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Abstract:  An improved impossible differential attack on the block cipher CLEFIA is presented. CLEFIA was 
proposed by Sony Corporation at FSE 2007. Combining some observations with new tricks, the wrong keys are 
filtered out more efficiently, and the original impossible differential attack on 11-round CLEFIA-192/256 published 
by the designers, is extended to CLEFIA-128/192/256, with about 2103.1 encryptions and 2103.1 chosen plaintexts. By 
putting more constraint conditions on plaintext pairs, we present an attack on 12-round CLEFIA for all three key 
lengths with 2119.1 encryptions and 2119.1 chosen plaintexts. Moreover, a birthday sieve method is introduced to 
decrease the complexity of the precomputation. And an error about the time complexity evaluation in Tsunoo et al.’s 
attack on 12-round CLEFIA is pointed out and corrected. 
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摘  要: 对分组密码算法 CLEFIA 进行不可能差分分析.CLEFIA 算法是索尼公司在 2007 年快速软件加密大会

(FSE)上提出来的.结合新发现和新技巧,可有效过滤错误密钥,从而将算法设计者在评估报告中给出的对 11 圈

CLEFIA-192/256 的攻击扩展到 11 圈 CLEFIA-128/192/256,复杂度为 2103.1 次加密和 2103.1 个明文.通过对明文附加

更多限制条件,给出对 12 圈 CLEFIA-128/192/256 的攻击,复杂度为 2119.1 次加密和 2119.1 个明文.而且,引入一种新的

生日筛法以降低预计算的时间复杂度.此外,指出并改正了 Tsunoo 等人对 12 圈 CLEFIA 的攻击中复杂度计算方面

的错误. 
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1   Introduction 

Impossible differential cryptanalysis[1] is a sieving attack which considers a differential with probability 0. If a 
pair of plaintexts (or ciphertexts) is encrypted (or decrypted) to such a difference under some trial key, we filter out 
this trial key from the key space. Thus, the correct key is found by eliminating all the other keys which lead to a 
contradiction. Impossible differentials depend on the basic structure of the block ciphers which are often used, and 
this method is a particular threat to the generalized Feistel structure. 

CLEFIA[2,3] is a new 128-bit block cipher, developed by Sony Corporation. Compatible with AES, CLEFIA 
supports three different key lengths (128, 192 and 256 bits), which is denoted as CLEFIA-128, CLEFIA-192 and 
CLEFIA-256, respectively. The fundamental structure of CLEFIA is a generalized Feistel structure consisting of 4 
data lines. Sony claimed that the CLEFIA is designed to concentrate state-of-the-art cryptanalysis techniques, and 
achieves sufficient immunity against known cryptanalytic attacks. 

Since CLEFIA was unveiled at Fast Software Encryption (FSE) 2007[2], there have been several papers on its 
security analysis. The security and performance evaluations[4] published by Sony Corporation examines its security 
against some well-known attacks, such as differential cryptanalysis, linear cryptanalysis, impossible differential 
cryptanalysis, etc. Differential fault analysis was presented in Ref.[5], which shows that only about 18 faulty 
ciphertexts are needed to recover the entire 128-bit secret key and about 54 faulty ciphertexts are enough for 
192/256-bit key. References [6,7] propose impossible differential cryptanalysis on 12-round CLEFIA-128/192/256, 
13-round CLEFIA-192/256, and 14-round CLEFIA-256, independently. 

Using a structure-dependent 9-round impossible differential, the impossible differential attacks presented in 
Ref.[4] analyze the 10-round CLEFIA-128/192/256, 11-round CLEFIA-192/256, and 12-round CLEFIA-256 
without key whitenings. Observing the inner structure of the F-functions, we conclude that the time complexity of 
these attacks can be decreased by some table lookups and sieving less subkey space. And a birthday sieve method is 
introduced to reduce the time complexity of the precomputation. By these observations, our attack on 11-round 
CLEFIA only takes 2103.1 encryptions and 2103.1 chosen plaintexts, instead of the original 2188 encryptions and 2103.5 
chosen plaintexts. Moreover, combining with a special way to choose plaintext pairs, we show that attack on 
12-round CLEFIA-128/192/256 takes 2119.1 time complexity and 2119.1 data complexity. Reference [6] explores the 
relations with the branch number of the matrices, and publishes some new 9-round impossible differences, of which 
the complexity of the attack on 11-round CLEFIA is 2118.8 chosen plaintexts and 2118.8 encryptions, and 2118.9 chosen 
plaintexts and 2118.9 encryptions for 12-round version. However, we found out that Ref.[6] neglects the time 
complexity of the precomputation (which will be explained later), so that the time complexity of the attack on 
12-round CLEFIA is 2125.8 encryptions actually. Using a similar kind of birthday sieve method to choose plaintext 
pairs and doing the key recovery process as described in our attacks, we correct this mistake. 

