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Abstract: An improved impossible differential attack on the block cipher CLEFIA is presented. CLEFIA was
proposed by Sony Corporation at FSE 2007. Combining some observations with new tricks, the wrong keys are
filtered out more efficiently, and the original impossible differential attack on 11-round CLEFIA-192/256 published
by the designers, is extended to CLEFIA-128/192/256, with about 2'%* encryptions and 2'%%* chosen plaintexts. By
putting more constraint conditions on plaintext pairs, we present an attack on 12-round CLEFIA for all three key
lengths with 2% encryptions and 2'%* chosen plaintexts. Moreover, a birthday sieve method is introduced to
decrease the complexity of the precomputation. And an error about the time complexity evaluation in Tsunoo et al.’s
attack on 12-round CLEFIA is pointed out and corrected.
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1 Introduction

Impossible differential cryptanalysist™! is a sieving attack which considers a differential with probability 0. If a
pair of plaintexts (or ciphertexts) is encrypted (or decrypted) to such a difference under some trial key, we filter out
this trial key from the key space. Thus, the correct key is found by eliminating all the other keys which lead to a
contradiction. Impossible differentials depend on the basic structure of the block ciphers which are often used, and
this method is a particular threat to the generalized Feistel structure.

CLEFIAR is a new 128-bit block cipher, developed by Sony Corporation. Compatible with AES, CLEFIA
supports three different key lengths (128, 192 and 256 bits), which is denoted as CLEFIA-128, CLEFIA-192 and
CLEFIA-256, respectively. The fundamental structure of CLEFIA is a generalized Feistel structure consisting of 4
data lines. Sony claimed that the CLEFIA is designed to concentrate state-of-the-art cryptanalysis techniques, and
achieves sufficient immunity against known cryptanalytic attacks.

Since CLEFIA was unveiled at Fast Software Encryption (FSE) 2007, there have been several papers on its
security analysis. The security and performance evaluations!! published by Sony Corporation examines its security
against some well-known attacks, such as differential cryptanalysis, linear cryptanalysis, impossible differential
cryptanalysis, etc. Differential fault analysis was presented in Ref.[5], which shows that only about 18 faulty
ciphertexts are needed to recover the entire 128-bit secret key and about 54 faulty ciphertexts are enough for
192/256-bit key. References [6,7] propose impossible differential cryptanalysis on 12-round CLEFIA-128/192/256,
13-round CLEFIA-192/256, and 14-round CLEFIA-256, independently.

Using a structure-dependent 9-round impossible differential, the impossible differential attacks presented in
Ref.[4] analyze the 10-round CLEFIA-128/192/256, 11-round CLEFIA-192/256, and 12-round CLEFIA-256
without key whitenings. Observing the inner structure of the F-functions, we conclude that the time complexity of
these attacks can be decreased by some table lookups and sieving less subkey space. And a birthday sieve method is
introduced to reduce the time complexity of the precomputation. By these observations, our attack on 11-round

2103.1 2188 2103.5

CLEFIA only takes 2! encryptions and chosen plaintexts, instead of the original encryptions and

chosen plaintexts. Moreover, combining with a special way to choose plaintext pairs, we show that attack on
12-round CLEFIA-128/192/256 takes 2''*! time complexity and 2''*! data complexity. Reference [6] explores the

relations with the branch number of the matrices, and publishes some new 9-round impossible differences, of which

2118.8 2118.9

the complexity of the attack on 11-round CLEFIA is 2*88 chosen plaintexts and chosen

2118.9

encryptions, and
plaintexts and
complexity of the precomputation (which will be explained later), so that the time complexity of the attack on
12-round CLEFIA is 2'?8 encryptions actually. Using a similar kind of birthday sieve method to choose plaintext

encryptions for 12-round version. However, we found out that Ref.[6] neglects the time

pairs and doing the key recovery process as described in our attacks, we correct this mistake.

This paper is organized as follows: in Section 2, we give a brief description of CLEFIA. Section 3 summarizes
some important observations on CLEFIA. We present the attacks applicable to 11-12 round CLEFIA with all three
key variants, and correct the error of Ref.[6] in Section 4. Finally, Section 5 concludes this paper.

