1000-9825/2001/12(03)0317-06 ©2001 Journal of Software %t # 55 #§ Vol. 12, No. 3

Fast Message Passing for High Performance Computation in
Workstation Clusters’

OU Xin-ming, SHEN Jun, ZHENG Wei-min

(Department of Computer Science and Technology, Tsinghua University, Beijing 100084, Chine)
E-masil: oxm@ 263. net; zwm-des@tsinghua. edu. cn
hetp ./ /www, tsinghua. edu. cn

Received January 28, 2000; accepted April 20, 2000

Abstract ; The message passing system is crucial to the computational performance of workstation clusters.
With the fast growth in the performance of networking device, the unnecessary overhead in traditional TCP/IP
protocol has become the bottleneck of communication speed. To fully exploit the communication potential of the
fast hardware, this paper introduces FMP, a new communication protocol specifically designed for Myrinet.
FMP, which consists of a network par: and a local part, is a concise protocol. The physical layer is assumed to
be error free and thus the protocol becomes extremely simple and highly efficient. Compared with TCP/IP, the
performance of FMP is much better. In this article the essential techniques used in the protocol are discussed and
some results are presented.

Key words: parallel computing; workstation cluster; message passing interface; communication protocol;

Myrinet

With the fast development of the networking equipment, workstation cluster has become a popular platform
for parallel computing because of its high performance-price rate!’), People hope that time-consuming programs
that previously run on MPPs can now be exscuted on networks of workstations er PCs in approximately the same
amount of time. However, this goal cannot be easily achieved. The most popular implementation of Message Pass-
ing Interface (MPI) that is used in workstation clusters takes TCP/IP as its underlying communication protocol.
As we know, TCP/IP is designed for wide-range networks, e. g. the Internet, For the unreliability in long-dis-
tance communication and the heterogeneity of the hosts and networks between two communicating ends, it incor-
porates & great deal of concerns over error-detecting, .error- correcting and flow control®l. But in networks of
workstations, hosts arc often homogeneous and near to each other. The reliability of underlying hardware is so
high that it is even impossible for an error to oceur during the execution of a parallel program. For example, the
Myrinet network adapters and switch have an error rate of 107, This means that for an error to happen, one

needs to wait for approximately 30,000,000 years. In such systems, the error detecting and correcting overhead in

« This project is supported by the National High Technology Development Program of China under Grant No. §63-306-2D06-
03-2 (EHK 863 AR LB AESL). OU Xin-ming was born in 1975, He got his M. S. degree in 2000 from the Department of
Computer Science and Technology of Tsinghua University. His research interests include parallel and distributed systems, high
performance computing and advanced networks. SHEN Jum was born in 1969. He got his Ph. D. degree in 1999 from the Depart-
ment of Computer Science and Technology of Tsinghua University. His research interests include parallel and distributed systems,
high performance compating and advanced networks. ZHENG Wei-min was born in 1945, He is a professor in the Department of
Computer Science and Technology of Tsinghua University. His research interssts include computer architecture and parallel and

distributed system computing.

© hIERER

KAFWFFOIT hitp:/ www. jos. org. cn

318 Journal of Software M HFIR/ 2001,12(3)

TCP/IP is completely a waste of time. Moreover, TCP/IP is embedded in the kernel of Unix operating system.
Access to the communication functions is through system calls, which entails time consuming context switch. This
also affects the performance of message passing functions based on TCP/IP. With the rapid growth of the band-
width in physical layer, the bottleneck of speed has migrated from hardware to software.

Our goal is to design a simplified communication protecol, which exploits the maximum communication poten-
tials of the fast networking equipment . thus greatly reducing the execution time of parallel programs on networks

of worksrations.
1 System Overview

Our system architecture is illustrated in Fig. 1. Eight SUN Ultra2 workstations are interconnected with a
Myrinet Switch. Each node is an SMP with two 200MHz UltraSPARC-1 CPUs, 256MB memory and a Myrinet
network adapter card on Sbus. The Myrinet network is a high-speed switch network developed by Myricom Ing'*.
It incorporates the techniques in both LAN and MPP and has a maximum transfer rate of 1. 28Gbit/s. Each
adapter card has a 32-bit CPU and two interfaces for sending and receiving. The cards are interconnected by

Myrinet switch, forming 2 cluster,

Fig.1 System architecture

Our new protocol for this cluster system is called FMP (Fast Message Passing). in the following section the

essential technigues used in it will be discussed in detail,
2 Crucial Techniques

2.1 Buffer management

FMP is an asynchronous protacal in which connection need not be set up before data transferring. Buffer man-
agement in such kinds of protocols is a very important issve. If we let all processes on a host share a single receive
buffer, different processes on the host must be synchronized when accessing the buffer. The race among receiving
processes will make the system extremely inefficient, especially in poiling mode, where each pracess scans the
buffer continuously for new messages. In FMP we use another policy. Each process has its own receive buffer and
all pracesses share a single send buffer. as illustrated in Fig. 2.

