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Abstract: Based on the de Casteljau algorithm for triangular patches, also using some existing identities and
elementary inequalities, this paper presents two kinds of new magnitude upper bounds on the lower derivatives of
rational triangular Bézier surfaces. The first one, which is obtained by exploiting the diameter of the convex hull of
the control net, is always stronger than the known one in case of the first derivative. For the second derivative, the
first kind is an improvement on the existing one when the ratio of the maximum weight to the minimum weight is
greater than 2; the second kind is characterized as being represented by the maximum distance of adjacent control
points.
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1 Introduction

Rational Bézier curves and surfaces are well established as a convenient way to represent Computer Aided
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Design Geometry. In some applications, it is important to have a measure of the size of the lower (first and second
order) derivatives. For example, in order to detect the inflection points or singularities (cusps or loops) of curves or
the flatness of surfaces, the magnitude scope analysis of the curves or surfaces’ derivatives is inevitable. The
efficiency of various algorithms for CAD models, e.g., the algorithms about collision detection or rendering, can be
enhanced if the upper bounds on the curves and surfaces’ lower derivatives can be calculated in advance. In
practical applications, the stronger the upper bounds are, the more useful it will be.

So far, the calculation and the bound estimation of the derivatives of parametric curves and surfaces have been
studied widely™®. However, in case of rational parametric curves and surfaces, the results included in these papers
only focus on the calculation and bound estimation of the first derivative. For rational surfaces, the calculation
formulas and bound estimations are only derived on the tensor product patches, i.e., rectangular patches. The
evaluation formulas and bound estimations for the rectangular patches, however, are ineffective for rational
triangular patches, since the three parameters of triangular patches are not independent. Recently, by using the
direction operator, Zhang!” has obtained the lower derivatives and bound estimations of rational triangular Bézier
surfaces.

Rational triangular Bézier surfaces are used wildly in CAGD and CAD nowadays because these surfaces take
advantage over rectangular patches in many ways. For example, rational triangular Bézier surfaces are suitable for
geometry modeling based on irregular and scattered data. By using surfaces constructed over non-degenerate
triangular parameter domains, we can also avoid the degeneracy of rectangular patches® . Since rational
triangular patches are playing an important role in CAGD and CAD, we are motivated to improve the magnitude
upper bounds on their lower derivatives.

According to the de Casteljau algorithm for triangular patches, any point in the triangular Bézier surface can be
obtained from repeated linear interpolation of control vertices. In this paper, we investigate the properties of the
intermediate weights and intermediate points in the de Casteljau scheme by using some existing identities and
elementary inequalities. Based on these properties, we obtain two kinds of upper bounds on triangular patches’
lower derivatives. The first kind of bound estimations, which exploit the diameter of the convex hull of the control
net, improve the corresponding result in Ref.[7] in the case of first derivative. For the second derivative, the first
kind of bounds are stronger than the corresponding results in Ref.[7] when the ratio of the maximum weight to the
minimum weight is greater than 2. The second type of bound estimations are characterized by using the local
distance of the control net, namely, the maximum length of the edge of the triangles, to express the upper bounds. In
applications, we can compute both kinds of bounds for each partial derivative, and choose the smaller one as the
ultimate upper bound estimation. An application of surface rendering shows that the bounds obtained in this paper
are useful in practical applications.

2 Preliminary

A rational triangular Bézier surface of degree n is defined as
o R B (uv,w)

iﬂlzk::nl,],k i,j.k=i gk _ P(U,V,W)
> o, B UV, W) W (u,v,w)’

i+j+k=n

R(u,v,w) =

(uv,w)eT.

