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Abstract: This paper proposes a ternary stationary subdivision scheme for quadrilateral mesh. For regular and
irregular quadrilateral meshes, different subdivision masks are applied to generate new vertices. The number of
faces on the refined mesh is about nine times than that of the coarse mesh after every subdivision step. The limit
surface generated by the new method is C? continuous for a regular mesh and C* continuous for an irregular mesh.
Compared with typical subdivision schemes, the proposed scheme has faster convergence speed and the ability to
solve arbitrary topological quadrilateral mesh. Some examples are given in the end to illustrate the performance of
the new subdivision scheme.
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1 Introduction

Subdivision schemes have been widely used for shape modeling due to their advantages in dealing with meshes
of arbitrary topologies. Subdivision surfaces have the benefits of both polygons and spline surfaces, and it allows
the users to generate smooth surfaces through a small set of control vertices. Its ability of integrating continuous
surface models with discrete representations leads to simple and efficient algorithms.

Since the introduction of Catmull-Clark subdivision surfaces at the end of the 1970s[, many subdivision
schemes have been proposed for various applications. For a quadrilateral mesh, Catmull-Clark subdivision produces
uniform bi-cubic B-spline surfaces and Doo-Sabin subdivision!?! generates uniform bi-quadratic B-spline surfaces.
There are a rich family of subdivision schemes available nowl! such as classical schemes and combined
schemes! %, These methods are widely used in geometric design and computer graphics area for shape design,
animation, multi-resolution modeling and many other engineering applications. Some extensions to meshes with
arbitrary topologies and shape features make subdivision surfaces a more valuable asset in application.

For subdivision schemes, the control meshes are continuously refined in each step so that finer meshes are
generated. The face number and vertex number increase rapidly with the subdivision process. Many researchers
investigate schemes with an odd number of control points and work out a more general ternary subdivision scheme.
Hassan®! proposes a ternary subdivision scheme that can only work on regular meshes. Maillot and Stam[*”! give a
general subdivision scheme that allows any degree of refinements in a single step. However, the properties of the
limit surfaces are not studied. In this paper, we use different masks to subdivide regular and irregular meshes and
prove that the limit surfaces generated by the new scheme are C? and C* respectively.

The rest of the paper is organized as follows. In Section 2, we present a new ternary subdivision scheme for
regular and irregular meshes. Its convergence is proved and the continuity condition of the limit surface is also
given. In Section 3, the proposed subdivision scheme is compared with other subdivision schemes, and some
examples are presented. Finally, we draw conclusions in Section 4.

2 A Ternary Stationary Subdivision Scheme

A subdivision rule is an algorithm that produces a finer mesh with more details from an original coarse mesh,
where the connectivity information and the geometric information are applied. Given a simplicial complex
K=(V,E,F) and a quadrilateral mesh M=(K, @), a vertex is called a regular vertex if it is an interior vertex and has the
degree of 4 or it is a boundary vertex and has the degree of 3 or 2; otherwise, the vertex is called an extraordinary
vertex. A mesh without extraordinary vertices is called a regular mesh; otherwise, it is called an irregular mesh. In
this section, we propose subdivision masks for regular and irregular meshes.

2.1 Subdivision scheme for regular mesh

Regular mesh can be expressed as the form of tensor product surface by taking mesh vertices as control points.
Bi-cubic B-spline surface based on quadrilateral mesh with 16 control points can be formulated as

S(u,v)=UMGM'V 1)
-1 3 31 P R, Ry R4
-6 3 0 P, P, Py P
where M = = is the matrix of the basis function, G=| * 2 2 2| is the matrix of
6|-3 0 3 O Pu P Py Py
1 4 1 0 Pn P, Ps Py

control points, U=[u® u? u 1],v=[v® v? v 1]" are parameter vectors.
Setting u;=u/3,v,=v/3, the bi-cubic B-spline surface can be expressed as
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S(uy,v1)=USMGM'SV (2)
1/27 0 0 0
179 0 0
where S = .
0 1/3 0
0 0 0 1

Refining the original control mesh leads to the new F-vertices, E-vertices and V-vertices, but the spline
surfaces are the same, so we can obtain

S(uy,v1)=UMG;M"V=USMGM'SV (3)
Thus the subdivision control points G; can be expressed as
G,=[M*SM]G[M'S(M") 1= H,GH, 4)
10 16 1 O

4 19 4 0
where H, =M™SM -1 .
2711 16 10 O

0 10 16 1

The new control point ¢; is generated by the control point P and its neighbor points multiplied by
corresponding coefficient A;;. According to Eq.(4), we can get the coefficient Aj; and their relationship as follows

Ar=Ag=A=A=A=A =A== A, :7—29[100 160 10 160 256 16 10 16 1] -
A=A =A=A,=A,=A, :%[40 190 40 64 304 64 4 19 4]
A, = 7—29[16 76 16 76 361 76 16 76 16]
The new face vertices Qu1, G13, 14, 31, Uss, Uaa, Ga1, Gaz, Gas and the new edge vertices dia, dza, 23, Gas, G2, Gaz
(Fig.1) have the same coefficients respectively, so we get the subdivision masks for regular mesh as shown in Fig.2.