2 Description of CLEFIA

2.1 Notations

We first describe the notations used throughout this paper.
Por P': A 128-bit plaintext;
Cor C': A 128-bit ciphertext;
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C": The 128-bit output of the r-th round;

C/ : The i-th 32-bit word of C", i=0,1,2,3;

AA: The XOR value of 4 and 4', i.e., the value of A®4’;

F" : The function F; involved in the r-th round, i=0,1;

InS! : The 32-bit value after the key addition in F;", i.e., the input to the S-boxes involved in £ ;
A>>>x: The rotation of 4 to the right by x-bit positions;

A<<<x: The rotation of 4 to the left by x-bit positions;

alb: The concatenation of a and b;

a™: The transposition of a vector a.

2.2 Data processing part of CLEFIA

CLEFIAR® is a 128-bit block cipher with key length of 128, 192 and 256 bits. It employs a generalized Feistel
structure with four data lines, where the width of each data line is 32 bits. Additionally, there are key whitening
parts at the beginning and the end of the cipher. Figure 1 shows the encryption process of r-round CLEFIA.

Py Py P, P3

Fig.1 Encryption process of r-round CLEFIA

Let WK,, WK1, WK,, WK3e{0,1}*? be whitening keys, and RK;<{0,1}*? (0<i<2r) be round subkeys produced
by the key scheduling part. For a 128-bit plaintext P=Py|P1|P,|Ps, we compute the ciphertext C=Cy|Cy|C,|C3 as
follows:

1) C=PB, CC=R®WK,, C3=F,, Cj=P®WK,.

2) For i=1to r-1,

C=C @FR(CRK;,), (=G G=C @F(C,RK,,), =G
3) G =Gty O =G OFR(CRK, ) OWK,, C;=C", C=C"®F(CRK,, ) ®WK,;.
The round number » can be 18, 22 and 26 for CLEFIA-128, CLEFIA-192 and CLEFIA-256, respectively, and

the two F-functions Fyy and F are described in the following.
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Denote the 32-bit output of F-function as 7, where T,=T,,|T,,|T,,|75, Tid.e{o,l}8 (/=0,1,2,3). Then
Fy(Ci* RK,, ,) (1<i<r) is computed as follows (see Fig.2):

1) T,=RK, ,®Cy".

2) To=5T0) T,y =5T1), T, = So(T; ), T3 = S,(T5)-

3) (T TuT, 1T, =My(To | T4 1 T, 1 T;5)"

Here, Sy and S; are two nonlinear 8-bit S-boxes, and M, is a 4x4 Hadamard-type matrix. The computation of
F(Cy*RK,, ) (1<i<r) is similar to that of F, where Sy, Sy and M, are replaced with Sy, Sp and M;, respectively (See
Fig.2).

RK3i20 RK3i21 RK3i 272 RKji23

i-1
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Fo
RK3i-10 RKyi11 RKi-12 RKi13
) |
-
20
cit ® | >
21
-] -
i1
G
; >
i
2,3
T

Fig.2 F-Functions

We suppose that all the round subkeys and whitening keys are independent of each other, and omit the
description of the key scheduling part.

3 Some Observations on CLEFIA

This section describes some important observations on CLEFIA which are the basis of our efficient attacks on
reduced CLEFIA. Proposition 1 recalls the two 9-round impossible differentials presented in Ref.[4]. Our attacks
utilize the same impossible differentials. However, we explore more technique details, such as Proposition 2 and 3,
to achieve a prominent improvement. Independently, similar observations are used in Ref.[6].

Proposition 1 (impossible differentials of 9-round CLEFIAM™). For 9-round CLEFIA, given a plaintext pair
with difference (0,,0,0) (or (0,0,0,a)), where ae{0,1}% is any non-zero value, the output difference can’t equal
(0,,0,0) (or (0,0,0,)). Denote the two 9-round impossible differentials as

0,,0,0) >5 (0,,0,0) and (0,0,0,&) > (0,0,0,cr) .

The correctness of Proposition 1 can be verified easily.

By observing the inner structure of F-functions, we find that the time complexity of attacks in Ref.[4] can be
decreased by fast searching the 32-bit subkeys involved in F-functions with the help of XOR distribution tables of
S-boxes!®,

Proposition 2. For the F-function F (F, or Fy), let (In,In") be two 32-bit inputs, and AOut be the XOR value of
the corresponding output, the 32-bit subkey RK involved in F can be recovered with about one F-computation.

