of lincar inequalities has no selution, which can be solved by linear programming.
2.3.2 Algorithm for checking timing consistency of compositions of UML scquence diagrams

Fora CUD S, a path gis timing consislent il and only if L(p)= . A CUD S is timing consistent if and only
if all paths are timing consistent. Let S=<(U,Nysucc,ref s M) be a CUD, and o=z, " v;~ ... " u. bea finite path.
Suppose that ref (v, )=(0',E" V' ,C") for any ¢ (1=li<{m). From Definitions 3 and 6, it follows that all timed
event sequence o€ L{p) are of the form o7=35," ;" ... ~ o, where .= (e, ta} " (e ) = ... 7 (e;,.' ,t.-,.,) for all ¢
(15i<im). Furthermore. all ¢, =li<Im, 1=;< ;) must satisfy all timing constraints in M and C; (1<{i<Cm).
This set of timing constrgints forms a group of linear inequalities. Thus. we can check whether L{p)= & by
checking whether -he group of linear inequalities has no solution. which can be solved by linear programming. So,
for a finite path. we can reduce the problem imwe a linear programming problem. However we know that for a
CUD, there could be infinite paths and the number of paths could be infinite. So we need a way to reduce the
problem to finite set of {inite paths. 1

Let S= (7 N,ysucesref/ M) be & CUD, and p=v," v3" ...~ wv.be a loop. If the following condition holes:

—for any ref(v.)= (O E",V',C") (1</<{m) . any timing constraints in C, of the form a<g ggc, (e;—¢& ;b
is such that ¢<.0 and 6220; and

~—for any timing constraint ashe — ¢ <<HE M, if ¢ occurs in ref (z;) and ¢ oceuts in ref(v) (P<LA</j<imy,
then a=0 and 6220,
then g is an unbounded loop; otherwise g is a bounded loop. Notice that for any loop g of the form 2. " o~ ... 7
Tyt

—if g is an unbounded loop. then there is ¢& L{p} such that o= {e;.0) ™ (e, 0" ... " (e.,0), L. . thete s
a€ L(p} such that ¥(a)=0;

—if # 1s 2 bounded locp, then there is no o€ L.(p) such that 5=1C(g;,0) " (2;,0)" ...~ (&0}, i.e. any 7€
L(p) is such that ¥{(a)>0.

Let §=(U", N ,suce ref M) be a CUD, and 2 be a bounded loop. For any Liming constraints asce—e' b in M
where b7#co, we say that it constrains g if and only if there is a path segment of the form

T TR T T P 7

such that

p starts from z;,

e’ oceurs in ref(v,) and e occurs in ref(v. ),

¢ and ¢’ du nut uctur in g and in any v (2<0<im—1) . and
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all w;(1< 7<) are distinet and all v (< k<Tm) are distinct.

Theorem 1. A CUD S~ (U, N ,succ,ref, M) is timing consistent if and only if the following condition holds:
—any loop p is such that L{p)£ ¢,

—any simple path is timing consistent, and

—any timing constraint asce—e' < in M such that h7£ o0 dose not constrain any bounded locp.

Proof.  The details of the proof are presented in Ref, [8]. O

Currentpath:= (| ), loopset , = &

Repeat
node: =the last node of currentpath;
if node has no new successive node
then delete the last node of currentpath
else begin
node; =a new successive node of zode:

if node is in curventpaih then
begin
if the loop g is such that L{g) & return false
else put the loop into luupsets
end ;
if node== | and node is not in currentpath
then append node to currentpath;
end
L until currentpath= (};

Currentpath, = (| 3,

Repeat
aode: =the last node of currentpath,
if node has no new successive nade
then delete the last node of currenzpath
else begin
node: =a new successive node of node;
if (node, | )€ suce then
begin
if the path corresponding to currentpath is not timing consistent
then return false;
end;
if nodes£ | and node is not in currentpath
then append node to currentpath;
end
until cprrentpath=={);

check if any timing constraint a<ie—¢ <26 in M such that b2 o does not constrain any bounded loop. The algorithm
is shown in Fig. 5.