P
“ Pa2 Pas Paa
P
P P32 Pas 34
Qa1 |
Q31 I I Pos
P21 40212 \l., ||323
Q11
Py ql12 Q13 Q1I4
P12 P13 P14

Fig.1 Bi-Cubic spline subdivision scheme of regular mesh

10 16 1 40 64 4 16 76 16
160 190 19 76 76
m | 256 16 304 361
100 160 10 40 64 4 16 76 16
(a) Mask for F-vertex (b) Mask for E-vertex (c) Mask for V-vertex

Fig.2 Masks of regular mesh

The refined control point G, is deduced from the expression of spline surface, so the limit surface generated by
this scheme is also bi-cubic B-spline surface. To subdivide the same original mesh, the ternary scheme generates the
same limit surface as Catmull-Clark subdivision, so the limit surface is also C® continuous.
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2.2 Subdivision scheme for irregular mesh

To define a subdivision scheme for irregular mesh, we need to specify rules for computing positions of the new
vertices and rules to update the positions of the existing vertices. When new vertices inserted on each edge and face
are connected by edges, each face is partitioned into 9 quads using the ternary subdivision scheme. The subdivision
rules that we propose are the following

Face rule: The F-vertex v near the vertex vq is computed by the following formula (Fig.3(a)).

(6)

Edge rule: The E-vertex v, near the vertex vy can be computed by the linear combination of the vertices

Vi :%(4v0 +2V, +V, +2V,)

corresponding to the edge (Fig.3(b))
@)

A =%(6v0 +3Vv, +V, + 2V, +V, +2V;)

Vertex rule: the new position of the V-vertex v, can be determined by the linear combination of the old
vertex v and its 1-neighborhood, which include immediate and diagonal vertices (Fig.3(c)).

v=l-am S v ®

where n is the valence of the vertex v, « and g are two free parameters which are obtained by considering the
convergence of the subdivision scheme and the continuous condition of the limit surface. Note that during the
process of iterative refinements, the valence of each original vertex is invariable.

4 2 1 2 pin
/ N
aln aln /7 £in
n 3 6 ﬂ/n% ,
an? 1-a-p i
2 1 e
1 2 gnt 4N pn

(a) Mask for F-vertex (b) Mask for E-vertex (c) Mask for V-vertex

Fig.3 Masks of irregular mesh

2.3 Convergence proof and continuity analysis

The egienstructure of subdivision matrices is necessary for the convergence proof and continuity analysis of
the limit surface, so we firstly deduce the eigenstructure of the subdivision matrices of the ternary scheme. To
simplify computation of the eigenvalues, the vertex V& at the k-th subdivision level is used n times, and then the
iteration rule of vertex computation is

v® nis}”v (k1) )
=0
where S (i=0,..,n—1) are block matrices of the k-th level subdivision matrix S®, and can be expressed as
[(A—a-pB)In al2n pin al2n] l-a-pB)In al2n Bin al2n
o | U5 1/10 1/15 2/15 R o o0 o0
0 4/9 219 1/9 2/9 | ! 0 0 0 o |
L 1/5 2/15 1/15 1/10 | 1/5 1/10 1/15 2/15 10
Q-a-B)in al2n Bin al2n] Q-a-B)in al2n Bin al2n (10)
s | 0 000 sy | 1S 2/15 1/15 1/10
! 0 0 0 0 " Lo 0 0 0 0
L 0 0 0 0 0 0 0 0
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The subdivision matrix S® =bcirc(S{”,5{,...,.5%)) is transformed into block diagonal matrix
S® = beirc(S®,5,,...S*)) by Discrete Fourier Transform (DFT). The relationship between the subdivision

matrix and diagonal matrix is the following

s® —ys®yT (11)
1 1 1
1 n-1 - 1 -
whereU -1 ] w : w, ,S(k)flz ", j=01,.,n-1.
Jn|ioo : : nis
1 wn—l a)(n—l)z