This paper is organized as follows: in Section 2, we give a brief description of CLEFIA. Section 3 summarizes 
some important observations on CLEFIA. We present the attacks applicable to 11-12 round CLEFIA with all three 
key variants, and correct the error of Ref.[6] in Section 4. Finally, Section 5 concludes this paper. 

2   Description of CLEFIA 

2.1   Notations 

We first describe the notations used throughout this paper. 
P or P′: A 128-bit plaintext; 
C or C′: A 128-bit ciphertext; 
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Cr: The 128-bit output of the r-th round; 
r
iC : The i-th 32-bit word of Cr, i=0,1,2,3; 

∆A: The XOR value of A and A′, i.e., the value of A⊕A′; 
r

iF : The function Fi involved in the r-th round, i=0,1; 
r
iInS : The 32-bit value after the key addition in r

iF , i.e., the input to the S-boxes involved in r
iF ; 

A>>>x: The rotation of A to the right by x-bit positions; 
A<<<x: The rotation of A to the left by x-bit positions; 
a|b: The concatenation of a and b; 
aT: The transposition of a vector a. 

2.2   Data processing part of CLEFIA 

CLEFIA[2,3] is a 128-bit block cipher with key length of 128, 192 and 256 bits. It employs a generalized Feistel 
structure with four data lines, where the width of each data line is 32 bits. Additionally, there are key whitening 
parts at the beginning and the end of the cipher. Figure 1 shows the encryption process of r-round CLEFIA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1  Encryption process of r-round CLEFIA 

Let WK0, WK1, WK2, WK3∈{0,1}32 be whitening keys, and RKi∈{0,1}32 (0≤i<2r) be round subkeys produced 
by the key scheduling part. For a 128-bit plaintext P=P0|P1|P2|P3, we compute the ciphertext C=C0|C1|C2|C3 as 
follows: 

1) 0
0 0C P= , 0

1 1 0C P WK= ⊕ , 0
2 2C P= , 0

3 3 1C P WK= ⊕ . 

2) For i=1 to r−1, 
1 1

0 1 0 0 2 2( , )i i i
iC C F C RK− −
−= ⊕ , 1

1 2
i iC C −= , 1 1

2 3 1 2 2 1( , )i i i
iC C F C RK− −
−= ⊕ , 1

3 0
i iC C −= . 

3) 1
0 0
r rC C −= , 1 1

1 1 0 0 2 2 2( , )r r r
rC C F C RK WK− −

−= ⊕ ⊕ , 1
2 2
r rC C −= , 1 1

3 3 1 2 2 1 3( , )r r r
rC C F C RK WK− −

−= ⊕ ⊕ . 

The round number r can be 18, 22 and 26 for CLEFIA-128, CLEFIA-192 and CLEFIA-256, respectively, and 
the two F-functions F0 and F1 are described in the following. 
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Denote the 32-bit output of F-function as Ti, where ,0 ,1 ,2 ,3| | |i i i i iT T T T T= , 8
, {0,1}i jT ∈  (j=0,1,2,3). Then 

1
0 0 2 2( , )i

iF C RK−
−  (1≤i≤r) is computed as follows (see Fig.2): 

1) 1
2 2 0

i
i iT RK C −

−= ⊕ . 
2) ,0 0 ,0 ,1 1 ,1 ,2 0 ,2 ,3 1 ,3( ),  ( ),  ( ),  ( ).i i i i i i i iT S T T S T T S T T S T= = = =  

3) ,0 ,1 ,2 ,3 0 ,0 ,1 ,2 ,3( | | | ) ( | | | )T T
i i i i i i i iT T T T M T T T T= . 

Here, S0 and S1 are two nonlinear 8-bit S-boxes, and M0 is a 4×4 Hadamard-type matrix. The computation of 
1

1 2 2 1( , )i
iF C RK−
−  (1≤i≤r) is similar to that of F0, where S0, S1 and M0 are replaced with S1, S0 and M1, respectively (See 

Fig.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  F-Functions 

We suppose that all the round subkeys and whitening keys are independent of each other, and omit the 
description of the key scheduling part. 

