面向异质性医学图像处理的深度学习算法综述
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP311

基金项目:

北京市自然科学基金-海淀原始创新联合基金(No.L182034),国家自然科学基金(No.61802022,No.61802027),中央高校基本科研业务费提升科技创新能力行动计划项目(No.2019XD-A12),中央高校基本科研业务费专项资金项目(No.2020RC07)。


A review of deep learning algorithms for heterogeneous medical image processing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来深度学习技术在诸多计算机视觉任务上取得了令人瞩目的进步,也让越来越多的研究者尝试将其应用于医学图像处理领域,如面向高通量医学图像(CT、MRI)的解剖结构分割等,旨在为医生提供诊断辅助,提高其阅片效率。由于训练医学图像处理的深度学习模型同样需要大量的标注数据,同一医疗机构的数据往往不能满足需求,而受设备和采集协议的差异的影响,不同医疗机构的数据具有很大的异质性,这导致通过某些医疗机构的数据训练得到模型很难在其他医疗机构的数据上取得可靠的结果。此外,不同的医疗数据在患者个体病情阶段的分布上也往往是十分不均匀的,这同样会降低模型的可靠性。为了减少数据异质性的影响,提高模型的泛化能力,域适应、多站点学习等技术应运而生。其中域适应技术作为迁移学习中的研究热点,旨在将源域上学习的知识迁移到未标记的目标域数据上;多站点学习和数据非独立同分布的联邦学习技术则旨在在多个数据集上学习一个共同的表示,以提高模型的鲁棒性。本文从域适应、多站点学习和数据非独立同分布的联邦学习技术入手,对近年来的相关方法和相关数据集进行了综述、分类和总结,为相关研究提供参考。

    Abstract:

    In recent years, deep learning technology has made remarkable progress in many computer vision tasks, and more and more researchers have tried to apply it to the field of medical image processing, such as segmentation of anatomical structures in high-throughput medical images (CT, MRI), which can improve the efficiency of image reading for doctors. For specific deep learning tasks in medical applications, the training of deep neural networks needs a large amount of labeled data. But in the medical field, it is awfully hard to obtain large amounts, even unlabeled data from a separate medical institution. Moreover, due to the difference in medical equipment and acquisition protocols, the data from different medical institutions are quite different. The large heterogeneity of data makes it difficult to obtain reliable results on the data of a certain medical institution, with the model trained with data from other medical institutions. In addition, the distribution of disease stage in a dataset is often very uneven, which may also reduce the reliability of the model. In order to reduce the impact of data heterogeneity and improve the generalization ability of the model, domain adaptation and multi-site learning gradually started to be used. Domain adaptation as a research hotspot in transfer learning, is intended to transfer knowledge learned from the source domain to unlabeled target domain data; and federated learning on non-independent and identically distributed (non-iid) data aim to improve the robustness of the model by learning a common representation on multiple data sets. This paper investigates, analyzes, and summarizes domain adaptation, multi-site learning, federated learning on non-iid data and datasets in recent years, and provides references to related research.

    参考文献
    相似文献
    引证文献
引用本文

马梓博,米悦,张波,张征,吴静云,黄海文,王文东.面向异质性医学图像处理的深度学习算法综述.软件学报,,():0

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-19
  • 最后修改日期:2021-08-26
  • 录用日期:
  • 在线发布日期: 2022-05-24
  • 出版日期:
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号