KA
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Proof: Because the diffusion matrix M is linear and invertible and AOut is known, we can easily compute the
input difference of M, i.e., the output differences of four S-boxes. Therefore, for each S-box in F, we get the input
XOR and the corresponding output XOR. Then it is easy to obtain the input of each S-box by searching the XOR
distribution tables of the S-box. From the description of F-function, we can see that the concatenation of the four
inputs to the four S-boxes is the XOR value of /n and RK.

Thus, the 32-bit subkey RK can be derived from /n. The time complexity is about one F-computation. O

Usually, the efficiency of the impossible differential attack depends on the subkey space related to the
impossible differential. For 11-round CLEFIA-192/256, impossible differential attack!! sieves 128-bit subkeys
involved in rounds 10 and 11. The following proposition is an important phenomenon that can be used to sieve only
96-hit subkey instead of 128-bit.

Proposition 3. For r-round CLEFIA, let RK,,_3 and RK,,_4 be subkeys in the (r—1)-th round, RK,,_; and RK;,_,
be subkeys in the r-th round, WK, and WKj be the whitening keys in the final round, and C" =(C; |C] |C, | C;) be
the ciphertext, the following two equations reveal the correlations among subkeys WK,, WK3, RK;,_3 and RK,_4

WK,® RK,, , =InS;™ ® F/ (Cy,RK,, ;) ®C} )
WK,® RK,, ,=InS; " ® F, (C,RK,, ,) ®Cy )
Here, InS;™ and InS]™" are the inputs to the four S-boxes of F;"and £ ™ in the (»—1)-th round, respectively.

Proof: From the encryption algorithm, we obtain that C; =C;™" and Cj =C;7 @ E'(C; ™ RK,, ;) ® WK, .
Then it is clear that C; =C; ™ ® E'(C},RK,, ) ® WK, .

Since C;'=C;* and InS; " =C; 2 ®RK,, ,, we know that

C;=C ?®F(Cy,RK,, |)®WK, = InS; " ®RK,, ,® F (C;,RK,, ;) ®WK,

i.e., WK,®RK, ,=InS;"®F (C;,RK, ,)®C;.

Similarly, we can prove that Eq.(2) holds. [

Furthermore, for the 1st and 2nd rounds, there are two similar equations about WK ®RK, and WK, ®RK;

WK,® RK, = InS; ® F (P, RK,) ® P, and WK,® RK,=InS} ® F'(F,,RK,)® B, .

4 Impossible Differential Attacks on CLEFIA-128/192/256

This section presents impossible differential attacks on 11-12 rounds CLEFIA based on the 9-round impossible
differentials in Ref.[4], and corrects the mistake of the attack on 12-round variant presented in Ref.[6]. The main
attack process is: Firstly, select many structures of specific plaintexts, and sieve the pairs satisfying the required
output differences. Secondly, for each sieved pair, discard the wrong subkeys which cause the partial encryption and
decryption to match the impossible differential. Finally, analyze enough pairs, and sieve the correct subkey.

4.1 Attack on 11-round CLEFIA

This section describes the key recovery attack on 11-round CLEFIA with two additional rounds at the end of
the 9-round impossible differential as the preparation for attacks in the following sections. For simplicity of
explanation, we regard the first-round output as plaintext and present the attack procedure for the 11-round from the
second to the 12-th round. We use the same 9-round impossible differential (0,«,0,0) > (0,«,0,0) in Sections 4.1
and 4.2. Different from Ref.[4], the attack recovers the 96-bit subkey (RK»,RK3,RK,0®WK3) by Proposition 3
instead of recovering the 128-bit subkey (RK,o,RK2,RK,3,WK3). Combining with Proposition 2, the total time
complexity can be improved from 2 encryptions to 21%* 21081

better than Ref.[6], which needs about 2188 encryptions and 2188 chosen plaintexts. See Fig.3 for the following

encryptions with chosen plaintexts. And the result is
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attack.
Input 0 a 0 0
difference
-k,
9-round
impossible
differential
Output
difference g ¥ 0 a
Fig.3 Impossible differential attack on 11-round CLEFIA
Sieving pairs.

A structure composed of 2% plaintexts is defined as follows:

S={Po,P1®,P,,P3|Po,P1,P,,Ps are fixed, non-zero a{0,1}**}.

