摘要:因严重遮挡和剧烈形变等挑战长期共存, 精准鲁棒的视频分割已成为计算机视觉的热点之一. 构建联合吸收马尔可夫链和骨架映射的视频分割方法, 经由“预分割—后优化—再提升”逐步递进地生成精准目标轮廓. 预分割阶段, 基于孪生网络和区域生成网络获取目标感兴趣区域, 建立这些区域内超像素的吸收马尔可夫链, 计算出超像素的前景/背景标签. 吸收马尔可夫链可灵活有效的感知和传播目标特征, 能从复杂场景初步预分割出目标物体. 后优化阶段, 设计短期时空线索模型和长期时空线索模型, 以获取目标的短期变化规律和长期稳定特征, 进而优化超像素标签, 降低相似物体和噪声带来的误差. 再提升阶段, 为减少优化结果的边缘毛刺和不连贯, 基于超像素标签和位置, 提出前景骨架和背景骨架的自动生成算法, 并构建基于编解码的骨架映射网络, 以学习出像素级目标轮廓, 最终得到精准视频分割结果. 标准数据集的大量实验表明: 所提方法优于现有主流视频分割方法, 能够产生具有更高区域相似度和轮廓精准度的分割结果.