

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.20, No.10, October 2009, pp.2628−2636 http://www.jos.org.cn
doi: 10.3724/SP.J.1001.2009.00577 Tel/Fax: +86-10-62562563
© by Institute of Software, the Chinese Academy of Sciences. All rights reserved.

容错多处理机中一种高效的实时调度算法
∗

王 健, 孙建伶+, 王新宇, 杨小虎, 王申康, 陈俊波

(浙江大学 计算机科学与技术学院,浙江 杭州 310027)

Efficient Scheduling Algorithm for Hard Real-Time Tasks in Primary-Backup Based
Multiprocessor Systems

WANG Jian, SUN Jian-Ling+, WANG Xin-Yu, YANG Xiao-Hu, WANG Shen-Kang, CHEN Jun-Bo

(College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China)

+ Corresponding author: E-mail: sunjl@zju.edu.cn, http://www.cs.zju.edu.cn

Wang J, Sun JL, Wang XY, Yang XH, Wang SK, Chen JB. Efficient scheduling algorithm for hard real-time
tasks in primary-backup based multiprocessor systems. Journal of Software, 2009,20(10):2628−2636.
http://www.jos.org.cn/1000-9825/577.htm

Abstract: This paper has considered the problem of preemptively scheduling a set of independent periodic hard
real-time tasks in primary-backup based multiprocessor systems. An efficient scheduling algorithm—Task Partition
based Fault Tolerant Rate-Monotonic (TPFTRM) is proposed which extends RM algorithm to primary-backup based
multiprocessor to provide fault tolerance. Compared with previous scheduling algorithms in this area, TPFTRM
abandons active backup copies and only uses passive and overlapping backup copies to maximize the backup
over-booking and deallocation, thus improves the scheduling performance. Moreover, TPFTRM proposes the task
partitioning and processors grouping technique, which reduce the scheduling computation time and also make an
easy way to understand and implement it. Extensive simulations experiments are also carried out based on task sets
with different parameters. And the simulation result shows a remarkable saving of processors as well as scheduling
computation time compared with previous algorithms, which proves the feasibility and effectiveness of the proposed
TPFTRM algorithm.
Key words: hard real-time; primary-backup; fault-tolerant; scheduling algorithm; multiprocessor; periodic task

摘 要: 针对基于主副版本容错的多处理机中独立的、抢占性的硬实时任务,提出了一种高效的调度算法——

TPFTRM(task partition based fault tolerant rate-monotonic)算法.该算法将单机实时 RM 算法扩展到容错多处理机上,
并且调度过程中从不使用主动执行的任务副版本,而仅使用被动执行和主副重叠方式执行的任务副版本,从而最大

限度地利用副版本重叠和分离技术提高了算法调度性能.此外,TPFTRM 根据任务负载不同将任务集合划分成两个

不相交的子集进行分配;还根据处理机调度的任务版本不同,将处理机集合划分成 3 个不相交的子集进行调度,从而

使 TPFTRM 调度算法便于理解、实现以及减少了调度所需要的运行时间.模拟实验对各种具有不同周期和任务负

载的任务集合进行了调度测试.实验结果表明,TPFTRM与目前所知同类算法相比,在调度相同参数的任务集合时不

仅明显减少了调度所需要的处理机数目,还减少了调度所需要的运行时间,从而证实了 TPFTRM 算法的高效性.
关键词: 硬实时;主副版本;容错;调度算法;多处理机;周期任务

∗ Received 2008-07-11; Accepted 2009-01-14

王健 等:容错多处理机中一种高效的实时调度算法 2629

中图法分类号: TP316 文献标识码: A

1 Introduction

In recent years, hard real-time systems have been used in many applications which have stringent timing
constraints, such as defense systems, air-traffic control systems, telecommunications and launch vehicle control. The
classic RM algorithm[1] is becoming an industry standard because of its simplicity and flexibility for preemptive
periodic hard real-time scheduling in uniprocessor[2]. However, scheduling algorithms in current hard real-time systems
require critical tasks be executed correctly and timely even in the presence of processor failures, thus have led to the
choice of multiprocessors systems as a natural candidate for them[3]. Some algorithms such as RMFF and RMST[4,5]
generalize RM to multiprocessor systems but none of them provides fault-tolerance. Therefore, many fault-tolerant
scheduling algorithms[2,6−11] have been proposed to extend RM to multiprocessor and meanwhile ensure that hard
real-time tasks meet their deadlines before as well as after the occurrence of a processor fault.

