嵌入路网图模型的自动驾驶场景描述语言
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

科技创新2030 —“新一代人工智能”重大项目(2018AAA0100500);国家自然科学基金(62272434);安徽省重点研究与开发计划标准化专项(No. 202104h04020039)


Autonomous Driving Scenario Description Language Embedded with Road Network Graph Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习的快速发展带动着自动驾驶技术的迅速进步.深度学习感知模型在识别准确率逐步提升的同时,也存在鲁棒性和可靠性不足等隐患,需要在大量场景下进行充分测试以确保达到可接受的安全标准.基于场景的仿真测试是自动驾驶技术的核心和关键,如何描述和生成多样化仿真测试场景是需要解决的关键问题之一.场景描述语言能够描述自动驾驶场景并在虚拟环境中实例化场景获取仿真数据,但现有的场景描述语言大都缺少对于场景道路结构的高层抽象和描述.本文提出路网属性图来表示路网中抽象出的实体及他们的关系,并设计了能简洁描述场景路网结构的语言SceneRoad.SceneRoad可以基于描述的场景道路结构特征构建路网特征查询图.这样,在路网中搜索符合描述的场景道路特征的问题被抽象为路网图上的子图匹配问题,该问题可用VF2算法求解.进一步地,本文将SceneRoad作为扩展集成到Scenic场景描述语言中。我们使用拓展后的语言随机生成大量多样的静态场景并构建了仿真数据集.仿真数据集的统计信息表明生成的场景具有丰富的场景多样性.不同感知模型在真实和仿真数据集上的训练测试结果表明,模型在两个数据集上的表现呈正相关,意味着模型在仿真数据集上的评估结果与真实情况下的表现具有一致性,这对于感知模型的评估以及提升模型鲁棒性和安全性相关研究有重要意义.

    Abstract:

    The development of deep learning technology has driven the rapid progress of autonomous driving. While the accuracy of the perception model based on deep learning is gradually improved, they still have room for improvement in terms of robustness and reliability. therefore, they need to be thoroughly validated in various scenarios to ensure to meet acceptable security levels. Scenario-based simulation testing is a crucial aspect of the development and deployment of autonomous vehicles. One key challenge is the creation of diverse and realistic simulation scenarios that accurately represent the physical environment and the various challenges that autonomous vehicles may encounter. Scenario description languages enable the description and instantiation of autonomous driving scenarios in virtual environments and obtain simulation data. However, most existing scene description languages lack the ability to provide high-level abstractions and descriptions of the road structure of the scene. In this paper, we present a road network property graph for representing the abstracted entities and their relationships within a road network. We also introduce SceneRoad, a language specifically designed to provide concise and expressive descriptions of the road structure in a scene. SceneRoad can build a road network feature query graph based on the described road structure features of a scene. In this way, the problem of searching the road structures in the road network is abstracted as a subgraph matching problem on the property graph, which can be solved by the VF2 algorithm. Additionally, we incorporate SceneRoad as an extension into the Scenic scenario description language. With this extended language, we are able to randomly generate a diverse set of static scenes and build a simulation dataset. Statistical analysis of the simulation dataset reveals the wide variety of scenes that have been generated. The results of training and testing various perception models on both real and simulated datasets show that the model's performance on the two datasets is consistently correlated. This indicates that the model's evaluation on the simulated dataset aligns with its performance in real-world scenarios. This is significant for evaluating perception models and research into improving the model's robustness and safety.

    参考文献
    相似文献
    引证文献
引用本文

龚磊,孙新雨,张昱,张燕咏,吉建民,华蓓.嵌入路网图模型的自动驾驶场景描述语言.软件学报,2023,34(9):0

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-05
  • 最后修改日期:2022-10-13
  • 录用日期:
  • 在线发布日期: 2023-01-13
  • 出版日期:
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号