自组织增量学习神经网络综述
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61375064,61373001);江苏省自然科学基金(BK20131279)


Review of Self-Organizing Incremental Neural Network
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61375064, 61373001); Natural Science Foundation of Jiangsu Province (BK20131279)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    自组织增量学习神经网络SOINN(self-organizing incremental neural network)是一种基于竞争学习的两层神经网络,用于在没有先验知识的情况下对动态输入数据进行在线聚类和拓扑表示,同时,对噪音数据具有较强的鲁棒性.SOINN的增量性,使得它能够发现数据流中出现的新模式并进行学习,同时不影响之前学习的结果.因此,SOINN能够作为一种通用的学习算法应用于各类非监督学习问题中.对SOINN的模型和算法进行相应的调整,可以使其适用于监督学习、联想记忆、基于模式的推理、流形学习等多种学习场景中.SOINN已经在许多领域得到了应用,包括机器人智能、计算机视觉、专家系统、异常检测等.

    Abstract:

    Self-organizing incremental neural network (SOINN) is a two layered, competitive learning based neural network which is able to represent the topology structure of input data and cluster online non-stationary data without prior knowledge, and also robust to noise. The incremental nature of SOINN enables it to learn novel patterns from data stream without affecting previously learned patterns. In this respect, it is appropriate to expect that SOINN could serve as a general approach to unsupervised learning problems. With some modifications, SOINN could handle other kinds of learning tasks such as supervised learning, associative memory, pattern based reasoning and manifold learning as well. SOINN has been used in many kinds of applications including robotics, computer vision, expert systems, and anomaly detection. This paper presents a survey of its basic ideas, improvements and applications.

    参考文献
    相似文献
    引证文献
引用本文

邱天宇,申富饶,赵金熙.自组织增量学习神经网络综述.软件学报,2016,27(9):2230-2247

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2015-11-18
  • 最后修改日期:2016-01-25
  • 录用日期:
  • 在线发布日期: 2016-04-20
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号