3   Some Observations on CLEFIA 

This section describes some important observations on CLEFIA which are the basis of our efficient attacks on 
reduced CLEFIA. Proposition 1 recalls the two 9-round impossible differentials presented in Ref.[4]. Our attacks 
utilize the same impossible differentials. However, we explore more technique details, such as Proposition 2 and 3, 
to achieve a prominent improvement. Independently, similar observations are used in Ref.[6]. 

Proposition 1 (impossible differentials of 9-round CLEFIA[4]). For 9-round CLEFIA, given a plaintext pair 
with difference (0,α,0,0) (or (0,0,0,α)), where α∈{0,1}32 is any non-zero value, the output difference can’t equal  
(0,α,0,0) (or (0,0,0,α)). Denote the two 9-round impossible differentials as 

(0, ,0,0) (0, ,0,0)α α→  and (0,0,0, ) (0,0,0, )α α→ . 
The correctness of Proposition 1 can be verified easily. 
By observing the inner structure of F-functions, we find that the time complexity of attacks in Ref.[4] can be 

decreased by fast searching the 32-bit subkeys involved in F-functions with the help of XOR distribution tables of 
S-boxes[8]. 

Proposition 2. For the F-function F (F0 or F1), let (In,In′) be two 32-bit inputs, and ∆Out be the XOR value of 
the corresponding output, the 32-bit subkey RK involved in F can be recovered with about one F-computation. 
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Proof:  Because the diffusion matrix M is linear and invertible and ∆Out is known, we can easily compute the 
input difference of M, i.e., the output differences of four S-boxes. Therefore, for each S-box in F, we get the input 
XOR and the corresponding output XOR. Then it is easy to obtain the input of each S-box by searching the XOR 
distribution tables of the S-box. From the description of F-function, we can see that the concatenation of the four 
inputs to the four S-boxes is the XOR value of In and RK. 

Thus, the 32-bit subkey RK can be derived from In. The time complexity is about one F-computation. □ 
Usually, the efficiency of the impossible differential attack depends on the subkey space related to the 

impossible differential. For 11-round CLEFIA-192/256, impossible differential attack[4] sieves 128-bit subkeys 
involved in rounds 10 and 11. The following proposition is an important phenomenon that can be used to sieve only 
96-bit subkey instead of 128-bit. 

Proposition 3. For r-round CLEFIA, let RK2r−3 and RK2r−4 be subkeys in the (r−1)-th round, RK2r−1 and RK2r−2 

be subkeys in the r-th round, WK2 and WK3 be the whitening keys in the final round, and 0 1 2 3( | | | )r r r r rC C C C C=  be 

the ciphertext, the following two equations reveal the correlations among subkeys WK2, WK3, RK2r−3 and RK2r−4 
 1

3 2 4 0 1 2 2 1 3( , )r r r r
r rWK RK InS F C RK C−

− −⊕ = ⊕ ⊕  (1) 

 1
2 2 3 1 0 0 2 2 1( , )r r r r

r rWK RK InS F C RK C−
− −⊕ = ⊕ ⊕  (2) 

Here, 1
0
rInS −  and 1

1
rInS −  are the inputs to the four S-boxes of 1

0
rF − and 1

1
rF −  in the (r−1)-th round, respectively. 

Proof: From the encryption algorithm, we obtain that 1
2 2
r rC C −=  and 1 1

3 3 1 2 2 1 3( , )r r r r
rC C F C RK WK− −

−= ⊕ ⊕ . 

Then it is clear that 1
3 3 1 2 2 1 3( , )r r r r

rC C F C RK WK−
−= ⊕ ⊕ . 

Since 1 2
3 0
r rC C− −=  and 1 2

0 0 2 4
r r

rInS C RK− −
−= ⊕ , we know that 

2 1
3 0 1 2 2 1 3 0 2 4 1 2 2 1 3( , ) ( , )r r r r r r r

r r rC C F C RK WK InS RK F C RK WK− −
− − −= ⊕ ⊕ = ⊕ ⊕ ⊕  

i.e., 1
3 2 4 0 1 2 2 1 3( , )r r r r

r rWK RK InS F C RK C−
− −⊕ = ⊕ ⊕ . 