Buifers in FMP are queues. When a process wants to send a

message, it just puts the message on the tail of the send queuve. Sao

the race among sending processes is not severe. This is why we

I t use a single send buffer for all processes. The Mpyrinet control
Nevrwark THierdace: | i

Fig. 2 Buffers in FMP

program (MCP) runs on the CPU of the network adapter card, It
is responsible for transmitting the data in send buffer out and
putting the incoming messages in the appropriate receive buffer. The process associated with each receive queue
will check the buffer and remove messages from it. Now there is no need 10 synchronize different receiving process-
es because each one has its own receive queue. However, we must synchronize different sending processes because

only one send yueue exists. As stated above, this little overhead is trivial,

© HIEERES AT hip:/ www. jos. org. cn

H T FEMT ol Rk AR R 319

2.2 Polling or interrupt

When a process wants to receive a message that has not arrived yet, two choices exist. It can either scan the
receive buffer continuously until its arrival or go to sleep and let the cperating system to wake it up when the de-
sired data come. The former is called polling mode and the latter is called interrupt mode, because when the pro-
cess sleeps, the operating system will schedule other processes to run and the hardware must interrupt CPU to
wale up the sleeping process.

The advantage of interrupt mode is obvious. It can increase concurrency and thus save CPU time. The disad-
vantage is not so easy to see. Both sleeping and waking up involve time-consuming context switch, which greatly
affects the communication latency. The latency graph in section 3 proves it. Under most circumstances in parallel
computing, each process will exclusively cccupy a CPU. So generally speaking, the polling mode is more advanra-
geous than interrupt mode because it is faster. Sometimes there may be more than one process sharing a CPU. For
example, in PVM each machine must have a daemon process running on it. Since the daemon does not do much
work, it usually shares CPUs with other computing processes. In such cases, interrupt mode is more suitable be-
cause CPU time can be saved for other processes when desired message has not arrived. To provide user with the
flexibility of choosing cne of these two modes. we implement two interfaces for each.

2.3 DMA or P'IO

For a message to be sent, it must be copied to the buffer on the network adapter card. There exist two ways
to do that. The first approach is programming I/ (PIQ). The process puts the data directly into 1/Q port, byte
by byte. Actually this is done as memory copy. because 1/0 addresses have been mapped to the process’s virtual-

61, The another approach is direct memory access (DMADY, in which data are

memory space by the network driver
transmitted between memory and I/0 automatically. DMA is much faster than PIO since CPU need not interfere
with the transmission and time is spared for computation. But before each DMA operation, some preparation work
must be done. In the case of small messages. the time used is even longer than data transmitting time, So DMA
does not suit small messages. Figure 3 is a graph showing the transmitting properties of PIO and DMA.

Given these different properties, we choose

different methods according to the size of mes- 500 [:'.:gﬂgé\' """"""""""
sages—— PIO for short ones and DMA for large 400 Mbs R el - - - - Trrzeam—r
ones. If DMA is chosen, the sending process must . L.ccevecen-- gy .‘_/t
300 o
first write the message into a kernel area, since ker- ¥ o T ’_.
e "
nel space cannot be swapped out, as required by - ..—--/.

) \ 100 [3/o s mesn g s s

DMA. Then the CPU on the Myrinet Card will . Bytes
o8 N . R . . N L Byl

start a DMA uperation and transmit the message.
b 32 64 128 256 512 1024 2048 4096 8192
To make the DMA ocperation and the network

Fig. 3 Transmirtting properties

transmission parallel, we employ a pipelining tech-
‘ of PIO and DMA

nology. A message is cut into small pieces. The
network card can start a network transmission as soon as a piece has been copied into it by DMA. Pipelining im-
proves performance considerably, as shown in Fig. 4.
2.4 Avoiding deadlock

Since FMP is an asynchronous and connectionless communication protocol, it is possible that one process
sends a message to another process before the destination process is ready to receive it. Under such circumstances,
the arriving message will cccupy the receiving buffer until it is fetched. 1f the buffer is exhausted by too many un-

expected messages, other processes will not be able to send data to it. This may lead to deadlock. For example, in

© hIERER

RAFIFFEET http:/ www. jos. org.

