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Abstract:  This paper proposes an efficient verifiably encrypted signature scheme without random oracles. The 
scheme is constructed from the recent Gentry signature and can be rigorously proven to be secure in the standard 
model. The scheme has several advantages over previous systems such as, shorter public keys, lower computation 
overhead, and a tighter security reduction, therefore, it is a truly practical verifiably encrypted signature without 
random oracles, which can be used in online contract signing protocols. Additionally, the proof of our scheme, 
which depends on the Strong Diffie-Hellman assumption, may be of independent interest. 
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摘  要: 提出了一种高效的无随机预言机的可验证加密签名方案.该方案使用近来出现的 Gentry 签名进行构造,
并在标准模型下严格证明其安全性.与同类方案相比,该方案构造简单,有较短的公钥尺寸、较低的计算代价以及较

紧的安全归约.它是一个真正实践的无随机预言机的可验证加密签名方案,可以用于实际的在线合同签署协议.此
外,方案的证明依赖于强 Diffie-Hellman 假设,也有其独立的价值. 
关键词: 数字签名;可验证加密签名;可证明安全;随机预言机模型 
中图法分类号: TP309   文献标识码: A 

1   Introduction 

A verifiably encrypted signature (VES) scheme involves three parties, the user or signer, the verifier, and a 
trusted third party, the adjudicator. The basic idea is that the user Alice creates an encryption of her signature on 
some message using the public key of the adjudicator. The verifier Bob can verify that this encrypted signature is 
indeed the encryption of the Alice’s signature on the message, but Bob cannot deduce any information about Alice’s 
signature. At a later stage, if Alice is unable or unwilling to reveal her signature, Bob can ask the adjudicator to 
reveal Alice’s signature. Verifiably encrypted signatures may be used in contract signing protocols to provide 
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optimistic fair exchange[1,2]. 
Previous constructions of verifiably encrypted signatures require zero knowledge proofs to verify an encrypted 

signature[1]. In 2003, Boneh, et al.[3] gave a verifiably encrypted signature scheme as an application of their 
aggregate signature. There is no need for zero knowledge proofs, so the scheme is short and can be validated 
efficiently. In Ref.[4], Zhang, et al. also proposed a verifiably encrypted signature scheme based on their short 
signature from bilinear pairings, which does not need zero knowledge proofs and is more efficient than previous 
schemes. However, both schemes are provably secure only in the random oracle model and thus there is only a 
heuristic argument for their security. 

It is natural to ask whether secure verifiably encrypted signatures exist in the standard model. This question is 
especially relevant in light of several recent uninstantiable random oracle cryptosystems[5], which are secure in the 
random oracle model, but are provably insecure under any actual instantiation of the oracle. 

In ICDCIT 2005, based on the short signature without random oracles proposed by Boneh and Boyen[6], 
Gorantla, et al.[7] firstly proposed a verifiably encrypted signature without random oracles. Using the same short 
signature, Li, et al.[8] also proposed a similar verifiably encrypted signature with rigorous security proofs in the 
stand model. In EUROCRYPT 2006, Lu, et al.[9] presented a novel verifiably encrypted signature without random 
oracles, which was based on the Waters signature. However, their scheme is not quite efficient. For example, a 
user’s public key will be quite large. If a 160-bit collision resistant hash function is used, keys will be 
approximately 160 group elements and take around 10KB to store. Additionally, based on Wei’s signature, Ming and 
Wang[10] presented a verifiably encrypted signature scheme without random oracles, which is more efficient than 
existing schemes in the literature and has a tight security reduction. 

In this paper, we propose a efficient verifiably encrypted signature that is fully secure without random oracles. 
Our construction is based on the signature of Gentry[11], which is derived from his practical Identity-Based 
Encryption (IBE). As a result, our scheme is simple and efficient. For example, signature and verification require 
only a small constant number of group operations, while user public keys are compact (three group elements). 

2   Preliminaries 

In this section we first review the definitions of bilinear maps and bilinear groups. Next, we discuss the 
complexity assumption on which the security of our system is based. Then, we briefly recall the definition and 
security notions of the verifiably encrypted signature. Finally, we derive the signature of Gentry from his IBE. 

2.1   Bilinear maps and bilinear groups 

We briefly review bilinear maps and bilinear groups, following the notation in Ref.[6]. For simplicity we set 
G1 = G2 = G. Consider the following setting: 

(1) G and GT are two multiplicative cyclic groups of prime order p; 

(2) g is a generator of G. 

(3) e: G×G → GT is a bilinear map. 