Similarly, we can prove that Eq.(2) holds. □ 
Furthermore, for the 1st and 2nd rounds, there are two similar equations about WK0⊕RK2 and WK1⊕RK3 

2 1
0 2 0 0 0 0 1( , )WK RK InS F P RK P⊕ = ⊕ ⊕  and 2 1

1 3 1 1 2 1 3( , )WK RK InS F P RK P⊕ = ⊕ ⊕ . 

4   Impossible Differential Attacks on CLEFIA-128/192/256 

This section presents impossible differential attacks on 11-12 rounds CLEFIA based on the 9-round impossible 
differentials in Ref.[4], and corrects the mistake of the attack on 12-round variant presented in Ref.[6]. The main 
attack process is: Firstly, select many structures of specific plaintexts, and sieve the pairs satisfying the required 
output differences. Secondly, for each sieved pair, discard the wrong subkeys which cause the partial encryption and 
decryption to match the impossible differential. Finally, analyze enough pairs, and sieve the correct subkey. 

4.1   Attack on 11-round CLEFIA 

This section describes the key recovery attack on 11-round CLEFIA with two additional rounds at the end of 
the 9-round impossible differential as the preparation for attacks in the following sections. For simplicity of 
explanation, we regard the first-round output as plaintext and present the attack procedure for the 11-round from the 
second to the 12-th round. We use the same 9-round impossible differential (0, ,0,0) (0, ,0,0)α α→  in Sections 4.1 
and 4.2. Different from Ref.[4], the attack recovers the 96-bit subkey (RK22,RK23,RK20⊕WK3) by Proposition 3 
instead of recovering the 128-bit subkey (RK20,RK22,RK23,WK3). Combining with Proposition 2, the total time 
complexity can be improved from 2188 encryptions to 2103.1 encryptions with 2103.1 chosen plaintexts. And the result is 
better than Ref.[6], which needs about 2118.8 encryptions and 2118.8 chosen plaintexts. See Fig.3 for the following 
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attack. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3  Impossible differential attack on 11-round CLEFIA 
Sieving pairs. 
A structure composed of 232 plaintexts is defined as follows: 
S={P0,P1⊕α,P2,P3|P0,P1,P2,P3 are fixed, non-zero α∈{0,1}32}. 
By the encryption process of CLEFIA, only the plaintext pair with ciphertext difference ∆C=(β,γ,0,α) may result 

from ∆C10=(α,0,0,0), where β∈{0,1}32 and γ∈{0,1}32 are non-zero. It is clear that every two structures can produce 
about one pair with the target ciphertext difference. In our attack, about 270.1 such plaintext pairs are necessary to sieve 
the right key. So, we choose 271.1 such structures. 

Because there are 2134.1 plaintext pairs from 271.1 structures totally, we need to explore a fast algorithm to obtain 
the 270.1 pairs. We employ a type of birthday sieve to search these pairs more efficiently. 

Birthday Sieve Algorithm 1. 
For each structure, we fulfill the following steps. 
1) For each plaintext P, compute Ĉ=(P>>>64)⊕C, where C is the corresponding ciphertext. 
2) Store the 232 values of Ĉ in a table. 
3) Search (P,P′) with the corresponding ∆Ĉ=(β,γ,0,0) by the birthday attack. 
4) Output (P,P′). 
It is clear that ∆C=(β,γ,0,α) if and only if ∆Ĉ=(β,γ,0,0). So, the above algorithm outputs one plaintext pair 

corresponding to ∆C=(β,γ,0,α) with probability 1/2. From the birthday attack[9], the time complexity is only 232 XOR 
computations, and the table memory is about 234 words. Thus, we can obtain 270.1 pairs with about 2103.1 XOR 
computations by neglecting the table lookups. 
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Recovering the subkey (RK22,RK23,RK20⊕WK3). 
We discard the subkeys which cause the partial decryption of the selected pair to match ∆C10=(α,0,0,0). 
For each pair with ciphertext difference ∆C=(β,γ,0,α), it is obvious that 10 11 12

0 3 3C C C α∆ = ∆ = ∆ = . 

From 10 11 11 10
3 2 1 2 21( , )C C F C RK= ⊕ , 11 12

2 2C C=  and 12
2 0C∆ = , it is clear that 10

3 0C∆ =  if and only if 10
2 0C∆ = . 

Thus, we only need to discard the subkeys which lead to 10
1 0C∆ =  and 10

2 0C∆ = . 

