摘要:异常行为检测是智能监控系统中重要的功能之一, 在保障社会治安等方面发挥着积极的作用. 为提高监控视频中异常行为的检测率, 从学习正常行为分布的角度出发, 设计了基于概率记忆模型的半监督异常行为检测网络, 解决正常行为数据与异常行为数据极度不均衡的问题. 该网络以自编码网络为主干网络, 利用预测的未来帧与真实帧之间的差距来衡量异常程度. 在主干网络提取时空特征时, 使用因果三维卷积和时间维度共享全连接层来避免未来信息的泄露, 保证信息的时序性. 在辅助模块方面, 从概率熵和正常行为数据模式多样性的角度, 设计了概率模型和记忆模块提高主干网络视频帧重建质量. 概率模型利用自回归过程拟合输入数据分布, 促使模型收敛于正常分布的低熵状态; 记忆模块存储历史数据中的正常行为的原型特征, 实现多模式数据的共存, 同时避免主干网络的过度参与而造成对异常帧的重建. 最后, 利用公开数据集进行了消融实验和与经典算法的对比实验, 以验证所提算法的有效性.