Most of these fault-tolerant scheduling algorithms are based on the Primary-Backup (PB) approach, which is one of
the most common fault-tolerant approaches in multiprocessors systems. In PB approach, each task has primary and
backup copies and the copies are scheduled on two different processors[12−14]. In general, PB approach provides a variety
of schemes and they can be partitioned into three broad classes. In the first class, backup copies are called passive
backup copies and when a primary copy fails, the passive backup copies are restarted on the backup processor. In the
second class, backup copies are called active backup copies which run concurrently with the primary copies. In the third
class, backup copies are called overlapping backup copies and their execution are started concurrently with the primary
copies but terminated when corresponding primary copies are successfully completed.

The most important metric for measuring the performance of a fault-tolerant scheduling algorithm in multiprocessor
is the used processor number. For a given task set, the less processor a fault-tolerant scheduling algorithm requires, the
better scheduling performance it has. Another metric is the computation time required by allocating tasks to processors,
although the task allocation happens only once in the scheduling (after tasks are assigned to processors, RM algorithm is
used to schedule them), the less task allocation computation time a scheduling algorithm requires, the better scalability it
has. However, according to these two metrics, none of the previous proposed algorithms[2,6−11] have good scheduling
performance for all the cases when the task set has different upper bound for the task load. Therefore, in this paper,
we present an efficient scheduling algorithm named Task Partition based Fault-Tolerant Rate-Monotonic (TPFTRM).
TPFTRM abandons active backup copies and only uses the passive and overlapping backup copies to maximize the
backup over-booking and deallocation, thus reduces the required processor number. Moreover, TPFTRM proposes
the task partitioning and processors grouping technique, which reduce the scheduling computation time and also
make an easy way to understand and implement it.

2 Related Work

Scheduling periodic hard real-time tasks on multiprocessor even without fault-tolerance consideration has been
found to be NP-hard, hence several heuristic algorithms have been proposed. Dhall and Liu firstly proposed
Rate-Monotonic First-Fit (RMFF) heuristic[4]. Burchard, et al. gave more refined Rate-Monotonic Small Tasks (RMST)
and Rate-Monotonic General Tasks (RMGT) heuristics[5]. Since RMFF, RMST and RMGT algorithms do not provide
fault-tolerance, Bertossi, et al. proposed Fault-Tolerant Rate-Monotonic First-Fit (FTRMFF) heuristic, which firstly
extends RMFF algorithm by combining in the same schedule both active and passive backup copies, thus exploiting
the advantages of PB fault-tolerant approach[2]. Later, the Efficient Fault-tolerant Rate-Monotonic Best-fit (ERMBF)

2630 Journal of Software 软件学报 Vol.20, No.10, October 2009

algorithm is proposed in Ref.[6] which uses the Best-Fit heuristic to improve scheduling performance. S-Priority
Passive algorithm (S-PR-Pass), Active Resource Reclaiming (ARR) algorithm and Deferred Active Backup-Copy
based Best-Fit (DABCBF) algorithms were also proposed in Refs.[7,8] which have better scheduling performance
than FTRMFF and ERMBF. Finally, they were extended to heterogeneous distributed environments and with
resource constrains in Refs.[9−11]. However, none of these algorithms[2,6−11] has good scheduling performance in all
the cases when the task set has different upper bound for the task load. S-PR-Pass and DABCBF algorithms have
better scheduling performance than ARR2 when tasks have light load while ARR2 algorithm has better scheduling
performance than S-PR-Pass and DABCBF when tasks have heavy load. Moreover, ARR2 algorithm is based on the
phasing delay technique which has a time offset restriction for the backup copies[7]. Therefore, in this paper, we
propose TPFTRM algorithm, which does not have any time offset restrictions and also requires little computation time;
and meanwhile TPFTRM has good scheduling performance as the same as S-PR-Pass when tasks have light load and
also has the similar scheduling performance as ARR2 when tasks have heavy load.