return true

Fig. 4 Algorithm for checking CUDs for timing consistency

Based on Theorem 1, for a given CUD 8= (7, N, succ .ref, M) . we can give an algorithm to check its timing
consistency {c. [, Figs. 4 and 5). The main data structures in the algorithm 2 include three lists of nodes exrrent-
path, currentpathl, and currentpath? which are used to record the current path and a set of loaps which is used to
record all loops. The algorithm consists of three steps. Firsi, we find all loops and check if any loop p is such that
L(p)7#J. Then we traverse all simple paths and check if they are timing consistent. Last, we check if there are
timing constraints asie—e'<(h in M with 45200 that do not constrain any bounded loops. This step is done with a
nested depth-first search, We start from the node that includes ¢’ and lock for a simple path segment ending at a

loop-start node #ode from which a hounded Joop excluding both ¢ and ¢' starts. If we find one, we start a new
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depth-first search 1o look for a simple path scgment from node tc a node that includes e.

for each timing constraint 2<le—¢' b in M do
begin
aode, =the node including €' : currentpathl ;= tnode’;
repeat
node; —the last node of curventpathl;
if nude has no new successive node
then delete the last node of cerrestpatkl
else hegin
aode: ==a new successive node of node;
if there is a bounded loop in lospser starting from node and
¢ and ¢ do net ocevr in the loop
then

currenipath? ; = (node?
repeat
node; —the last node of crrrentparh2;
if rode has no new successive node
then delete the last node of currentpaih2
else begin
agde; = a uew successive node of rnodes
if e is in node then return false
if mode= |+ ' is not in mode, and
node is not in currenspach;
end
until currentpathZ=1{}

if node#: 1 ve is not in node, and mode is not in currentpathl
then append node to currentpathl ;
until currentpathl =<3
end

Fig.5 Algorithm checking if any timing constraint does not constrain any beund loop

The algorithm is based on depth-first search, The space consumption is portional to the size of the longest
path in the CUD. In the algorithm we need to solve & linear program when we check if a loop g is such thar
L{p}# {2, and when we check if a path corresponding to currentpath is timing consistent. So the number of the
linear programs we need to solve equals the number of all loops and simple paths in the CUN.
2.4 Implemeﬁtation technigques

(1) Representation of events in sequence diagrams of Rational Rose. In the phase of making sequence dia-
grams into formal description defined as Definition 1, we need the time when messages are sent and received. Un-
fortunately, there is no such concept in sequence diagram of Rational Rose. Sequence diagrams only show the tem-
poral order of messages happened, it daesn’t concern the time when messages are sent and received. So we can’t
get event names needed in formalizing phase. We solve this problem by reusing the names of messages. In our im-
plementarion process, we use the name of a message to represent the event of sending the message and use the
name of a message adding symbol” to represent the event of receiving the message.

(2) Analysis of representation of UML sequence diagrams in Rational Rose. Rational Rose has its own innar
representation of the sequence diagram. We need draw the useful information from it. Furtunately, this inner rep
resentation i3 text format. We analyze its content and finally find the key words used to draw the tuple D=(0. X,

V,C) defined as Definition 1.
3 ATM Example
To illustrate the presented timing analysis, we consider an example of an automatic teller machine (ATM)
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given in Ref. [4]. Figure 6 shows the high level graph of UML sequence diagrams and Fig. 7 shows the referenced
SUDs of a CUD S describing the system. The ATM system consists of three components: potential customers that
are represented by the object User, the ATM controller which is represented by the object ATM, and a host bank

that is represented by the object Bank. Each one of the SUDs represents a scenario or ‘use-case’ of the system,

and the CUD § specifies a successor relationship between the svenarios,

StartTrans -

GetPin

4

-

| EndTrans |
L —T

[ProcessPin|

¥
TryAgain }—

[ Get:_l)ption ]b—\ [

v ! ¥
[Withdraw | [GetBalance | | EndTrans |
: s

{

[ DispenseCash | [RefuseWith]
Nt o

‘L :
GetPin
ii )

‘ProcessPinI |

EndTrans |

T i
a

ConfisticateCard

Censtraints between two events in different UML sequence diagram,

{0=Zcancel’ req-pin<i4}, {E<ienter— pin’ —req._pin<i60},

{0 valid' -verify=T"y }» {return—card-verify =7}, {O=linvalid'-verify=7"},
{qysCamt _approved’ —approve_amtsigz} . {g15<not-approved’-approve_amt=lgs},
{w) < give - money’ -ent—amountsiws | » {w)Sunot. possible’-ent— mount<iws }