Let G and GT be two groups as above. A bilinear map is a map e: G×G → GT with the following properties: 

(1) Bilinear: for all u,v ∈ G and a,b ∈ Z, e(ua,vb) = e(u,v)ab. 
(2) Non-degenerate: e(g,g) ≠ 1. 
We say that G is a bilinear group if the group action in G can be computed efficiently and there exists a group 

GT and an efficiently computable bilinear map e: G×G → GT as above. 
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2.2   Complexity assumption 

Let G be a cyclic group of prime order p, and let g be a generator of G. 

q-Strong Diffie-Hellman Problem. The q-SDH problem in G is defined as follows: given a (q+1)-tuple 

( )2, , ,..., qx x xg g g g  as input, output a pair ( )( )1, x cc g +  where c ∈ Zp
*. An algorithm A has advantage ε in solving 

q-SDH in G if 

( ) ( )( )[ ]2 1Pr , , ,..., ,q x cx x xg g g g c g ε+= ≥A , 

where the probability is over the random choice of x in Zp
* and the random bits consumed by A. 

Definition 1. We say that the (q, t, ε)-SDH assumption holds in G if no t-time algorithm has advantage at least 

ε in solving the q-SDH problem in G. 

Occasionally we drop the t and ε and refer to the q-SDH assumptions in G. 

2.3   Verifiably encrypted signatures  

Definition 2. A verifiably encrypted signature scheme consists of the following seven algorithms: KeyGen, 
Sign, Verify, AdjKenGen, VESigGen, VESigVerify, and Adjudicate. The algorithms are described below. 

Key Generation, Signing, Verification. As in standard signature schemes. 
Adjudicator Key. Generate a public-private key pair (apk,ask) for the adjudicator. 
VESig Creation. Given a secret key sk, a message m, and an adjudicator’s public key apk, compute 

(probabilistically) a verifiably encrypted signature ν on m. 
VESig Verification. Given a public key pk, a message m, an adjudicator’s public key apk, and a verifiably 

encrypted signature ν, verify that ν is a valid verifiably encrypted signature on m under key pk. 
Adjudication. Given an adjudicator’s key pair (apk,ask), a certified public key pk, and a verifiably encrypted 

signature ν on some message m, extract and output σ, an ordinary signature on m under pk. 
Besides the ordinary notions of signature security in the signature component, a verifiably encrypted signature 

scheme should satisfy the following properties. 
Validity. It requires that verifiably encrypted signatures verify, and that adjudicated verifiably encrypted 

signatures verify as ordinary signatures, i.e., that VESigVerify(m,VESigCreate(m)) and Verify(m,Adjudicate 
(VESigCreate(m)) hold for all m and for all properly-generated key pairs and adjudicator key pairs. 

Unforgeability. It requires that it be difficult to forge a valid verifiably encrypted signature. The advantage in  
existentially forging a verifiably encrypted signature of an algorithm F, given access to a verifiably-encrypted- 

signature creation oracle S and an adjudication oracle A is 

( )
( )

( ) ( )

VSigF

,

( , , , )  valid :
, ,

Adv Pr
, ,
, ,S A

VESigVerify pk apk m
pk sk KeyGen

apk ask AdjKeyGen
m pk apk

ν

ν

=⎡ ⎤
⎢ ⎥←⎢ ⎥=
⎢ ⎥←
⎢ ⎥

←⎣ ⎦

F

F

. 

The probability is taken over the coin tosses of the key-generation algorithms, of the oracles, and of the forger. 
The forger is additionally constrained in that its forgery on m must be nontrivial: It must not previously have 
queried either oracle at m. 

Definition 3. An algorithm F (t, qS, qA, ε)-forges a verifiably encrypted signature if: F runs in time at most t, 
makes at most qS queries to the verifiably-encrypted-signature creation oracle S, at most qA queries to the 
adjudication oracle A, and VSigFAdvF  is at least ε. A verifiably encrypted signature scheme is (t, qS, qA, ε)-secure  
against existential forgery if no forger (t, qS, qA, ε)-breaks it. 
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Opacity. It requires that it be difficult, given a verifiably encrypted signature, to extract an ordinary signature 
on the same message. The advantage in extracting a verifiably encrypted signature of an algorithm ε, given access 
to a verifiably-encrypted-signature creation oracle S and an adjudication oracle A is  

( )
( )

( ) ( )

VSigE

,

( , , )  valid :
, ,

Adv Pr
, ,
, ,S A

Verify pk m
pk sk KeyGen

apk ask AdjKeyGen
m pk apk

σ

σ

=⎡ ⎤
⎢ ⎥←⎢ ⎥=
⎢ ⎥←
⎢ ⎥

←⎣ ⎦

E

E

. 