3 Problem Formulation

As for the fault-tolerance model, failure characteristics of the hardware are the following: (1) processors fail in
a fail-stop manner, which means a processor is either operational or cease functioning; (2) hardware provides fault
isolation mechanism, that is a faulty processor can not cause incorrect behaviors in a non-faulty processor; (3) the
failure of a processor is detected by the remaining ones within the closest completion time of a task scheduled on
the faulty processor[2]; (4) a second processor does not fail before the system recovers from the first failure.

A periodic task ti is characterized by a pair (Ci,Ti), where Ci is the computation time and Ti is the request (or
arrival) period. Each request of any task must be completely executed before the next request of the same task and
the first request of ti occurs at time 0. Wi denotes the worst-case response time of ti. Periodic tasks ti,…,tn are
independent and preemptive. The ratio Ui is the load (or utilization) of ti, which equals Ci/Ti and U is the load of the
task set t1,…,tn hence

1
i

i n
U U

≤ ≤

= ∑ .

In order to achieve fault tolerance, each task has two copies pi and bi, called primary and backup copies which
are located on different processors. For the sake of simplicity, it is assumed that each backup copy has the same
computation time and period parameters as its primary copy. The backup copy has three statues: active, passive and
overlapping. Oi denotes the length of the computation overlap between pi and bi. Therefore, the status of backup
copy is determined by the following:

,
() , 0

, 0 and

i i

i i

i i i

active O C
status b passive O

overlapping O O C

=⎧
⎪= =⎨
⎪ > <⎩

 (1)

All the task copies assigned to the same processor are scheduled by the RM algorithm. Given n periodic
independent tasks {ti,…,tn}, the fault-tolerant scheduling problem considered in this paper is to find a minimum
number of processors to ensure each task request can be executed by the end of its period before as well as after the
occurrence of a fault.

4 TPFTRM Scheduling Algorithm

When we allocate task primary and backup copies to processors, there are three questions we have to consider.
First, how should the algorithm decide the status for the backup copy? Second, what order should task copies follow
to be assigned to processors? Third, what criteria should be taken for checking the schedulability of task copies?

王健 等:容错多处理机中一种高效的实时调度算法 2631

The following sections will address these questions one by one.

4.1 Task partitioning and status of backup copy

In TPFTRM, primary copies are firstly partitioned into two groups according to Ui: Big task group B and small
task group S. Let g(pi) denote the group which pi belongs to, thus

, 0.5

()
, 0.5

i
i

i

S U
g p

B U
≤⎧

= ⎨ >⎩
 (2)

The reason to partition primary copies according to Ui is that passive backup copies can be used for all the
tasks whose Ui≤0.5 while they are not able to be used for the tasks whose Ui>0.5. As shown in Fig.1, there is not
any length of the computation overlap between pi and bi when Ui≤0.5 while in Fig.2, the length of the computation
overlap is Oi=2⋅Ci−Ti when Ui>0.5.

Fig.1 Passive backup is used Fig.2 Overlapping backup is used

Therefore, tasks in different groups have different status of the backup copy. In TPFTRM, the status of backup
copy is determined by the following:

, ()

()
, ()

i
i

i

passive g p S
status b

overlapping g p B
=⎧

= ⎨ =⎩
 (3)

Unlike previous algorithms[2,6−11], TPFTRM algorithm does not use active backup copies. The reason is that active
backup copy introduces more redundant computation time which has a big impact on the scheduling performance. In
contrast, passive and overlapping backup copies do not need execute if their primaries execute successfully hence reduce
the redundant computation time. Moreover, passive or overlapping copies whose primary copies are assigned to
different processors can be scheduled on the same processor so as to share the same time interval, which called the
backup overbooking technique[15], has great advantages of saving processors.