Fig. 6 High level graph of UML. sequence diagrams for the ATM example

Start Trans GetPin EndTrans
Uer|  [ATM] [Bok]| |[Der] [A] (Gk)| |TGer| [ATM] [Benk)
Card Req pin Cancel
Return_card ;
GerCption TAgin
[ATM]  {Bank] [User] [ATM]  [Bank] [Teer | [ATM] Bank
ferify . Valid Return_card Abore
Oyption Mimeout_msg
Withdraw ConfiscatcCard
[ATM]  [Bank] [User | [ATM] [Bark ]| [[Teer] [ATM] Bank
Invalid Withdraw Take_card
Req amount, msg
Ent-amount Approve amit
GetBalance DispenseCash ] RefuseWith L
User | [ATM] [Benk ] [Geer] [ATM] [Bank] |[Geer ] [ATM] [ Bank ]
Statement Req balance Give_money [{amt_approved Not_approve]
Balance .
Print_stmt Print record || Rea belancs Not. possible
Option Option Balance Option

Fig. 7 SUDs in the ATM example

Initially, the ATM controller waits to receive a message that signals a customer has inserted his bank card.

Once this message is received, the system then behaves in two possible ways ¢ either the ATM controller receives a

request to cancel the transaction within [0,4] seconds (SUD EndTrans). or the ATM receives the customer’s pin

© hIEREEE

FAFIFTIT

http:// www. jos. org. cn



Wi ¥ ¥ Mg ie UML FRAESSHLE

1431

given in Ref. [4]. Figure 6 shows the high level graph of UML sequence diagrams and Fig. 7 shows the referenced
SUDs of a CUD S describing the system. The ATM system consists of three components: potential customers that
are represented by the object User, the ATM controller which is represented by the object ATM, and a host bank

that is represented by the object Bank. Each one of the SUDs represents a scenario or ‘use-case’ of the system,

and the CUD § specifies a successor relationship between the svenarios,

StartTrans -

GetPin

4

-

| EndTrans |
L —T

[ProcessPin|

¥
TryAgain }—

[ Get:_l)ption ]b—\ [

v ! ¥
[Withdraw | [GetBalance | | EndTrans |
: s

{

[ DispenseCash | [RefuseWith]
Nt o

‘L :
GetPin
ii )

‘ProcessPinI |

EndTrans |

T i
a

ConfisticateCard

Censtraints between two events in different UML sequence diagram,

{0=Zcancel’ req-pin<i4}, {E<ienter— pin’ —req._pin<i60},

{0 valid' -verify=T"y }» {return—card-verify =7}, {O=linvalid'-verify=7"},
{qysCamt _approved’ —approve_amtsigz} . {g15<not-approved’-approve_amt=lgs},
{w) < give - money’ -ent—amountsiws | » {w)Sunot. possible’-ent— mount<iws }

Fig. 6 High level graph of UML. sequence diagrams for the ATM example

Start Trans GetPin EndTrans
Uer|  [ATM] [Bok]| |[Der] [A] (Gk)| |TGer| [ATM] [Benk)
Card Req pin Cancel
Return_card ;
GerCption TAgin
[ATM]  {Bank] [User] [ATM]  [Bank] [Teer | [ATM] Bank
ferify . Valid Return_card Abore
Oyption Mimeout_msg
Withdraw ConfiscatcCard
[ATM]  [Bank] [User | [ATM] [Bark ]| [[Teer] [ATM] Bank
Invalid Withdraw Take_card
Req amount, msg
Ent-amount Approve amit
GetBalance DispenseCash ] RefuseWith L
User | [ATM] [Benk ] [Geer] [ATM] [Bank] |[Geer ] [ATM] [ Bank ]
Statement Req balance Give_money [{amt_approved Not_approve]
Balance .
Print_stmt Print record || Rea belancs Not. possible
Option Option Balance Option

Fig. 7 SUDs in the ATM example

Initially, the ATM controller waits to receive a message that signals a customer has inserted his bank card.

Once this message is received, the system then behaves in two possible ways ¢ either the ATM controller receives a

request to cancel the transaction within [0,4] seconds (SUD EndTrans). or the ATM receives the customer’s pin
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number within [5,80] seconds (SUD ProcessPin}, relative to the time the message ‘Card’ was received.