The probability is taken over the coin tosses of the key-generation algorithms, of the oracles, and of the forger. 
The extraction must be nontrivial: The adversary must not have queried the adjudication oracle A at m. Verifiably 
encrypted signature extraction is thus no more difficult than forgery in the underlying signature scheme. 

Definition 4. An algorithm ε (t, qS, qA, ε)-extracts a verifiably encrypted signature if: ε runs in time at most t,  
makes at most qS queries to the verifiably-encrypted-signature creation oracle S, at most qA queries to the  
adjudication oracle A, and VSigEAdvE  is at least ε. A verifiably encrypted signature scheme is (t, qS, qA, ε)-secure  
against extraction if no algorithm (t, qS, qA, ε)-extracts it. 

2.4   The gentry signature scheme 

We describe the signature scheme of Gentry obtained from his IBE, although the signature scheme is not 
explicitly given in Ref.[11]. As noted by Moni Naor (see Section 5 of Ref.[12]), every IBE system secure against an 
adaptive-ID attack can be converted a public key signature scheme secure against existential forgery under a 
chosen-message attack. Note that from the generic transformation, the verification algorithm is randomized. 
However, we can use the bilinear map to deterministically verify a signature. 

In our description, the message m to be signed is an element of Zp
*. However, in practice one could apply a 

collision-resistant hash function H: {0,1}* → Zp
* to sign messages of arbitrary length. Let G and GT be groups of 

order p, and let e: G×G → GT be the bilinear map. The Gentry signature scheme is a three-tuple of algorithms G = 
(Kg, Sig, Vf). The signature works as follows. 

G.Kg. Pick random generators g, h ∈ G and a random α∈ Zp
*. Set g1 = gα∈ G. The public key pk is (g,g1,h) 

and the private key sk is α. 

G.Sig(sk, m). Given a private key sk and a message m ∈ Zp
*, parse sk as α∈ Zp

*. Pick a random r ∈ Zp
*, and 

compute S = (hg−r)1/(α−m). The signature is σ = (r,S).  

G.Vf(pk, m, σ). Given a public key pk, a message m ∈ Zp
* and a signature σ, parse pk as (g,g1,h) ∈ G3 and σ as 

(r,S) ∈ Zp
*×G. Verify that e(g1g−m,S) e(g,g)r = e(g,h) holds; if so, output valid; if not, output invalid. 

3   A New Verifiably Encrypted Signature Scheme without Random Oracles 

In this section, we propose a new verifiably encrypted signature scheme without random oracles. This new  
scheme uses the above Gentry signature and is a seven-tuple of algorithms GVES = (Kg, Sig, Vf, AKg, ESig, EVf,  

Adj) that behave as follows. 
GVES.Kg, GVES.Sig, GVES.Vf. These are the same as G.Kg, G.Sig, and G.Vf, respectively. 

GVES.AKg. Pick a random β∈ Zp
*, and set g2 = gβ and h2 = hβ. The adjudicator’s public key apk is (g2,h2) and  

the adjudicator’s private key ask is β. 
GVES.ESig(sk, apk, m). Given the user’s private key sk, the adjudicator’s public key apk and a message m ∈  
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Zp
*, parse sk as α ∈ Zp

* and apk as (g2,h2) ∈ G2. Pick a random r ∈ Zp
*, and compute K = (h2g2

−r)1/( α−m). The  

verifiably encrypted signature is v = (r,K). 
GVES.EVf(pk, apk, m, v). Given the user’s public key pk, the adjudicator’s public key apk, a message m ∈ 

Zp
*, and a verifiably encrypted signature v, parse pk as (g,g1,h) ∈ G3, apk as (g2,h2) ∈ G2, and v as (r,K) ∈ Zp

*×G.  

Accept if the following equation holds: e(g1g−m,K) e(g,g2)r = e(g,h2). 
GVES.Adj(ask, pk, apk, m, v). Given the adjudicator’s private key ask, the user’s public key pk, the  

adjudicator’s public key apk, a message m ∈ Zp
*, and a verifiably encrypted signature v, parse ask as β ∈ Zp

*, pk as 

(g,g1,h) ∈ G3, apk as (g2,h2) ∈ G2, and v as (r,K) ∈ Zp
*×G. Verify (using EVf) that the verifiably encrypted  

signature v is valid, and compute S = K1/β. The extracted ordinary signature is σ = (r,S). 

4   Security Analysis 

In this section, we show that the proposed scheme satisfies the three security properties of verifiably encrypted 
signatures: validity, unforgeability, and opacity. 