4.2 Processors grouping and assignment of tasks to processors

Unlike previous algorithms[2,6−11], TPFTRM divides processors into three groups to avoid mixing backup copies
and primary copies coming from different task groups on the same processor. Therefore, in TPFTRM, processors in the
first group G1 are only for primary copies coming from S; processors in the second group G2 are only for primary copies
coming from B; and processors in the third group G3 are only for passive or overlapping backup copies coming from S
and B.

The next problem we consider is what order the algorithm should follow to allocate primary and backup copies
to processors. One approach is called RMFF, which assigns task copies by decreasing RM priorities[2,8−10]. This
approach simplifies the algorithm since only lower priority tasks are assigned later to the same processor hence time
intervals for already assigned tasks will remain unchanged. Another approach is called RMST, which assigns task
copies by the increasing value si, where si=log2Ti−⎣log2Ti⎦

[5,7]. This approach allocates task copies whose periods are
equal to or multiple on the same processor, thus producing a more compact schedule and requiring fewer processors
when tasks have light load.

TPFTRM uses RMST approach to allocate task copies. The first reason is that it has better performance than

Ti Ti
CiCi

Oi

pi

bi bi

pi

t t

2632 Journal of Software 软件学报 Vol.20, No.10, October 2009

RMFF in many cases. The second reason is that in TPFTRM, the backup status has already been decided beforehand
and processors are also partitioned; hence using RMST won’t require much computation time than using RMFF. For
each task group, when we assign a task, we assign its primary copy before assigning its backup copy.

Theorem 1. In TPFTRM, if the overlapping part of an overlapping backup copy bi is able to be finished before
Wi on the processor Pj in the absence of failure, then it is also schedulable on Pj in the presence of a failure occurs
on Pf (Pf ≠ Pj).

Proof: Assume bi’s corresponding primary copy pi is assigned to the processor Pk. It is worth noting that pi is
the only one task copy located on Pk. (to prove this, assuming there is another task copy pm on Pk besides pi, then pi
and pm are both from task group B and not able to schedule on Pk because of Ui+Um>1). Firstly, assuming a fault
occurs on Pk, then Pj can reclaim all the time slots reserved for other passive or overlapping backup copies to
recovery pi. So if the overlapping part of bi is able to be finished before Wi, then the left unfinished part of bi is also
able to be finished before Ti. Secondly, assuming a fault occurs on Pf (Pf ≠ Pj and Pf ≠ Pk), then time slots reserved
for bi can be reclaimed by Pj to execute backup copies which have faulty primary copies.

In previous algorithms[2,6−11] except S-PR-Pass, to find a processor a task copy can be assigned to, both the
situations in which no processor fails and any processor fails have to be considered when checking the
schedulability of primary copies and overlapping backup copies. However, in TPFTRM, both the primary copies and
overlapping backup copies have only one condition to be checked, therefore, there are only three assignments and
schedulability testing cases in TPFTRM hence greatly reduces the computation time:

1) To assign a primary copy pi to a processor Pj, only one condition has to be checked.
• pi must be schedulable together with all the primary copies already assigned to Pj.

2) To assign a passive backup copy bi to a processor Pj, assuming its corresponding primary copy pi is
already assigned to processor Pf (Pf ≠ Pj), then only one condition has to be checked.
• pi must be schedulable together with all the passive backup copies assigned to Pj such that their

corresponding primary copies are all assigned to the same processor Pf.
3) According to theorem 1, to assign an overlapping backup copy bi to a processor Pj, only one condition

has to be checked.
• The overlapping part of bi must be schedulable together with the overlapping part of the other

overlapping backup copies already assigned to Pj.
If a task copy is not able to be assigned to any of existing processors, then the task copy is assigned to a new

processor.