DFT is used here as an algebraic tool to transform subdivision scheme into a form suitable for the analysis.
This allows us to formulate simple and numerically sufficient criteria for the convergence of subdivision scheme.
The matrices S® and S® are similar ones and have the same eigenvalues, so we can analyze the eigenvalue
spectrum of the matrix S® instead of S¥. The block matrices of the diagonal matrix S® are

SH =80 +8® 1+ (n-3)SH +5X) (12)
5O =80+0 'S —(l+0 +0)S® +&'SY, (i =1,...n-1) (13)

Using Eq.(10) and Eq.(12), we get

l-a-p «al2 p «al2
2/5 7/30 2/15 7/30
4/9 219 1/9 2/9 |
2/5 7/30 2/15 7/30

Q (k k k k k
{9=880+80 1+ (n-3)5® + 8% =

The eigenvalues of matrix S are 1p=1,

4 =918 B L 202507 25200 + 40500/ + 736 — 21605 + 202552,

245 2 "9
g=-2 BB \/20250: — 2520 + 405003 + 736 — 21603 + 202557 ,
25 2 90
4, =0.

Setting o=4/9 and (=4/45, we have 20250°-2520a+4050 4+736-21604+2025/°=0, then the eigenvalues of
S are 0, 1, 1/45, 1/45, respectively. By (10) and (13), we have

§ =50+’ + L+ o' +0)SY + 'S

l-a-p al2 B al2
| 1/5+@' /5 1/10+20'/15 1/15+0'/15 2/15+0' /10
- 4/9 2/9 1/9 2/9

o 15+1/5 ©'/10+2/15 @7 /15+1/15 207 /15+1/10

The eigenvalues of the matix S& are 4,=1/90

1

" 2700 (1020 +18+180” —\[6(3220" + 724 + 720 +9+90"))
_ 1

" 2700 (1020 +18+180™ +[6(3220" + 7200 + 720" +9+90"))

43 =0.

Since the matrices S® and S® are similar ones, the eigenvalues of the matrix S are the same as those of
the matrix S . Similar to the uniform stationary subdivision scheme, the subdivision matrices of different levels
satisfy $=SW=...=5®, 5o the eigenvalues of subdivision matrix S satisfy

A0=1> 1= 22>\ Aiol 2| Aia[I2]] 221 Aia]|=0, i=1,...,n-1.
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After getting the eigenstructure, the convergence analysis of the ternary subdivision scheme can be performed
by analyzing the eigenvalues of the subdivision matrix S.

Theorem 1. The limit surface of the ternary subdivision scheme is convergent.

Proof: The vector of initial data can be decomposed into eigenvector d; scaled by weight a;eR® called
eigencoefficient, the vertex V® satisfies

n-1
VO =%ad, (14)
i=0
Note that a; is a row vector, hence
n-1 n-1 ﬂ/
VO =gyt = =slv@ =% a2, = 45| a,dy + Y| = |ad; (15)
i=0 i=0 %
The eigenvalues of the subdivision matrices satisfy A% =1 and lim A¥'=0(i=0), so we get
l!lmV(k) =a,d, (16)
Therefore, we draw a conclusion that the new ternary stationary subdivision scheme is convergent. O

Theorem 2. The subdivision scheme defined by irregular subdivision masks is C* continuous.

Proof: Let V\® V%) be the I-th and t-th components of the vertex V®, d;, di be the I-th and t-th
components of the eigenvector d;, respectively. With dy=[1,1,...,1]", we obtain

n-1
lim IV\® =V, ® 1= lim |3 4, (d, —d,t)H_ lim
—>®0 k—o -0

ﬂ’(k)a (dll dlt)“ (17)

Eq.(17) shows that the limit surfaces is C° continuous.

Let v, ,v,® v® be the I-th, t-th and s-th components of the vertex V&, and d;, dy, d;, be the I-th, t-th and
s-th components of the eigenvector d;, respectively. The eigenvalues and eigenvectors satisfy A4;=4,=1/45 and
do=[1,1,...,1]", then the normal vector of the surface defined by the three points N can be expressed as

Isxls

Nis (A V(k) (VAR
lim—=5—=lim £
SING, T T® V) x (v v O |

[Z(a /l(k)dn) Z(a dis)j X (Z (ai/l.(k)dit) Y Z(aiﬂ'i(k)dis)j
[Z(a /l(k)du) Z(a dis)]X(Z(ai;{’l(k)dit) —Z(aiﬂﬁ(k)dis)j (18)

i=0 i=0
A:l ((dyy —dyg)a, +(dy —dy)a,) x ((dy —dig)ay +(dy, —dye)a,)
g II A2 ((dy —dig)a; +(dyy —dye)a, ) x ((dy —dy)a, + (dy = dys)a,) |l
_dpxa
” az xa ||
Eq.(18) shows that the limit surfaces is tangent plane continuous. Besides, the map between the control points
and corresponding projections on the tangent plane is injective. According to the sufficient conditions for surface
continuity™, we draw the conclusion that the limit surface is C* continuous. O]

