摘要:针对事件抽取存在未充分利用句法关系、论元角色缺失的情况, 提出了基于双重注意力机制的事件抽取(event extraction based on dual attention mechanism, EEDAM)方法, 有助于提高事件抽取的精确率和召回率. 首先, 基于4种嵌入向量进行句子编码, 引入依赖关系, 构建依赖关系图, 使深度神经网络可以充分利用句法关系. 然后, 通过图转换注意网络生成新的依赖弧和聚合节点信息, 捕获长程依赖关系和潜在交互, 加权融合注意力网络, 捕捉句中关键的语义信息, 抽取句子级事件论元, 提升模型预测能力. 最后, 利用关键句检测和相似性排序, 进行文档级论元填充. 实验结果表明, 采用基于双重注意力机制的事件抽取方法, 在ACE2005数据集上, 较最佳基线联合多中文事件抽取器(joint multiple Chinese event extractor, JMCEE)在精确率、召回率和F1-score分别提高17.82%、4.61%、9.80%; 在大坝安全运行日志数据集上, 较最佳基线JMCEE在精确率、召回率和F1-score分别提高18.08%、4.41%、9.93%.