320 Journal of Software A FHR 2001,12(3)

Fig. 5, process 0 on host 0 sends a large message to process 1 on host 1 and process 1 also sends a large message to
process 0, The receiving buffers for both processes are exhausted before the messages are completely sent. Howev-
er, neither process will receive the messaye from its buffer until it has finished sending its own one. Thus a dead-
lock occurs.

s _
800 *~ Pipcline

»
— " Sequential
600
. ¥ g—
" p—
/ /.'.

400

{ 3
E L |
200 | wz=s Bytes Bytes
i . . < \ : “

0 2048 4096 6144 BI92 4096 6144 8192

One-Way latency Bandwidth

Fig.4 Comparison of pipelining mode and sequential mode

/Sond

PrmeRQ 0 " A
DProcess fj@ Prrcess 1 [SR
Host 0 i
Host § Host 1 K
Recv buff = Recy buff
v e} § Recv buffer Recv buffer o —cf
e
Fig. 5 Deadlock situation Fig, 6 Avoiding deadlock

To avoid such kind of deadlock, we move some messages from the receiving buifer into a temporary area in the
process’s address space when communication is blocked. Compared with the size of the buffer at network adapter
card, the memory space is so large that it can even be thought as infinite. Thus we can prevent the deadlock in-
curred by buffer exhaustion (¥Fig. 6).

2.5 Local communication

In a network of SMP workstations . communicating processes may happen to reside on the same host. In such
conditions » message passing between twag processes is carried out usir}g the local communication part of FMVY pro-
tocoly LM_FMP (the network part of FMP is called NC. FMP). Local communication in FMP 1s through the
memory shared among different processes. Sending and receiving of messages ate implemented as various memory

copy functions. Each process on a host has a channel number assigned to it. And each channel is associated with a

M message-header queue. The header of a local message destined to a

Y = =) . channel is put into the tail of the corresponding header-queue. If the

I &9 _ﬁoﬂ message is small enough, the whole message is embedded in the head-

@ Mc-ssu:g:::l‘)uffer @05\9 er. Otherwise 2 pointer in the header indicates the place where the
Fig. 7 Structure of LM FMP budy of the message is stored (Fig. 7).

How the body of large messages should be stored is a question
worth discussing. A simple solution is to allocate a continuous memory block from the shared memory. This
makes it easy to copy data inte or from the buffer. But the memory allocation algorithen in this policy is difficult to
devise and tends to create lots of small fragments that are hard to utilize.

In LM_FMP. we use another buffer management approach. The body of ~ Address Null
a large message is segmented into fixed-length units and stored in a linked L":B.EE*DE‘_.

. Fig. 8 Body of a large messa
list. Each unit is a list element., Since the length of each unit is the same, the ¥ Y & &

© HIEERES AT hip:/ www. jos. org. cn

B#TON ¥ BT bR R Ak E T A Bk O B4R L 321

buffer allocation algorithm becomes much easier and no external fragments will be ereated. We need only to write

a set of new memory-copy funciions to accommodate this data structure of discontinuous memory space (Fig. 8).
3 Performance of FMP

We tested the performance of FMP protocol and compared it with TCP/IP. First, we measured the point-to-
point communication latency and bandwidth of FMP by calling FMP sending and receiving functions directly in

user's program. Then, we tested the overall performance of MPI based on FMP by a series of benchmarks.

350 [Latency (ps)

[L
300 [—
250 [. . e
200 [

150 T
100 | R
50 [8——p—u—a—u—n—a—t""¢"

Size (bytes) 0
1 4 | 8 116 |32 {64 128 |256 {512 |102

T NCEMPp oy |12 13|14 [16[19 [1821 |35)49 |72
% NC FMP(i) 40 140 141 142 147 145149 |63 |77 {101
AT _TCPAR 220 (221 (220 222 1225 |235 1258 |268 [281 1322

3.1 Point-to-point performance of FMP
3.1.1 Latency

Note that “#” means polling mode and“” means interrupt mode.