4.3 Schedulability condition in TPFTRM

The classical Completion Time Test (CTT)[16] gives the following necessary and sufficient schedulability
criterion for independent periodic tasks:

Theorem 2. Let periodic tasks τ1,τ2,…,τn be given in priority order and scheduled by a fixed-priority
algorithm. All periodic requests of τi will meet deadlines if and only if

0 1
min / / 1

i
k kt T k i

C t T t
< ≤ ≤ ≤

⎧ ⎫
⋅ ≤⎡ ⎤⎨ ⎬⎢ ⎥

⎩ ⎭
∑ .

The entire set of tasks τ1,τ2,…,τn is schedulable if and only if

01 1
max min / / 1

i
k kt Ti n k i

C t T t
< ≤≤ ≤ ≤ ≤

⎧ ⎫
⋅ ≤⎡ ⎤⎨ ⎬⎢ ⎥

⎩ ⎭
∑ .

In this section, we extend the CTT for checking the schedulability of task copies in TPFTRM algorithm. Let τi
be a task copy (either the primary copy pi or the backup copy bi) to be assigned to a processor Pj. primary(Pj),

王健 等:容错多处理机中一种高效的实时调度算法 2633

passive(Pj) and overlapping(Pj) represent primary copies, passive backup copies and overlapping backup copies
assigned to processor Pj. recover(Pj,Pf) represents all the passive backup copies assigned to processor Pj with their
corresponding primary copies assigned to Pf.

Theorem 3. (1) Let primary copies p1,p2,…,pn be given in priority order and scheduled by TPFTRM. The
entire set of primary copies p1,p2,…,pn is schedulable on Pj (Pj∈G1) if and only if:

0() 1
max min / / 1

i ii j
k kt T Cp primary P k i

C t T t
< ≤ −∈ ≤ ≤

⎧ ⎫
⋅ ≤⎡ ⎤⎨ ⎬⎢ ⎥

⎩ ⎭
∑ .

(2) A primary copy pi is schedulable on Pj (Pj∈G2) if and only if Pj is the new processor.
Proof: In TPFTRM, processors in G1 or G2 only have primary copies allocated on them. Firstly, all the

primary copies in G1 must be executed completely no later than Ti−Ci to ensure that their passive backup copies
have enough time to recovery in the case a fault occurs. Secondly, each processor in G2 only has one primary copy
allocated on it. If two primary copies were assigned to Pj (Pj∈G2), then the requests of one of them would not meet
deadlines because no scheduling algorithm exits to schedule the task set with U>1.

Theorem 4. Let passive backup copies b1,b2,…,bn be given in priority order and scheduled by TPFTRM.
Assuming bi’s corresponding primary copy is already assigned to processor Pf (Pf ≠ Pj), then the entire set of passive
backup copies b1,b2,…,bn is schedulable on Pj (Pj∈G3) if and only if

0(,) 1
max min / / 1

i ii j f
k kt T Wb recover P P k i

C t T t
< ≤ −∈ ≤ ≤

⎧ ⎫
⋅ ≤⎡ ⎤⎨ ⎬⎢ ⎥

⎩ ⎭
∑ .

Proof: Unlike primary copy and active backup copy, the critical instant for a passive copy occurs not only
when bi and all the task copies with higher priority than bi are released simultaneously, but also when it is the first
request of bi which must be executed in the limited recovery period, which is shorter than the task period Ti and is at
least Ti−Wi time units long. Therefore, if bi is schedulable on Pj starting from the critical instant, which represents
the worst case, then it is also schedulable at any moment when its corresponding primary copy pi fails.

Theorem 5. Let overlapping backup copies b1,b2,…,bn be given in priority order and scheduled by TPFTRM.
Assuming bi’s corresponding primary copy is already assigned to processor Pf (Pf ≠ Pj), then the entire set of
overlapping backup copies b1,b2,…,bn is schedulable on Pj (Pj∈G3) if and only if

0() 1
max min / / 1

ii j
k kt Cb overlapping P k i

O t T t
< ≤∈ ≤ ≤

⎧ ⎫
⋅ ≤⎡ ⎤⎨ ⎬⎢ ⎥

⎩ ⎭
∑ .

