摘要:实体识别是信息抽取的关键任务. 随着信息抽取技术的发展, 研究人员从简单实体的识别转向复杂实体的识别. 然而, 复杂实体缺乏明显的特征且在句法结构与词性组成上更加复杂多样, 给实体识别带来了巨大挑战. 此外, 现有模型广泛采用基于跨度的方法来识别嵌套实体, 在实体边界检测方面呈现出模糊化, 影响识别的性能. 针对这些问题和挑战, 提出了一种基于语义先验知识与类型嵌入的实体识别模型GIA-2DPE. 该模型使用实体类别的关键词序列作为语义先验知识来提升对实体的认知, 并通过类型嵌入捕获不同实体类型的潜在特征, 然后通过门控交互注意力机制将先验知识与类型特征相融合以辅助复杂实体识别. 另外, 模型通过2D概率编码来预测实体边界, 并利用边界特征和上下文特征来增强对边界的精准检测, 从而提升嵌套实体的识别效果. 在7个英文数据集和2个中文数据集上进行了广泛实验. 结果表明, GIA-2DPE超越了目前最先进的模型; 并且在ScienceIE数据集的实体识别任务中, 相对基线F1分数取得了最高10.4%的提升.