By the encryption process of CLEFIA, only the plaintext pair with ciphertext difference AC=(f,7,0,a) may result
from AC*°=(¢,0,0,0), where Se{0,1}** and y={0,1}* are non-zero. It is clear that every two structures can produce
about one pair with the target ciphertext difference. In our attack, about 2" such plaintext pairs are necessary to sieve
2™ such structures.

plaintext pairs from 27%* structures totally, we need to explore a fast algorithm to obtain

the right key. So, we choose

Because there are 2131
the 27°* pairs. We employ a type of birthday sieve to search these pairs more efficiently.

Birthday Sieve Algorithm 1.

For each structure, we fulfill the following steps.

1) For each plaintext P, compute C=(P>>>64)®C, where C is the corresponding ciphertext.

2) Store the 2%2 values of C in a table.

3) Search (P,P’) with the corresponding AC=(/3,7,0,0) by the birthday attack.

4) Output (P,P).

It is clear that AC=(5,70,e) if and only if AC=(8,%0,0). So, the above algorithm outputs one plaintext pair
corresponding to AC=(3,7,0,) with probability 1/2. From the birthday attack!®, the time complexity is only 2°2 XOR
computations, and the table memory is about 2** words. Thus, we can obtain 2"%! pairs with about 2!%*! XOR
computations by neglecting the table lookups.

R AHIETO
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Recovering the subkey (RK,»,RK53,RK>,(® WK3).

We discard the subkeys which cause the partial decryption of the selected pair to match AC*°=(,0,0,0).

For each pair with ciphertext difference AC=(5,7,0,a), it is obvious that ACY’ = ACY = ACY =« .

From G’ =Cy @ F(C,RK,,), C'=Cy and ACy =0, itisclearthat AC® =0 ifandonlyif AC;>=0.

Thus, we only need to discard the subkeys which leadto AC°=0 and AC}’ =0.

For each ciphertext pair (C,C’") with AC=(8,%0,¢), we can detect 2°2 wrong subkeys (RKy,RKys3,RKx®WK3)
which suggest the impossible differential as follows:

1) For AC=0,since C'=C,,itisequivalentto AC' =0.

We obtain AF2=AC? by C?=C"® F"(CY RK,,) ®WK, .
From Ci'=C¥ and CM=C?, the subkey RK, can be calculated with one F-computation according
to Proposition 2.
2) For ACP=0,wehave AF'=AC? by Ci'=C@F'(C)°,RK,) and C3'=C2.
Because the corresponding input XOR AC;’ =, InS;' is calculated by Proposition 2.
For each RK,3e{0,1}*, by Proposition 3, we can deduce that
RK,, ® WK, = InSt* ® F?(C3? ,RK ;) ® C* .
So, we totally obtain 2°2 possible values of RK,@® WK, with about 2% F-computations.

Summing up 1) and 2), for each pair, we can filter out 2% wrong subkeys (RK,,,RK»3,RK>0®WKs3) which
support the impossible differential in about 2% F-computations. A wrong (RK»y,RK»3,RK0®WK3) survives with
probability 1-2°%. After analyzing 27°* pairs, the number of the remaining subkeys is 2% -(1-2%)*"" ~0.13 <1.
That is to say, only the right subkey (RK»,RK»3,RK,q@WK3) is left. This completes our attack.

Complexity evaluation.

The data complexity of the attack is about 270-1+32*1=103.1

chosen plaintexts. The time complexity for obtaining
the ciphertexts is 2'°' encryptions and the time complexity of sieving the right key is about 270%.232=21021
F-computations. Using rough equivalence of 2* F-computations to one encryption, the 2'%! F-computations are

equivalent to about 2°* encryptions.

4.2 Attack on 12-round CLEFIA

We extend the attack on 11-round variant described above to 12-round, by one additional round on the
plaintext side. However, the direct extension needs to recover the 32-bit subkey RK; in addition to RK5,, RK,3; and
RK,0®WK3, which will a little exceed the complexity of the exhaustive attack. Thus we put more constraint
conditions on the plaintext difference to enforce the first two bytes of AC; and AC° to be zero. In this way,
instead of the original 128-bit subkey (RK3,RK;,,RK53,RK0®WKs3), there exists only 96-bit subkey (RK;,,RKj 3,
RKY , » RK, 5, RK55, RK>3), which is related to the impossible differential, where RKj,, and RKj,, denote the
last two bytes of RK,(@WK3, respectively.

Sieving pairs.