Proof: According to theorem 1, we only need to test the schedulability of bi in absence of the failure. Pj
(Pj∈G3) has mixed passive and overlapping backup copies. However, the workload of passive backup copies can be
ignored in absence of the failure because passive backup copies are only executed when a fault occurs. For bi, its
overlapping part Oi equals 2⋅Ci−Ti and will execute Ti−Ci unfinished part when pi fails, therefore, Oi must be
finished before Ci, otherwise, when a fault occurs, bi will not meet its deadline Ti.

4.4 TPFTRM algorithm

Let P(τi) be the processor to which the task copy τi is assigned. The algorithm is described below:
1. Partitioning task copies into big task group B and small task group S according to Formula (2).
2. Set the status for backup copies according to Formula (3).
3. m represents the number of used processors in G1, v represents the number of used processors in G2, h

represents the number of used processors in G3. Initialize m, v and h to 0.
4. If S is empty, go to step 6. Otherwise, let primary copies p1,p2,…,pn (pi∈S) be indexed by the increasing

value si, where si=log2Ti−⎣log2Ti⎦; set m to 1 and allocate Pm to G1; set h to 1 and allocate ph to G3.
5. Repeat the following steps for i=1,2,…,n:

2634 Journal of Software 软件学报 Vol.20, No.10, October 2009

1) Assign the primary copy pi to the first processor Pj (Pj∈G1) on which the task set pi∪primary(Pj) is
schedulable by means of the formula given in Theorem 3; if no such a processor exists, set m to
m+1 and assign pi to Pm, setting P(pi)=Pm and allocate Pm to G1;

2) Assign passive backup copy bi to the first processor Pj≠P(pi) (Pj∈G3) on which the task set
bi∪recover(Pj,P(pi)) is schedulable by means of the formula given in Theorem 4; if no such
processor exists, set h to h+1 and assign bi to ph, setting P(bi)=ph and allocate ph to G3;

6. If B is not empty, let primary copies p1,p2,…,pk (pi∈B) be indexed by the increasing value si, where
si=log2Ti−⎣log2Ti⎦; repeat the following steps for i=1,2,…,k:
1) Set v to v+1 and assign pi to Pv, setting P(pi)=Pv and allocate Pv to G2;
2) Assign overlapping backup copy bi to the first processor Pj≠P(pi) (Pj∈G3) on which the task set

bi∪overlapping(Pj) is schedulable by means of the formula given in Theorem 5. If no such
processor exists, set h to h+1 and assign bi to ph, setting P(bi)=ph and allocate ph to G3;

7. Return the number m+h+v of processors used and the task assignment found.

5 Performance Evaluation

This section presents simulation results for the comparison of our algorithm and previous research. We use the
simulated method and task set as the same as that in Refs.[2,6−8]. Task sets with 100≤n≤1000 tasks are generated.
The parameters of each task τi are chosen as follows. The period Ti is an integer uniformly chosen from [1,500],
while the computation time Ci is an integer uniformly distributed in [1,αTi], where α=max(Ui) is the upper bound
for the task load. In this simulation, we use three values for α(0<α<1), which is 0.2, 0.5 and 0.8. For the chosen n
and α, the experiment is repeated 10 times and the average result is computed.

Let M be the number of processors used for scheduling both primary and backup copies. M/U(M/U>1) is the ratio
of processor number to task set load. Figure 3 shows the ratio M/U for the experiments executed by FTRMFF, ARR2,
S-PR-Pass and TPFTRM when α=0.2 while Fig.4 shows the same experiments when α=0.5. As shown in Figs.3 and 4,
TPFTRM and S-PR-Pass have the smallest M/U hence have the best performance, and as task number increases, their
advantages of saving processors are more obvious. It is worth noting that when α≤0.5, both TPFTRM and S-PR-Pass
only use passive backup copies hence have the same performance.