= I|m

2.4 Boundaries

The previous sections present subdivision scheme for closed surfaces. However, it is often necessary to model
surfaces with boundaries. For open meshes, boundary edge fails to produce a new face due to incompleteness of
mask configuration, so we make use of the symmetry to create new edge vertices around the boundary edge. The
new edge vertices and the old edge vertices are connected to form quadrilateral faces as shown in Fig.4. The

http:/ www, jos. org. cn
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face-generation approach yields a complete quadrilateral mesh for arbitrary open meshes, so the new ternary
subdivision masks for regular and irregular meshes can be applied again.

(a) The original mesh (b) The new mesh after adding edge vertices

Fig.4 Edge vertices on the boundary

3 Examples and Comparisons

There are some typical subdivision schemes of quadrilateral meshes: Catmull-Clark and Doo-Sabin subdivision

that are based on tensor product surface, 4-8 subdivision™ and +/2 -Subdivision™®. In this section, we will
compare the convergence speed of our method with the existing typical methods by the eigenvalue analysis. Some

examples are also given.
3.1 Convergence speed comparisons
The block matrices S® (i =0,..,n—1) of Catmull-Clark subdivision scheme at the k-th subdivision level can

be expressed as

[9/16n 3/16n 1/16n 3/16n] [9/16n 3/16n 1/16n 3/16n|
w© _|3/16 3/16 1/16 3/16 ) 0 0 0 0
s = ,SH = ,
0 14 14 14 14 ! 0 0 0 0
| 3/16 1/16 1/16 3/16 | | 3/16 3/16 1/16 1/16 |
[9/16n 3/16n 1/16n 3/16n] [9/16n 3/16n 1/16n 3/16n]
sk _ 0 0 0 0 sk _ 3/16 1/16 1/16 3/16 |
: 0 0 0 o '™ 0 0 0 0
0 0 0 0 0 0 0 0

The block matrices are transformed into block diagonal matrices, then we get the eigenvalues of the

subdivision matrix with the relationship

ﬂyo=1>),1:ﬁ,2:1/4>1i0:1/16> }‘11 = - - - ! - - - - > /’LIZ
1280 (64W' + 4W? + 4y1310% + 460° + 460 + 0¥ +1)
= > Iy =2 =0.

1280 (64W + 4w — 413107 +460° + 460 + 0" +1)

The eigenvalues of subdivision matrix for the Catmull-Clark subdivision scheme are bigger than those of the
ternary subdivision scheme, so the ternary scheme has a faster convergence speed.

Since Doo-Sabin and Catmull-Clark schemes are based on bisection refinement, they have the same
convergence speed. Note that Doo-Sabin scheme does not guarantee to generate quadrilateral meshes when the
original meshes are irregular quadrilateral meshes. The 4-8 subdivision can be viewed as a \/E -subdivision when
the underlying quadrilateral structure is considered during the refinement process. The \/E -subdivision scheme can
also be regarded as an extension of the 4-8 subdivision directly operating upon a quadrilateral mesh. Given an
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original control mesh, two bisection refinement steps of the 4-8 subdivision are equivalent to a face split of the
Catmull-Clark subdivision, thus the convergence speed of the 4-8 subdivision and \/5 -subdivision is slower than
that of the Catmull-Clark subdivision. In consequence, the convergence speed of the ternary subdivision scheme is
faster than other typical schemes.

3.2 Some examples

We have tested the new ternary subdivision scheme with a lot of different types of geometric models and some
of them are given here to illustrate the performance. The comparison of Catmull-Clark scheme and the ternary
scheme is shown in Fig.5.

