基于感染结果的传播网络推断方法
作者:
作者单位:

作者简介:

通讯作者:

陈旭,xuchen@whu.edu.cn

基金项目:

民用航天“十三五”技术预先研究项目(国产卫星信息智能分发技术,项目号B0301);湖北省技术创新专项重大项目(2017AAA125);武汉市应用基础前沿项目(2018010401011288)


Diffusion Network Inference Based on Infection Results
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为揭示传播网络中节点之间的父子影响关系,现有工作大多需要知道节点的感染时间,而该信息往往只有通过对传播过程进行实时监控才能获得.在本文中,我们研究如何基于传播结果来学习获得传播网络中节点之间的父子影响关系.传播结果只包含每个传播过程中节点的最终感染状态,而节点的最终感染状态在实际中往往比节点的感染时间更容易获得.我们提出了一种基于条件熵的方法来推断网络中每个节点的潜在候选父节点.此外,我们能够通过从基于条件熵的推断结果中发现并修剪那些实际不太可能存在的父子影响关系来优化最终的影响关系推断结果.在人工网络和真实网络上的大量实验验证了本文方法的有效性和运行效率.

    Abstract:

    To reveal parent-child influence relationships between nodes in a diffusion network, most prior work requires knowledge of node infection time, which is possible only by carefully monitoring the diffusion process. In this work, we investigate how to solve this problem by learning from diffusion results, which contain only the final infection statuses of nodes in each diffusion process and are often more easily accessible in practice. A conditional entropy-based method is presented to infer potential candidate parent nodes for each node in the network. Furthermore, we are able to refine the inference results by identifying and pruning the inferred influence relations that are unlikely to exist in reality. Experimental results on both synthetic and real-world networks verify the effectiveness and efficiency of our approach.

    参考文献
    相似文献
    引证文献
引用本文

赛影辉,王明鑫,陈畅,雷伯涵,侯叶俏,李翔翔,孙月明,陈旭.基于感染结果的传播网络推断方法.软件学报,,():0

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-09-27
  • 最后修改日期:2020-09-09
  • 录用日期:
  • 在线发布日期: 2021-08-02
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号