Fig.3 M/U ratios comparison when α=0.2 Fig.4 M/U ratios comparison when α=0.5

Figure 5 reports the comparison results when α=0.8. As shown in Fig.5, ARR2 has the smallest M/U hence have
the best performance. However, compared with ARR2, TPFTRM have the similar small M/U value and in the
meantime, TPFTRM does not have any time offset restrictions for backup copies. When α>0.5, TPFTRM uses
overlapping backup copies as well as passive backup copies hence have much better performance than S-PR-Pass which
only uses passive backup copies. It is observed that TPFTRM always has good scheduling performance in all the cases

Task numbers

200 400 600 800 1000

M
/U

1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0

S-PR-Pass
TPFTRM

FTRMFF
ARR2

Task numbers
200 400 600 800 1000

M
/U

1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0

S-PR-Pass
TPFTRM

FTRMFF
ARR2

王健 等:容错多处理机中一种高效的实时调度算法 2635

when the task set has different upper bound for the task load.
All the algorithms were written in Java and ran on a Windows 2000 PC with 1GB memory and Intel Pentium 4

2.26GHz. Figure 6 shows the total running time required by each algorithm in this simulation. As shown in Fig.6,
TPFTRM and SP-PR-Pass only take 5% of the running time required by FTRMFF and ARR2. We also get the
similar simulation results on other different PCs hence the conclusions are not dependent on a particular PC
platform.

Fig.5 M/U ratios comparison when α=0.8 Fig.6 Computation time comparison

6 Conclusion

In this paper, we propose TPFTRM algorithm which extends Rate-Monotonic algorithm to tolerate failures
based on the primary-backup approach. TPFTRM algorithm abandons active backup copies and only uses passive
and overlapping backup copies to maximize the backup over-booking and deallocation, thus improves the
scheduling performance. Moreover, another contribution of TPFTRM algorithm is that it partitions the task set into
two groups according to their load and partitions processors into three groups to avoid mixing backup copies and
primary copies coming from different task groups, which reduce the scheduling computation time and make an easy
way to understand and implement it. Simulation results also show a remarkable saving of processors as well as
scheduling computation time compared with previous algorithms. However, this paper has assumed that tasks are all
independent. Further research includes scheduling a set of tasks subject to precedence constraints or resource
requirements[11]. Also, further research includes looking for some new heuristics strategies for the task assignment
and extending to heterogeneous distributed systems.

References:
[1] Liu CL, Layland JW. Scheduling algorithms for multiprogramming in a hard real-time environment. Journal of the ACM,

1973,20(1):46−61.
[2] Bertossi AA, Mancini LV, Rossini F. Fault-Tolerant rate-monotonic first-fit scheduling in hard-real-time systems. IEEE Trans. on

Parallel and Distributed Systems, 1999,10(9):934−945.
[3] Manimaran G, Murthy CSR. An efficient dynamic scheduling algorithm for multiprocessor real-time systems. IEEE Trans. on

Parallel and Distributed Systems, 1998,9(3):312−319.
[4] Dhall SK, Liu CL. On a real-time scheduling problem. Operations Research, 1978,26(1):127−140.
[5] Burchard A, Liebeherr J, Oh YF, Son SH. New strategies for assigning real-time tasks to multiprocessor systems. IEEE Trans. on

Computers, 1995,44(12):1429−1442.
[6] Yang FM, Luo W, Pang LP. An efficient real-time fault-tolerant scheduling algorithm based on multiprocessor systems. Wuhan

University Journal of Natural Sciences, 2007,12(1):113−116.

Task numbers
200 400 600 800 1000

M
/U

2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0

S-PR-Pass
TPFTRM

FTRMFF
ARR2

Algorithm

2500

2000

1500

1000

500

0
FTRMFF ARR2 S-PR-Pass TPFTRM

C
om

pu
ta

tio
n

tim
e

(s
) Computation time

2636 Journal of Software 软件学报 Vol.20, No.10, October 2009

[7] Bertossi AA, Mancini LV, Menapace A. Scheduling hard-real-time tasks with backup phasing delay. In: Alba E, Turner SJ, Roberts
D, Taylor SJE, eds. Proc. of the 10th IEEE Int’l Symp. on Distributed Simulation and Real-Time Applications. Los Alamitos: IEEE
Computer Society, 2006. 107−116.