For all the 2'° possible «, of which the first two bytes are zero, we compute a table H; to store the 2*° values of
Mi(e) and a table H, to store the 2° values of My(c). Because M; is linear, for &,8<H;, it is obvious that
6®oeH,;. SO is M.

Choose a structure of 2% plaintexts as follows (See Fig.4):

S={Po,P1,P,®a,Ps®|Py,P1,P>,P5 are fixed, the first two bytes of « are zero and the other two take 2'°
possibilities,oe H,}.

R AHIETO
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Fulfilling Algorithm 1 in Section 4.1, in which C is selected as (P>>>32)®C, we can easily search a pair such
that AC=(3,7,0,), where ${0,1}*? and y<{0,1}* are non-zero. Then choose the ciphertext pairs satisfying S H,,
of which the probability is 27, Thus, 27*'x such pairs can be found by searching » structures, where n is
determined later.
Input 0O 0 a=(0,0,*%) SeH,
difference
RKo  Dawk,| BE Dewk

Fig.4 Choice of plaintext in 12-round attack

Recovering the subkey (RK; 2,RK1 3,RK2,RK>3, RK3y 5  RKjq 5 ).

For each selected pair, because the first two bytes of M;"(5) and « are zero, we know that the input XOR
and output XOR of the first two S-boxes involved in F' are zero. Therefore, only the last 16-bit (RK; ,,RK; 3) Of
RK, affects ACj. Similarly, since the input XOR and output XOR of the first two S-boxes involved in F' are
zero, only the last 16-bit ( RK}, , , RK», ;) affects AC;°. Thus, we only need to discard 96-bit wrong subkeys (RK ,,
RK; 3,RK2,RK53, RK}, , , RK}, 5) involved in the impossible differential in the following way.

1) To take advantage of the attack presented in Section 4.1, we need to guarantee that the output difference
of the first round AC*=(0,2,0,0). By Ci=R® F,'(B,RK,)®WK, and AP=(0,0,a,), the selected pairs
already satisfy AC:=AP =0, ACI=AP,=a and AC;=AP,=0. So we only compute the 16-bit
subkey (RKy2,RK1 3) Which cause the partial encryption of the pair to match AC; =0.
From C;=FE" (B, RK,)® P,®WK,, it is clear that E'(F,RK,)=C; ® B,®WK, . Thus, if AC;=0, then
AF" = AP,. As the two inputs of F' are P, and P, one 16-bit subkey (RKy2,RK33) can be computed
with one F-computation on average by Proposition 2.

2) Then we can deduce 2% wrong subkeys (RK,y,RKos, RK},, ,RK}, 5) by the same method as that in

Section 4.1. This step takes about 2% F-computations.
To sum up, for each collected pair, we can filter out 2°2 wrong 96-bit subkeys (RK »,RK1 3,RK5,RK23, RK}, , ,

2\ n
RK},,) in about 2% F-computations. The expected » is about 27-2%4.96.In2~2%"! by 296-[1—2%] <1.
' 2

Therefore, after analyzing 2%"1-277=2""" pairs, only the right (RK: 2,RK:1 3,RK2,RKy3, RK}, , , RK}, ;) is left.
Complexity evaluation.
The data complexity is about 2%2.,=21%1 chosen plaintexts.
The time complexity of obtaining the ciphertexts is 211%*

The time complexity of choosing the useful pairs is 21191:2%2.2%2421191.232.9-1.51191 X OR computations.
2119.1+232

encryptions.

Here, is the number of structures. For each structure, we have to do 2% XOR operations to apply the

birthday sieve. Then for the 2'*%1+2%2.27! sieved pairs, we compute the XOR of them to choose the one we want.

R AHIETO
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The time complexity of sieving the right key is 27°1.232=21921 F_computations, which equals 2°®* encryptions.
4.3 Analysis of Tsunoo et al’s attack on 12-round CLEFIA

In Section 3.3 of Tsunoo, et al.’s attack'®, the authors present an impossible differential attack on 12-round
CLEFIA, with complexity of 289 chosen plaintexts and 2%%° encryptions. However, they neglect the time
complexity of the precomputation, i.e., the time complexity of choosing plaintext pairs, which is about 2!%>°
encryptions. First, we explain this error, and then correct it using the birthday sieve method and key recovery
process similar to Section 4.2.