4.1   Validity 

Given a verifiably encrypted signature (r, K) for a message m, we have 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 2 2 2 2 2 2 2

2 2 2 2

, ,   , ,  , ,

                                     , , ,  , .

r m r rm m r r

r r

e g g K e g g e g h g e g g e g h g e g g

e g h e g g e g g e g h

αα −− − − −

−

= =

= =
 

This implies that the verifiably encrypted signatures verify. On the other hand, given the signature (r,S) 
extracted from the verifiably encrypted signature (r, K) in the adjudication phase, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

111
1 2 2

11
2 2

, , , , , , , , ,

                                , , , , , , , .

r r r r rm m m

r r r r

e g g S e g g e g K e g g e g K e g g e g h e g g e g g

e g h e g g e g g e g h e g g e g g e g h

ββα β α

ββ

−− − −

− −

= = =

= = =
 

This means that the adjudicated verifiably encrypted signatures verify as ordinary signatures. Hence, the 
validity of our verifiably encrypted signature scheme holds. 

4.2   Unforgeability 

Theorem 1. The verifiably encrypted signature scheme GVES is (t, qS, qA, ε)-unforgeable if the Gentry 
signature scheme is (q', t', ε')-unforgeable, where 

t' = t + O(qS +qA) and q' = qS and ε' = ε. 
Proof:  We will show how to turn a verifiably-encrypted signature forger A into a forger B for the underlying 

Gentry signature scheme. 
Setup. Algorithm B is given a Gentry signature public key (g, g1, h). It picks a random β∈ Zp

* and sets g2 = gβ 

and h2 = hβ, and provides the adversary A with (g, g1, h) and (g2, h2). 
Verifiably Encrypted Signing Queries. When A requests a verifiably encrypted signature on some message 

m, the challenger B requests a signature on m from its own signing oracle, obtaining a Gentry signature (r,S). It then 
computes K = Sβ. The tuple of (r,K) is a valid verifiably encrypted signature on m. Algorithm B provides A with it.  

Adjudication Queries. When algorithm A requests adjudication of a verifiably encrypted signature (r,K) on 
some message m under the challenge key (g, g1, h), B responds with GVES.Adj(β, (g,g1,h), (g2,h2), m, (r,K)). Note 
that B knows the adjudicator’s private key β. 

Output. Finally, A outputs a forged verifiably-encrypted signature (r*, K*) on some message m*. Algorithm A 
must never have made a verifiably encrypted signing query at m*. The challenger B computes S* = K*1/β. Then (r*, 
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S*) is a valid Gentry signature on the message m*. 
Because A did not make a verifiably encrypted signing query at m*, neither did B make a signing query at m*, 

and the forgery is thus nontrivial. The challenger B outputs (r*, S*) and halts. 
Algorithm B thus succeeds whenever A does. B’s running time is roughly the same as A’s running time plus 

the time taken to respond to each of A’s verifiably encrypted signing and adjudication queries. 

4.3   Opacity 

Theorem 2. The verifiably encrypted signature scheme GVES is (t, qS, qA, ε)-opaque if (q, t', ε')-SDH  

assumption holds in G, where 

t' = t + O(qS +qA) + O(q2) and qS<q and 1p
p

ε ε ε−′ = ≈ . 

Proof:  Given an algorithm A that breaks the opacity of the scheme, we show how to construct an algorithm B 
that breaks the Strong Diffie-Hellman Assumption. The challenger B is given [ ]{ }: 0,ig i qα ∈ ; its goal is to 
compute a pair (c, g1/(α−c)).  

Given { }igα , B sets g1 = gα, and computes h by generating a random q-degree polynomial f(x) ∈ Zp[x] and 

setting h = gf(α). B picks a random β ∈ Zp
* and sets g2 = gβ and h2 = hβ. It then interacts with A as follows. 

Setup. Algorithm B gives to A the signer’s public key (g, g1, h), and the adjudicator’s public key (g2, h2). Note  

that the (unknown) private signing key is α. 

Verifiably Encrypted Signing Queries. A requests a verifiably-encrypted signature on m ∈ Zp
* under the  

challenge key (g, g1, h) and adjudicator key (g2, h2). If the signature for m is requested more than once, the same 
value of rm is used each time. 

To generate a Gentry signature for m (m ≠ α; if m = α, B can use α to solve q-SDH immediately), B sets rm =  

f(m) and ( ) ( ) ( ) ( )( ) ( )1
m

m f f m mr
mS hg gα α α− − −−= = ; B can compute the latter from { }igα , since (f(α)−f(m))/(α−m) is a  

(q−1)-degree polynomial in α. The values of imr  in the simulation for i ∈ [1, qS] appear uniformly random, since 

f(x) is a random polynomial of degree q. The tuple of (rm, Sm) is a valid Gentry signature. 
B then computes Km = (Sm)β and returns the verifiably encrypted signature (rm, Km) to A. 