If the ATM receives a reguest to cancel the transaction (S8UD EndTrans), it returns the custoroer’s card and
then returns to its initial state as described by the SUD StartTrans. If the ATM receives the customer’s pin num-
ber, it sends a request o the bank to validate the pin number, signals the customer to wait as it i= processing the
request , and then waits for a reply from the bank. For performance reasons, the ATM constrains communication
with the bank to take no longer than 7', secands. In this case, the timing constraints are described via the boalean
expressions of 0sCvalid’ —verify KT, return. card-venfy 22T, and 0<Cinvalid"-verdy<{7"| to corresponding the
SUTD of GetOption, TryAgain and RefusePin separately. The next behavior of the system is described as follows,

+ In the SUD TryAgain, the ATM times-out on its wait for a validation reply from the bank. Tt therefore
signals ihe customiers 1o retry larer, signals the bauk o abort the validation request, returns the customer's card,
and then returns to its initial state.

+ In the SUD RefusePin, the ATM receives an invatid reply from the bank within the deadline. Tt signals the
enstomer thar the entersd pin is invalid. and tries to get a new pin. In this CUD S, the customer tries to enter a
valid pin at most twice, after which the ATM confiscates the customer’s card-see the path from the SUD
RefusePin to ConfiscateCard in Fig. 6.

- In the SUD GatOption, the ATM receives a valid reply from the bunk within the deadline. It thercfore
signals the user z list of options. From rhis pnint on. the customer can make one or more withdrawals (SUD
Withdraw), request one or more times their account balance (SUD GetBalance ), or end the transaction (SUD
EndTrans).

The ATM is expected to receive a message (either successfully as in the SUD DispenseCash, or unsuccessfully
as in the SUD RefuseWith) from the Bank within [g,.4. ] seconds relative to the time it sends the request. The
customer expects a with‘drawal request to be processed (either successfully as in the SUD DispenseCashi, or unsuc-
cessfully ss in the SUD RefuseWith) within [t .te, | seconds relative to the time they enter an amount.

In addition to :he above timing constraints between two events in different UML sequence diagrams. we
assume that cach communication among User, ATM. and Bank has a delay of [1,2] seconds, and that each
vertical line has a default delay of [0,0¢]. For simplicity, these timing constraints are not represented in Fig. 7.

We used our analysis rool to verify antomarically the timing consisrency of the C1ID for T,=10 and various
values of g, .gzy1ey and z0;. Table | shows sample 1esults.

Table 1 Sample resulte of timing consistency analysis

Case 1 [$0) (2) (3} ) (5
 laaed [ 0,o] [0.o=] [0,00] (6,10} (6,10]
Caery oz ] L0uoe” [,3] [0,4] [o,7] {0,8]

Consistent? Yea No Yes No Yes

For the case (13 in Table 1, the user does not impose any timing constraints on the system. This case in [act
makes any value acceptable for the remaining variables. In the case (2), the user expects the ATM to process their
withdrawal request within [0,3] seconds; such a deadline leads to timing inconsistencies in all sequential compo-
neats that contain the SUD Withdraw foilowed by either DispenseCash or RefuseWith. In the case (3), the user
loosens the time of ATM response to event ‘ent_amount” to [0,4], then the system is timing consistent. In the
case (4) und (5), we examine the affects of 1hc Bank response time, U the Bank needs [6,10] seconds to respond
the ATM request ‘zpprove amt’, then the user should [oosen the time of A'TM response to event ‘ent_amount’
mdre. In case (4), even if we loosen the time 1o [0,7], the system is still timing inconsistent. In case (5), when

we loosen the time to [0,8], the system is timing consistent.
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4 Conclusion

In this paper, we have presented the design and implementation of a tool for checking UMI. sequence diagrams
for timing consistency. In Ref. [3], some algorithms for analyzing message sequence charts with interval delays are
presented, and a corresponding tool is described. Tn Refs. [4.5], this timing analysis is extended to MSC specifica-
tions, which are compositions of message sequence charts. However, the problem of analyzing MSC specifications
for timing consistency is not solved completely there because a sufficient condition for timing consistency is given,
which is not enough to develop an algorithm te analyze MSC specifications for timing consistency. In Ref. [6],
UML sequence diagrams are extended for real-time systems with loops, and timing consistency analysis is consid-
ered: timing constraints are of simple form a<{e —&' <4, and are not over any loop. Instead in this paper more gen-
eral and expressive timing constraints are considered . and timing constraints are allowed 10 be over loops so that
the compositions of UML sequence diagrams are much more complicated to check.

An important tapic for the future work is doing case studies in practical use with the developed ool In the

longer term, our intention is to extend the tool for analyzing more UML diagrams.
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