1
il jIk!
functions, and T:{(u,v,w)|u+v+w=1, 0<u,v,w<1} is the parametric domain. Since the three parameters are not
independent, we represent the rational triangular Bézier surface equivalently as follows to ensure the partial

where R;jye 9% are the control points, ;;, are positive weights, B« (u,v,w) = u'viw® are Bernstein basis
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derivatives make sense

Zw‘ LB (uv)
R(U,v) = =0 R CR)  (Uv)eD )
Zwl ]Blnj(ulv) W(U V)
i+j=0

where ;=i jx Rij=Rijx Bﬁj (u,v) = Bﬁj,k(u,v,l—u—v), D={(u,v)|u+v<1, u,v>0}. For convenience, in the rest of

this paper, we still write w instead of 1-u—v. Based on the de Casteljau algorithm for the rational Bézier triangular
patches“z], we can obtain some identities as follows

X{ = uX g + X A wx )
XI5 =UPX{ 5+ 20X+ 2uWX 7+ 2vwiX 2+ vEX2, + WX 3)

where symbol X[, represents o, or B'@f;, @f; and P, are intermediate weights and intermediate points

in the r-th step of de Casteljau algorithm respectively. It follows that P& =R ;=R a),?j =0 =0y

R(u,v)=Pgy, W(u,v)=ay,. In order to derive the properties of the intermediate weights and intermediate points,

we first introduce some notations as follows:

. W
Wy =maxw, ;, Wy =mina, ;, W =M
i+j<n i+j<n 7 WN
V, = max max{w;,; i1 @i 1) O ,
it M@y §, @ 1, @;
Vz — max max{a’wz j ’wi‘j+2’w| j? a)|+1 ]+1'w|+1 j @O i, J+1}}

i+jsn-2 mm{a’wz j ’wi,j+2’w| J‘a)Hl J+1‘wl+1 j? | J+1}
P, =max|| P ;
M i+ j<n ” ij p,q ”v

p+g<n
L; = max {” P|+1J IJ+1 ” ” P|+1] ” ” I:)| T |,rj ”}r
i+j<n—r-
Lr2 = max {” PI+2] J+2 ” ” PI+2J ” ” P| j+2.k I:>|rj ”v
i+j<n-r-2

P2 = Pl IR =Pl WP = Py L L3
Compute the ratios of the maximum weight to the minimum one for every triangle and every four adjacent
triangles (see Fig.1) of the control net respectively, then V,; and V, represent the maximum ratios respectively; L;
represents the maximum distance between arbitrary two adjacent intermediate points in the r-th step of the de
Castetljau algorithm. Particularly, LY represents the maximum distance between arbitrary two adjacent control
points; L, represents the maximum distance between arbitrary two intermediate points in each four adjacent
triangles in the r-th step of the de Casteljau algorithm (see Fig.1).

pr

i,j+2

r
P|+1j Pr
i+, j+1

pPr p.r

ij i j+l

P

i,j+2

Fig.1 Four adjacent triangles in the r-th step of the de Casteljau algorithm
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The identities derived in the rest of this section will be useful in the later discussion.

oB" (u,
Applying %: n(B!';(u,v)-B/'(u,v)) to P(u,v) and W(u,v), we have

P, =n(w] ol P'o - H,Bl Por,]al (4)
W, = n(wl 0 — @0 o
Pw =n(n _1)(5";,52 P2n,02 - 20’1 o P1 N+ @y, o Ponoz) ©)
Wy, =n(n *1)(50252 -20, +a)0 o
P, =n(n —1)(60{?{2 Pl?fz —wfaz Po : wo 1 Po 1 T o2 I:)onoz ©)
Wy, =n(n-1)(@5;” ~o15" —o5," + o5y’

Substituting R(u,v) =Py, W(u,v,w) =y, Egs.(3), (4) and (5) into the first and second derivatives of
Eq.(1) respectively, we obtain

1 n-: n n-.
R, =—(P, -RW,)=—— [wlol(Plol_Po,o)_wo (Py 1—P0'70)] )
w wo‘o
(P, W, —2W,R ) n(n-1 W
Ry = ( )( Z(P —Pgy) —20; 2(P1n02 Poo) + g, Z(P -Pgy)) -2 R, (8)
wo 0 a’o 0 Wo o
[( Puv _Wuv PO”O) _Wu Rv _Wv Ru )]
Ry = R 9)
Do,
n(n-1 n- n-. n n-. n n- n-. n n-| n- n Wu
3 ( g ) (w1,12(P1,1 ‘- Po,o) w1o (P 1,0 ‘- Po,o) _w0‘12(Po,1 ‘- Po,o) + wo,oz(Po,oz - Po‘o)) _T(Ru +R)

0,0 0,0

3 Properties of Intermediate Weights and Intermediate Points

As a preparation work for the bound estimations of rational triangular Bézier surfaces’ lower derivatives in the
next two sections, herein, we investigate the properties of intermediate weights a’ﬁ and intermediate points Pijr .
First, we introduce a lemma as follows.