4.3.1 Anerror in Tsunoo et al’s attack on 12-round CLEFIA

The authors use a new 9-round impossible differential (0,0,0,(0,0,0, X)) > (0,0,0,(Y,0,0,0)) , where (0,0,0,X)
and (7,0,0,0) are 32-bit word, X and Y are non-zero bytes. Replacing the original impossible differential (in Fig.3)
with the new one, we can easily see that the difference of ciphertexts pair must be (0,(Y,0,0,0),5,7) and the
difference of the second round input must be (0,0,0,(0,0,0,X)). Here, S represents the 255 values that can be obtained
as the output difference when the input difference for M is (¥,0,0,0), and y is a 32-bit non-zero word.

The left is to choose the plaintext pairs of which the difference of the first-round output is (0,0,0,(0,0,0,X)).
Ref.[6] does as follows:

1)  Choose a set of 2*° plaintexts, where AP=((0,0,0,X)5,0,0), and Jis a non-zero 32-bit word.

2) For a chosen plaintexts set, guess RKos®WKos= RK}, <{0,1}° to split the 2%° plaintexts set into 2%

structures. Each structure contains 28 plaintexts, of which any two satisfy AC'=(0,0,0,(0,0,0,X)).

It is obvious that, for each set and each guessed RK,, we have to do 2%2.(2%.27)=2*" XOR operations to select
the proper pairs with AC=(0,(¥,0,0,0),3). Thus, for all the 2° possible values of RK;, and the 2"*° chosen

plaintexts which is equivalent to 2° sets, the time complexity of the plaintext choice method is about 28.2789.247=
21339 X OR operations. Using rough equivalence of 28 XOR operations to one encryption, the 2133 XOR operations

equals to about 2'%>° 21189

encryptions, which is larger than encryptions.
4.3.2 Correction of the error

We can correct this error by doing the key recovery attack as that in Section 4.2.

Sieving pairs.

For all the 28 possible 2=(0,0,0,X), compute a table H| to store the 28 values of M;(c) and a table H; to
store the 28 values of My(). Choose a structure of 2° plaintexts as follows:

S={Py®(0,0,0,X),P,®5,P,,P3|Po,P1,P,,P3 are fixed,oe H, }.

Due to the birthday attack, for each structure, we can collect one pair, of which the first word difference of the
ciphertext is zero, in 2! XOR operations with probability 272, For 21*%° chosen plaintexts, we can get 2118°:216.2-1=
21%% sych pairs. Then by simply compute the XOR values of any two ciphertexts, we sieve the ones with
AC=(0,(7,0,0,0),,7), where Be H, . In this way, we can get 2'%°.2748=2%3 pairs. This precomputation takes about
21189, 916,16, 9101951189 % OR operations <2''8° encryptions.

Recovering the subkey (RKj3,RK75,RK23, RK7, ).

This part is similar to Ref.[6], except that we compute the value of RK,, instead of guessing it, which is just
as what done in Section 4.2. Therefore, for each collected pair, we can filter out 2%2 wrong 80-bit subkeys (RKy 3,
RK7,RK 3, RK}, ) in about 2% F-computations. After analyzing 2°*° pairs, only the right ( RK ; ,RK2;,RK73, RK}, ) is
left.

By the above method, the data and time complexity of the 12-round attack in Ref.[6] is 28

and 218° encryptions, which is the same as they announced.

chosen plaintexts
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5 Conclusions

In this paper, we present a chosen-plaintext attack on reduced CLEFIA-128/192/256. Table 1 shows the
comparison among the attacks in Refs.[2,4,6] and ours. Note that there is an error in 12-round attack of Ref.[6], so we
mark the time complexity of them with “*”. We explore some observations and tricks to extend the impossible
differential attack to 11-12 rounds CLEFIA-128/192/256 based on the impossible differentials presented in Refs.[2,4],
which only cryptanalyze 10-round variant. Moreover, a birthday sieve method is introduced to greatly reduce the time
complexity of the precomputation. Finally, we point out the error in Ref.[6], correct it with birthday sieve to choose
plaintext pairs, and present a different key recovery process.

Table 1 Summary of impossible differential attacks on reduced CLEFIA-128/192/256

Refs.[2,4] Ref.[6] This paper
Number of rounds 10 11 12 11 12 12!
Data complexity 2101,7 2118.8 2118,9 2103,1 2119,1 2118,9
Time Complexity 2101,7 2118.8 2118,9* 2103,1 2119,1 2118,9

1: We correct Tsunoo, et al.’s attack on 12-round CLEFIA[®!
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