For each ciphertext pair (C,C′) with ∆C=(β,γ,0,α), we can detect 232 wrong subkeys (RK22,RK23,RK20⊕WK3) 
which suggest the impossible differential as follows: 

1) For 10
2 0C∆ = , since 11 10

1 2C C= , it is equivalent to 11
1 0C∆ = . 

 We obtain 12
0F∆ = 12

1C∆  by 12 11 12 11
1 1 0 0 22 2( , )C C F C RK WK= ⊕ ⊕ . 

 From 11 12
0 0C C=  and 11 12

0 0C C′ ′= , the subkey RK22 can be calculated with one F-computation according 

 to Proposition 2. 

2) For 10
1 0C∆ = , we have 11 12

0 0F C∆ = ∆  by 11 10 11 10
0 1 0 0 20( , )C C F C RK= ⊕  and 11 12

0 0C C= . 

 Because the corresponding input XOR 10
0C α∆ = , 11

0InS  is calculated by Proposition 2. 

 For each RK23∈{0,1}32, by Proposition 3, we can deduce that 
11 12 12 12

20 3 0 1 2 23 3( , )RK WK InS F C RK C⊕ = ⊕ ⊕ . 

  So, we totally obtain 232 possible values of RK20⊕WK3 with about 232 F-computations. 
Summing up 1) and 2), for each pair, we can filter out 232 wrong subkeys (RK22,RK23,RK20⊕WK3) which 

support the impossible differential in about 232 F-computations. A wrong (RK22,RK23,RK20⊕WK3) survives with 

probability 1−2−64. After analyzing 270.1 pairs, the number of the remaining subkeys is 
70.196 64 22 (1 2 ) 0.13−⋅ − ≈ <1. 

That is to say, only the right subkey (RK22,RK23,RK20⊕WK3) is left. This completes our attack. 
Complexity evaluation. 
The data complexity of the attack is about 270.1+32+1=2103.1 chosen plaintexts. The time complexity for obtaining 

the ciphertexts is 2103.1 encryptions and the time complexity of sieving the right key is about 270.1⋅232=2102.1 
F-computations. Using rough equivalence of 24 F-computations to one encryption, the 2102.1 F-computations are 
equivalent to about 298.1 encryptions. 

4.2   Attack on 12-round CLEFIA 

We extend the attack on 11-round variant described above to 12-round, by one additional round on the 
plaintext side. However, the direct extension needs to recover the 32-bit subkey RK1 in addition to RK22, RK23 and 
RK20⊕WK3, which will a little exceed the complexity of the exhaustive attack. Thus we put more constraint 
conditions on the plaintext difference to enforce the first two bytes of 1

2C∆  and 10
1C∆  to be zero. In this way, 

instead of the original 128-bit subkey (RK1,RK22,RK23,RK20⊕WK3), there exists only 96-bit subkey (RK1,2,RK1,3, 

20,2RK ′ , 20,3RK ′ , RK22, RK23), which is related to the impossible differential, where 20,2RK ′  and 20,3RK ′  denote the 

last two bytes of RK20⊕WK3, respectively. 
Sieving pairs. 
For all the 216 possible α, of which the first two bytes are zero, we compute a table H1 to store the 216 values of 

M1(α) and a table H0 to store the 216 values of M0(α). Because M1 is linear, for δ1,δ2∈H1, it is obvious that 
δ1⊕δ2∈H1. So is M0. 

Choose a structure of 232 plaintexts as follows (See Fig.4): 
S={P0,P1,P2⊕α,P3⊕δ|P0,P1,P2,P3 are fixed, the first two bytes of α are zero and the other two take 216 

possibilities,δ∈H1}. 
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Fulfilling Algorithm 1 in Section 4.1, in which Ĉ is selected as (P>>>32)⊕C, we can easily search a pair such 
that ∆C=(β,γ,0,α), where β∈{0,1}32 and γ∈{0,1}32 are non-zero. Then choose the ciphertext pairs satisfying β∈H0, 
of which the probability is 2−16. Thus, 2−17n such pairs can be found by searching n structures, where n is 
determined later. 

 
 
 
 
 
 
 
 
 
 

Fig.4  Choice of plaintext in 12-round attack 

Recovering the subkey (RK1,2,RK1,3,RK22,RK23, 20,2RK ′ , 20,3RK ′ ). 