Lemma 1. For arbitrary positive real numbers a,b and arbitrary vectors p;,p,, we have

|aP1—bP,|<max{a,b}max{|P4|,|P,|,|P1—P-|}.

Proof: Without loss of generality, we suppose a<b, and then we have

b—a>0,
[aP1-bP|=[a(P1—P>)—(b-a)P[<(|al+|b—al)max{|P.~P2|,|P,[}
<bmax{|P1—Pal,|P2[}<max{a,b}max{|P1—Pal,|P1|,|P,[}.

Next, we discuss the properties of the intermediate weights.

Property 1. For intermediate weights of the r-th step and (r-1)-th step of the de Casteljau algorithm, we have
r -1

w|+11<A1 I]+1<B_[ IJ <C
11
Cl)” D j J
where Ai maX (le] u) Bl maX (wl j+L ) C - maX (w| j |]) m;; *]/ min {w| j+1 23 ]+1'wi,j

i+j< i+j<n-1

Proof: For arbitrary positive real number a,b,c,d,e,f and u,v>0, u+v<1, and note that O<w=1-u-v<1, the
following inequality always satisfies

ua+vb+wc abec
——  —<ma .

wdrverwt N

Substituting Xifj by mifj in Eq.(2) and applying this inequality repeatedly, we obtain
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C’)ir{fj _ (u +V+W)a)ir+71%j,k < max{l, C’)iEJ , wur:fl, }< A.
@; Uw|+1j  TVO] j+1k TWa; i i1 @i
The others can be obtained analogously.
Substituting X/ by @ ; inEq.(3), we have
=u? 60.+z i +2uwo+1 i +ZUWa}+1J +2Wa 2 i +Vearl 1+2 +w? ;. O

Based on this equatlon, we can get the following two properties in a similar fashion to that we prove Property 1.
Property 2. For intermediate weights of the r-th step and (r—2)-th step of the de Casteljau algorithm, we have

r-2 r-2 r-2 r-2 r-2 r-2
21y <A @ ji2 <B @ <C @ i <D [N <E (2 <R
T y T 2 T 29 T 27 r 2 r 2
D | i j i i i i j
A, = max (o, @ir ij)l B, = max (a)u j+2 ij)v C, :.max (a)l,jMij)r
i+j<n-2 i+j<n-2 i+]
where DZ = maX ( |+lj ) E2 = maX (a)l+lj ) F E max ( |+1 ]+1Mij)v

I+]

]/Hr}Llnnz{ i+2,j |]+2’wi,j'a)|+1,j+1’a)i+1,j' i,j+1}'

Denote Vi=max{A;,B;,C1}, Vo,=max{A,,B,,C,,D,,E;,F,}, it is obvious that 1<V,<V,<M, therefore we have
Property 3. For intermediate weights of the r-th, (r—1)-th, (r—2)-th step of de Casteljau algorithm, we have

r-1 r-1 r-1
Gj G G oy
r r r — D
@ G O
r-2 r-2 r-2 r-2 r-2 r-2
Biizj Bijr2 Dy Biju Gy Ggja <V
Ll il 1 1 3 = 2.
a)r . a)r . a).r . a)r . a).r . a).r

(] (] 1 1J (] 1j
In the rest of this section, we derive the properties of the intermediate points.

Property 4. For intermediate points of r-th and (r—1)-th step of de Casteljau algorithm, we have
FEAN
Proof: We prove [Pl ;-P/,lI<V,L{" asanexample.
Recall Eq.(2), we have
1 1 -1 -1
( i+, i,rj+1) :r_(up|:2] |+2 j +VP|£1 J+lwl+l j+1 +WP|£1] i+1, ]) 3
i+1, ] (10)