From the latency graph we can see that the latency of FMP is smaller than TCP/IP by one order of magni-
tude. That is because the reduced communication protocol eliminates most of the overhead in legacy protocol
stack, which to a large extent determines the latency. We can also notice that the latency of polling mode is only

one-third of that of interrupt mode. This testifies that context switch plays an important role in communication

overhead.
3.1.2 Bandwidch

The bandwidth graph shows that bandwidth in FMF is approaching the rate of DMA. This explains why the
bandwidth of FMP is still much lower than the 1. 26Gbps rate of the Myrinet. In transmission of long messages,
DMA becomes the bottleneck. And if we adopt other bus architectures, for instance, if we use PCI bus instead of

SBUS, we can expect to achieve much better results.

X —* T NC_FMP{polling)
—E= NC_FMP(interrnpt)

AT TCPAP
*— DMA
0 X) packetsize(bytes)
0 1024 2048 3072 4096 5120 6144 7168 8192
© HhEE CECPEIFFUNT hitp/ www. jos. org. cn

322 Journal of Software ¥ ¥ 2001,12(8)

3.2 Benchmark test of MPI based on FMP
Table 1 NAS benchmark test result

Prog MPI/FMP MP1/P4 Improvement (%)
bt. A0 525. 84 567. 85 7
ht. A. 16 273.70 328.75 17
sp. AL D 241.92 387, 61 25
sp. A. 16 151. 90 296, 26 49
ft.A. 8 31. 3¢ 38. 29 18
fr. AL 18 17.7¢ 23.26 24

To illustrate the overall performance of FMP protocol . we nse NAS Benchmark to compare the execution time
of MPI/FMP and that of MP{/P4——the popular TCP/IP based implementation of MPI used in workstation chus-
ters. Table 1 lists a part of the results. The program name of NAS Benchmark is ‘prog. CLASS. nproc’, where
prog represents the kind of problems to be solved by the parallel program . CLASS indicates the scale of the prob-
lem and nproc is the number of processors used. The execution time is in seconds. All results show improvements
of MPL/FMP. Limited by the paper space, we only list the execution time of three kinds of programs with at least
& processors.

4 Conclusions

In this article, we present FMP——a communication protocol specifically designed for workstation clusters,
which eliminates the unnecessary software overhead of TCP/IP. FMP is a complete protocol in that functions at all
levels are implemented, from the physical layer (Myrinet control program, network driver) to application layer
(MPFI and PVM). Cur goal is to extensively exploit the performance potentizl of advanced communication equip-
ment. The philosophy of FMP is to make the protocol as simple as possible, assuming the reliability of the under-
lying hardware. From our performance test, this approach is feasible and successful in improving both the point-
to-point features and the overall execution speed of parallel applications.

References:

[1] Dong. C.L., Zheng, W.M., et al. A scalable parallel workstation cluster system. In. IEEE Computer Society ed. Pro-
ceedings of the APDU™Y7, Shanghai: IEEE Computer Society Press, 185%7, 307~ 313.

[2] Kay, J., Pasquale, J. The importance of non-data-touching overheads in TCP/IP. In: ACM SIGCOMM Computer Commy-
nication Review, 1993,23(4).255~260.

[3] Boden, N.J., Cohen, D. , Felderman. R. E. , er al. Myrinet; a gigabit-per-second local area network, IEEE Micro, 1945,
15¢1).29~ 38,

[47] Dubnicki, C. ., Bilas, A. . Li, K., e @/, Design and implementation of virtual memory-mapped communication on Myrinet.
In; IEEE Computer Society ed. Proceedings of the 1997 International Parallel Processing Symposium. Shanghai. IEEE
Computer Society Press, 1997. 388~ 3%6.

& T TARA LB R 4 1 aE T EAO BRI H B ZiB Y
BER, 7 % AGR

GEERF IFHEAB2EEARE LR 100084)

W A28 T AN LIEHNITINGLI ZXATEMN. M EFRS TSRO TXRRG, HH Y TCH/
IPHRFTALEGFHORAIERTE RSN A TRBLSFA St LGSR EHETBT—HFTH
Myrines i & # 64 38 15 thiy FMP. i & A PGS 9 fo Al dp i , A — AW B EW L. hBERAR
A dES B +oBEn3x% 5 TCP/IP R, RO TR LGOI AR Tk FHE
A . AAFTTHHEE.

X AT e, S 8T il 3 s Myrinet

PEES ¥T . TPIVI AR RED: A

LIS hitpad/ www. jos. org. cn