Adjudication Queries. Suppose A requests adjudication on (rm, Km) for message m ∈ Zp
*. B computes Sm = 

Km
1/β and returns the extracted signature (rm, Sm) to A.  

Note that A must previously have made a verifiably encrypted signing query at m, since otherwise we could 
use it to break the unforgeability of GVES. 

Output. Finally, algorithm A outputs a valid Gentry signature (r*,S*) on a message m*; it must not have 
queried its adjudication oracle at m*.  

Since S* satisfies e(g1g−m*,S*)e(g,g)r* = e(g, h), and by the bilinearity of e, we have e(g,S*) = e(g,(hg−r*)1/(α−m*)). 
By the non-degeneracy, we have S* = (hg−r*)1/( α−m*).  

Since h = g f(α), we have S* = g(f(α)−r*)/(α−m*). Using long division, the rational fraction (f(α)−r*)/(α−m*) can be 
written as  

( )( ) ( )
( )

11* *
0*

q iii

bf r m b
m

α α α
α

−−
=

− − = +
− ∑ . 

Since f(x) ∈ Zp[x] is a random polynomial of degree q, the values of b−1 appear uniformly random between 0 
and p−1, and therefore the probability that b−1 = 0 is 1/p.  

If b−1 = 0, B declares failure and exits. Otherwise, (α−m*) does not divide (f(α)−r*) and B computes  
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( ) ( )( ) 1*
111 *

0
ii

bq bm
i

g S gα α
−− −−

=
= ⋅∏ . 

The tuple (m*, g1/(α−m*)) is the solution to the strong Diffie-Hellman challenge; B outputs it and halts. 

B thus succeeds with probability 1p
p ε−  when A does with probability ε. Its running time overhead is O(1) 

for each of A’s verifiably encrypted signing and adjudication queries, and for computing the final output. 

5   Efficiency 

We compare our verifiably encrypted signature scheme only to these schemes which are proven secure without 
random oracles. Considering security in the “real world”, the verifiably encrypted signature schemes proposed by 
Boneh, et al.[3] and Zhang, et al.[4] are not involved here, because both schemes are provably secure only in the 
random oracles model. 

We present the comparisons in Table 1 (optimized by precomputing). For the comparison, we instantiate 
pairing-based schemes using Barreto-Naehrig curves[13] with 160-bit point representation. The “PK Size” column 
gives the size of the public keys (the number of Group elements). The “SigSize” column gives verifiably encrypted 
signature length at the 1024-bit security level. The “VESigGen”, “VESigVerify” and “Adjudication” columns give  

the computational costs of those operations. We denote Pa the pairing operation, E the exponentiation in G or GT,  

and k is the output length of a collision-resistant hash function. We ignore other operations. 

Table 1  Comparison of verifiably encrypted signatures without random oracles 
Scheme PKSize SigSize VESigGen VESigVerify Adjudication 
Ref.[7] 3 320 bits 2E 2Pa + 3E 1E 
Ref.[8] 3 320 bits 3E 2Pa + 3E 1E 
Ref.[9] k +3 480 bits 4E 3Pa 1E 

Ref.[10] 4 320 bits 1E 1Pa + 3E 1E 
Ours 3 320 bits 2E 1Pa + 2E 1E 

We note that the computation of the pairing is the most time-consuming. In our scheme, e(g,g2) and e(g,h2) 
only need to be computed at initialization time and cached, therefore, there is only one pairing operation in 
VESigVerify phase, which is the same as the one of Ref.[10], while there are two or three pairing operations in 
other three schemes.  

As shown in Table 1, in five existing VES schemes without random oracles, our scheme and the one of 
Ref.[10] are the best from the view point of the efficiency. However, our scheme has two advantages over the one of 
Ref.[10]: (1) The one of Ref.[10] is proven secure under joint assumptions that the hardness of q-SDH problem and 
the existence of collision resistant hash functions, but our scheme depends only on q-SDH assumption. (2) Our 
scheme obtains tighter reduction, which allows us to choose a smaller security parameter, adding to the efficiency 
advantages of our scheme. 

6   Conclusions 

In this paper, we propose a new verifiably encrypted signature that is fully secure without random oracles. Our 
construction is based on the Gentry signature and is remarkably simple. Our scheme has several advantages over 
previous such schemes – namely, shorter public keys, lower computation overhead, and a tighter security reduction, 
which can be used in practical online contract signing better. 
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