[8] Luo W, Yang FM, Pang LP, Li J. A real-time fault-tolerant scheduling algorithm for distributed systems based on deferred active
backup-copy. Journal of Computer Research and Development, 2007,44(3):521−528 (in Chinese with English abstract).

[9] Luo W, Yang FM, Pang LP, Tu G. A real-time fault-tolerant scheduling algorithm of periodic tasks in heterogeneous distributed
systems. Chinese Journal of Computers, 2007,20(10):1740−1749 (in Chinese with English abstract).

[10] Qin X, Jiang H, Swanson DR. An efficient fault-tolerant scheduling algorithm for real-time tasks with precedence constraints in
heterogeneous systems. In: Abdelrahman TS, ed. Proc. of the Int’l Conf. on Parallel Processing. Los Alamitos: IEEE Computer
Society, 2002. 360−368.

[11] Yang CH, Deconink G, Gui WH. Fault-Tolerant scheduling for real-time embedded control systems. Journal of Computer Science
& Technology, 2004,19(2):191−202.

[12] Qin X, Han ZF, Pang LP, Li SL. Design and performance analysis of a hybrid real-time scheduling algorithm with fault-tolerance.
Journal of Software, 2000,11(5):686−693 (in Chinese with English abstract). http://www.jos.org.cn/ch/reader/view_abstract.aspx?
flag=1&file_no=20000516&journal_id=jos

[13] Qin X, Pang LP, Han ZF, Li SL. Algorithms of fault-tolerant scheduling in distributed real-time systems. Chinese Journal of
Computers, 2000,23(10):1056−1063 (in Chinese with English abstract).

[14] Yang CH, Gui WH, Ji L. A fault-tolerant scheduling algorithm of hybrid real-time tasks based on multiprocessors. Chinese Journal
of Computers, 2003,26(11):1479−1486 (in Chinese with English abstract).

[15] Ghosh S, Melhem R, Mosse D. Fault-Tolerance through scheduling of aperiodic tasks in hard-real-time systems. IEEE Trans. on
Parallel and Distributed Systems, 1997,8(3):272−284.

[16] Joseph M, Pandya P. Finding response times in a real-time system. The Computer Journal, 1986,29(5):390−395.

附中文参考文献:
 [8] 罗威,阳富民,庞丽萍,李俊.基于延迟主动副版本的分布式实时容错调度算法.计算机研究与发展,2007,44(3):521−528.

 [9] 罗威,阳富民,庞丽萍,涂刚.异构分布式系统中实时周期任务的容错调度算法.计算机学报,2007,20(10):1740−1749.

[12] 秦啸,韩宗芬,庞丽萍,李胜利.混合型实时容错调度算法的设计和性能分析.软件学报,2000,11(5):686−693. http://www.jos.org.cn

/ch/reader/view_abstract.aspx?flag=1&file_no=20000516&journal_id=jos

[13] 秦啸,庞丽萍,韩宗芬,李胜利.分布式实时系统的容错调度算法.计算机学报,2000,23(10):1056−1063.

[14] 阳春华,桂卫华,计莉.基于多处理机的混合实时任务容错调度.计算机学报,2003,26(11):1479−1486.

WANG Jian was born in 1982. He is a
Ph.D. candidate at the Zhejiang University
and a CCF student member. His current
research areas are real-time scheduling and
fault-tolerant computing.

 YANG Xiao-Hu was born in 1966. He is a
professor at the Zhejiang University. His
current research areas are software
engineering and software technology
financial services.

SUN Jian-Ling was born in 1964. He is a
professor at the Zhejiang University and a
CCF senior member. His current research
areas are real-time systems and database
systems.

 WANG Shen-Kang was born in 1945. He
is a professor at the Zhejiang University.
His current research areas are distributed
computing.

WANG Xin-Yu was born in 1979. He is a
lecturer at the Zhejiang University. His
current research areas are software
engineering.

 CHEN Jun-Bo was born in 1979. He is a
Ph.D. candidate at the Zhejiang University.
His current research areas are distributed
computing and data mining.