For each selected pair, because the first two bytes of 1
1 ( )M δ−  and α are zero, we know that the input XOR 

and output XOR of the first two S-boxes involved in 1
1F  are zero. Therefore, only the last 16-bit (RK1,2,RK1,3) of 

RK1 affects 1
2C∆ . Similarly, since the input XOR and output XOR of the first two S-boxes involved in 11

0F  are 

zero, only the last 16-bit ( 20,2RK ′ , 20,3RK ′ ) affects 10
1C∆ . Thus, we only need to discard 96-bit wrong subkeys (RK1,2, 

RK1,3,RK22,RK23, 20,2RK ′ , 20,3RK ′ ) involved in the impossible differential in the following way. 

1) To take advantage of the attack presented in Section 4.1, we need to guarantee that the output difference 

 of the first round ∆C1=(0,α,0,0). By 1 1
0 1 0 0 0 0( , )C P F P RK WK= ⊕ ⊕  and ∆P=(0,0,α,δ), the selected pairs 

 already satisfy 1
0 1 0C P∆ = ∆ = , 1

1 2C P α∆ = ∆ =  and 1
3 0 0C P∆ = ∆ = . So we only compute the 16-bit 

 subkey (RK1,2,RK1,3) which cause the partial encryption of the pair to match 1
2 0C∆ = . 

 From 1 1
2 1 2 1 3 1( , )C F P RK P WK= ⊕ ⊕ , it is clear that 1 1

1 2 1 2 3 1( , )F P RK C P WK= ⊕ ⊕ . Thus, if 1
2 0C∆ = , then 

 1
1 3F P∆ = ∆ . As the two inputs of 1

1F  are P2 and 2P′ , one 16-bit subkey (RK1,2,RK1,3) can be computed 

 with one F-computation on average by Proposition 2. 
2) Then we can deduce 232 wrong subkeys (RK22,RK23, 20,2RK ′ , 20,3RK ′ ) by the same method as that in 

 Section 4.1. This step takes about 232 F-computations. 
To sum up, for each collected pair, we can filter out 232 wrong 96-bit subkeys (RK1,2,RK1,3,RK22,RK23, 20,2RK ′ , 

20,3RK ′ ) in about 232 F-computations. The expected n is about 217⋅264⋅96⋅ln2≈287.1 by 

17232
96

96
22 1 1
2

n−

⎛ ⎞
⋅ − <⎜ ⎟
⎝ ⎠

. 

Therefore, after analyzing 287.1⋅2−17=270.1 pairs, only the right (RK1,2,RK1,3,RK22,RK23, 20,2RK ′ , 20,3RK ′ ) is left. 

Complexity evaluation. 
The data complexity is about 232⋅n=2119.1 chosen plaintexts. 
The time complexity of obtaining the ciphertexts is 2119.1 encryptions. 
The time complexity of choosing the useful pairs is 2119.1÷232⋅232+2119.1÷232⋅2−1≈2119.1 XOR computations. 

Here, 2119.1÷232 is the number of structures. For each structure, we have to do 232 XOR operations to apply the 
birthday sieve. Then for the 2119.1÷232⋅2−1 sieved pairs, we compute the XOR of them to choose the one we want. 
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The time complexity of sieving the right key is 270.1⋅232=2102.1 F-computations, which equals 298.1 encryptions. 

4.3   Analysis of Tsunoo et al’s attack on 12-round CLEFIA 

In Section 3.3 of Tsunoo, et al.’s attack[6], the authors present an impossible differential attack on 12-round 
CLEFIA, with complexity of 2118.9 chosen plaintexts and 2118.9 encryptions. However, they neglect the time 
complexity of the precomputation, i.e., the time complexity of choosing plaintext pairs, which is about 2125.9 
encryptions. First, we explain this error, and then correct it using the birthday sieve method and key recovery 
process similar to Section 4.2. 
4.3.1   An error in Tsunoo et al’s attack on 12-round CLEFIA 

The authors use a new 9-round impossible differential (0,0,0,(0,0,0, )) (0,0,0,( ,0,0,0))X Y→ , where (0,0,0,X) 
and (Y,0,0,0) are 32-bit word, X and Y are non-zero bytes. Replacing the original impossible differential (in Fig.3) 
with the new one, we can easily see that the difference of ciphertexts pair must be (0,(Y,0,0,0),β,γ) and the 
difference of the second round input must be (0,0,0,(0,0,0,X)). Here, β represents the 255 values that can be obtained 
as the output difference when the input difference for M1 is (Y,0,0,0), and γ is a 32-bit non-zero word. 