{

(@) (b)
(a) and (b) Meshes using Catmull-Clark subdivision once and twice respectively
(c) and (d) Meshes using ternary subdivision once and twice respectively

(d)

Fig.5 Comparison of Catmull-Clark and ternary scheme

In Fig.6, the original control mesh is regular quadrilateral mesh and the limit surface is C® using the new
ternary subdivision scheme. In Fig.7, Fig.8 and Fig.9, the original meshes are irregular meshes and the limit
surfaces are C'. Figures 6-9 show that the subdivision surfaces generated by the ternary scheme have fair and
natural looks, especially in Fig.8 and Fig.9 the surfaces look smooth through four times subdivision and there is

S

(b) Refined mesh using ternary scheme  (c) Subdivision surface using ternary scheme

Fig.6

(a) Initial control mesh (b) Refined mesh using ternary scheme (c) Subdivision surface using ternary scheme

Fig.7

little difference between the third and the fourth subdivisions.
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(a) The second subdivision (b) The third subdivision (c) The fourth subdivision

Fig.8

—

(a) The second subdivision (b) The third subdivision (c) The fourth subdivision
Fig.9

4 Conclusions

We present the ternary stationary subdivision scheme for regular and irregular meshes. The subdivision mask
for regular mesh is deduced from bi-cubic B-spline surfaces and the subdivision mask for irregular mesh comes
from face split. The limit surfaces are C? and C* continuous respectively. The face number is about nine times than
that of the coarse mesh after each refinement step. The new ternary subdivision scheme has fast convergence speed
and woks well for both regular and irregular meshes, so it has wide adaptability. In this paper, we pay less attention
to creases and object boundaries. More work is needed in those cases to improve the quality of the refined shape and
sophisticated continuity analysis is also needed, which are our future research.

References:

[1] Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design, 1978,10(6):
350-355.

[2] Doo D, Sabin M. Behavior of recursive division surfaces near extraordinary points. Computer Aided Design, 1978,10(6):356—360.

[3] Ma WY. Subdivision surfaces for CAD—An overview. Computer Aided Design, 2005,37(7):693—-709.

[4] KobbeltL. \/E-subdivision. In: Proc. of the SIGGRAPH 2000. New York: ACM Press, 2000. 103-112.

© PEBREBELDIFUR  hup/www. jos. org. cn



SR A A Y AT P = -t AR, 2355

[5] Dyn N, Levin D, Gregory JA. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. on
Graphics, 1990,9(2):160-169.
[6] Reif U. A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design, 1995,12(2):
153-174.
[7]1 Peters J, Reif U. The simplest subdivision scheme for smoothing polyhedra. ACM Trans. on Graphics, 1997,16(4):420-431.
[8] Habbib A, Warren J. Edge and vertex insertion for a class of C* subdivision surfaces. Computer Aided Geometric Design, 1999,
16(4):223-247.
[9] Zorin D. Smoothness of stationary subdivision on irregular meshes. Constructive Approximation, 2000,16(3):359-398.
[10] Stam J. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree. Computer Aided Geometric Design,
2001,18(5):383-396.
[11] Zorin D, Velho L. 4-8 subdivision. Computer Aided Geometric Design, 2001,18(5):397-427.
[12] Zorin D, Schroder P. A unified framework for primal/dual quadrilateral subdivision scheme. Computer Aided Geometric Design,
2001,18(5):429-454.
[13] StamJ, Loop C. Quad/Triangle subdivision. Computer Graphics Forum, 2003,22(1):1-7.
[14] Warren J, Schaefer S. A factored approach to subdivision surfaces. Computer Graphics & Applications, 2004,24(3):74-81.
[15] LiGQ, Ma WY, Bao HJ. \E -Subdivision for quadrilateral meshes. The Visual Computer, 2004,20(2-3):180-198.
[16] Hassan MF, lvrissimitzis IP, Dodgson NA, Sabin MA. An interpolating 4-poiont C? ternary stationary subdivision scheme.
Computer Aided Geometric Design, 2002,19(1):1-18.
[17] Maillot J, Stam J. A unified subdivision scheme for polygonal modeling. Computer Graphics Forum, 2001,20(3):471-479.

LIU Li was born in 1979. She is a Ph.D.
candidate. Her research areas are the area

YANG Xing-Qiang was born in 1964. He
is an associate professor and a CCF senior

of CAD, CAGD and image processing.

ZHANG Cai-Ming was born in 1955. He
is a professor, doctoral supervisor and a
CCF senior member. His research areas are
CAGD, CG and medical image processing.

member. His research areas are CAD and
CAGD.

BO Peng-Bo was born in 1978. He is a
Ph.D. candidate. His research areas are
CAGD, CG and information visualization.

ERCKPFIIFET  htpi// www, jos. org. cn



	Introduction
	A Ternary Stationary Subdivision Scheme
	Subdivision scheme for regular mesh
	Subdivision scheme for irregular mesh
	Convergence proof and continuity analysis
	Boundaries

	Examples and Comparisons
	Convergence speed comparisons
	Some examples

	Conclusions

