超图学习综述:算法分类与应用分析
作者:
作者单位:

作者简介:

通讯作者:

王新根,E-mail:newroot@zju.edu.cn

基金项目:

广东省重点领域研发计划(No.2020B0101100005);浙江省重点研发计划(No.2021C01014)


Survey of Hypergraph Learning: Method and Application Analysis
Author:
Affiliation:

Fund Project:

Key-Area Research and Development Program of Guangdong Province(No.2020B0101100005); Key Research and Development Program of Zhejiang Province(No.2021C01014)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着图结构化数据挖掘的兴起,超图作为一种特殊的图结构化数据在社交网络分析、图像处理、生物反应解析等领域受到广泛关注。研究者通过解析超图中的拓扑结构与节点属性等信息,能够有效解决实际应用场景中所遇到的如兴趣推荐、社群划分等问题。根据超图学习算法的设计特点本文将其划分为谱分析方法和神经网络方法,根据方法对超图处理的不同手段可进一步划分为展开式方法和非展开式方法。若将展开式方法用于不可分解超图则很有可能会造成信息损失。然而,现有的超图相关综述文章鲜有就超图学习方法适用于哪类超图这一问题作出相关归纳。因此,本文将分别从超图上的谱分析方法和神经网络方法两方面出发,对展开式方法和非展开式方法分别展开讨论,并结合其算法特性和应用场景进行进一步细分;然后,分析比较各类算法的设计思路,结合实验结果总结各类算法的优缺点;最后,对超图学习未来可能的研究方向进行了展望。

    Abstract:

    With the rise of graph structured data mining, hypergraph, as a special type of graph structured data, is widely concerned in social network analysis, image processing, biological response analysis and other fields. By analyzing the topological structure and node attributes of hypergraph, we can effectively solve many problems such as recommendation, community detection and so on. According to the characteristics of hypergraph learning algorithm, it can be divided into spectral analysis method, neural network method and other method. According to the methods used to process hypergraphs, it can be further divided into expansion method and non-expansion method. If the expansion method is applied to the indecomposable hypergraph, it is likely to cause information loss. However, the existing hypergraph reviews do not discuss that hypergraph learning methods are applicable to which type of hypergraphs. So, in this article, we will discuss the expansion method and non-expansion method respectively from the aspects of spectral analysis method and neural network method, and further subdivide them according to their algorithm characteristics and application scenarios. Then we analyse the ideas of different algorithms and compare them in experiments. We also conclude the advantages and disadvantages of different algorithms. Finally, we preopose some promising research directions.

    参考文献
    相似文献
    引证文献
引用本文

胡秉德,王新根,王新宇,宋明黎,陈纯.超图学习综述:算法分类与应用分析.软件学报,,():0

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-21
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号