The left is to choose the plaintext pairs of which the difference of the first-round output is (0,0,0,(0,0,0,X)). 
Ref.[6] does as follows: 

1) Choose a set of 240 plaintexts, where ∆P=((0,0,0,X)δ,0,0), and δ is a non-zero 32-bit word. 
2) For a chosen plaintexts set, guess RK0,3⊕WK0,3= 0,3RK ′ ∈{0,1}8 to split the 240 plaintexts set into 232 

 structures. Each structure contains 28 plaintexts, of which any two satisfy ∆C1=(0,0,0,(0,0,0,X)). 
It is obvious that, for each set and each guessed 0,3RK ′ , we have to do 232⋅(28⋅27)=247 XOR operations to select 

the proper pairs with ∆C=(0,(Y,0,0,0),β,γ). Thus, for all the 28 possible values of 0,3RK ′  and the 2118.9 chosen 

plaintexts which is equivalent to 278.9 sets, the time complexity of the plaintext choice method is about 28⋅278.9⋅247= 
2133.9 XOR operations. Using rough equivalence of 28 XOR operations to one encryption, the 2133.9 XOR operations 
equals to about 2125.9 encryptions, which is larger than 2118.9 encryptions. 
4.3.2   Correction of the error 

We can correct this error by doing the key recovery attack as that in Section 4.2. 
Sieving pairs. 
For all the 28 possible α=(0,0,0,X), compute a table 1H ′  to store the 28 values of M1(α) and a table 0H ′  to 

store the 28 values of M0(α). Choose a structure of 216 plaintexts as follows: 
S={P0⊕(0,0,0,X),P1⊕δ,P2,P3|P0,P1,P2,P3 are fixed,δ∈ 0H ′ }. 

Due to the birthday attack, for each structure, we can collect one pair, of which the first word difference of the 
ciphertext is zero, in 216 XOR operations with probability 2−1. For 2118.9 chosen plaintexts, we can get 2118.9÷216⋅2−1= 
2101.9 such pairs. Then by simply compute the XOR values of any two ciphertexts, we sieve the ones with 
∆C=(0,(Y,0,0,0),β,γ), where β∈ 1H ′ . In this way, we can get 2101.9⋅2−48=253.9 pairs. This precomputation takes about 

2118.9÷216⋅216+2101.9≈2118.9 XOR operations <2118.9 encryptions. 
Recovering the subkey (RK0,3,RK22,RK23, 21,0RK ′ ). 

This part is similar to Ref.[6], except that we compute the value of 0,3RK ′  instead of guessing it, which is just 

as what done in Section 4.2. Therefore, for each collected pair, we can filter out 232 wrong 80-bit subkeys ( 0,3RK ′ , 

RK22,RK23, 21,0RK ′ ) in about 232 F-computations. After analyzing 253.9 pairs, only the right ( 0,3RK ′ ,RK22,RK23, 21,0RK ′ ) is 

left. 
By the above method, the data and time complexity of the 12-round attack in Ref.[6] is 2118.9 chosen plaintexts 

and 2118.9 encryptions, which is the same as they announced. 
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5   Conclusions 

In this paper, we present a chosen-plaintext attack on reduced CLEFIA-128/192/256. Table 1 shows the 
comparison among the attacks in Refs.[2,4,6] and ours. Note that there is an error in 12-round attack of Ref.[6], so we 
mark the time complexity of them with “*”. We explore some observations and tricks to extend the impossible 
differential attack to 11-12 rounds CLEFIA-128/192/256 based on the impossible differentials presented in Refs.[2,4], 
which only cryptanalyze 10-round variant. Moreover, a birthday sieve method is introduced to greatly reduce the time 
complexity of the precomputation. Finally, we point out the error in Ref.[6], correct it with birthday sieve to choose 
plaintext pairs, and present a different key recovery process. 

Table 1  Summary of impossible differential attacks on reduced CLEFIA-128/192/256 
 Refs.[2,4] Ref.[6] This paper 

Number of rounds 10 11 12 11 12 121 

Data complexity 2101.7 2118.8 2118.9 2103.1 2119.1 2118.9 

Time complexity 2101.7 2118.8 2118.9* 2103.1 2119.1 2118.9 

1: We correct Tsunoo, et al.’s attack on 12-round CLEFIA[6] 
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