1
——(UP 0 VP e, WP el

i+1, j+H17i41, j+1 ]+2 i, j+2 i, ]+l 1, j+1
I, j+1
Note that
r
va—l ]+1 a)i+1j ua)H—Z j Wa)H—l j '
r
uwl+1j+l wi,j+1 Va)l ]+2 Wa)l ]+1
The substitution of these two identities into Eq.(10) implies
r-1 r-1
r _ i+2,] r-1 r-1 i, j+2 r-1 r-1
( i+1,j i,j+1) =u r I:’|+2 j P|+l J+l) +Vv r I:,|+1 j+l Pl J+2) +
i+1, j i+1, j
r-1 r-1
Dii1j or-1 r-1 D o r1
w r P|+l] F)|+1 ]+1) + r PI j+1 I:’|+1 j+l
@4y Ll
Applying Lemma 1 and Property 3, we have
-1 -1
I Piil,j - Pi,rj+1 ll< max{A,,B,,C,};~ <V~ U
Similarly, we can get
© hEE http:// www. jOs. 0rg. cn
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1P P I=ViL™, 1P =P ISV
This property implies that the maximum distance between any two adjacent intermediate points of the r-th step
of de Casteljau algorithm can be bounded by that of the (r—1)-th step multiplying a constant factor V;.
Property 5. For the intermediate points of the r-th and (r—2)-th step of de Casteljau algorithm, we have
L, <V,L52.

Proof:  First, we prove ||Pl,;—P/,.,lI<V,L;?. Following Eq.(3), we have

1
r r-2 r-2 r-2 r-2 r-2
Pl =— —— (X[} jtv 2Xi jr2 TW X7 j +2uvX +2uWX 5 +2vwX )

i+3,j+1 i+3,] i+2, j+1
|+2,] (11)
r
Pi,j+2 (U x|+2 j+2 +V XI j+4 +W XI j+2 + 2uvx|+1 j+3 +2UWX|+1 j+2 i 2Vle ]+3)
i, j+2
where we write X/, instead of P";@; for brevity. Note that
Vi =0, —Uo 2 — Wk —2wa 2. —2uWe Z - 2w
|+2 j+2 T Yi+2,j |+4] |+2] |+3 j+l |+3] |+2 j+11
r
u a)|+2 j+2 — a)i,j+2 V a)l ]+4 W wl J+2 Zuval j+3 2UW0)H1 j+2 2vwa)l j+3*
Substitute them into Eq.(11), we have
r-2 r-2
2 @ [2)
r r * I+4J r-2 r-2 |J+4 r-2 r-2
Pi+2,j = Pi,j+2 u? PI+4J R J+2)+V (P| j+4 -P. J+2)+
|+ZJ i, J+2
a)r—z r -2
2 1+2,] r-2 r-2 |J+2 r-2
w T (PHZ] P|+2 J+2) - (P| j+2 |+2 ]+2)
a)i+2,j i, J+2
r-2 r-2
a)|+3,j+1 r-2 r-2 le j+3 r-2 r-2
2UV r P|+3 j+ P|+2 J+2) + I:)|+1 j+3 P|+2 j+2 +
oWy & ]+2
wr—Z r 2
43, r-2 |+1J+2 r-2
ZUW r (P|+3] +2 ]+2)+ (P|+1 j+2 P+2 ]+2)
142, i, j+2
r-2 r-2
[2) O) ;
Fit2,j41 r-2 r-2 1,j+3 r-2
2VW (P|+2 j+l P|+2 j+2 r PI j+3 PH—Z ]+2)
a)|+2 j 1,j+2
By applying Lemma 1 and Property 3, we have
r-2 r— 2
P |+21 IJ+2 li< max{A,,B,,C,,D,.E,, F}L; “ <V,L,
Similarly, we have
r r-2
” |+2] ” ” |j+2 ” ” |+2] j+1 ” || IJ+2 I+1J ” ” P |+1]+1 ||<V L . U

The combination with Property 4 completes the proof.
This property implies that the maximum distance between arbitrary two points of all four adjacent triangles

(see Fig.1) of the r-th step of de Casteljau algorithm can be bounded by that of the (r-2)-th step multiplying a
constant factor V,.

4 Bound Estimation by Using Control Net’S Convex Hull Diameter

In this section, we estimate the size of the derivatives by using the diameter of the control net’s convex hull,
which is denoted as Py. We have the theorems as follows:
Theorem 1. For the first derivative of any rational triangular Bézier surface of degree n, we have
|Ry|<nmax{A;,C1}Pu<nV Py.
Proof: From Eq.(7) and Lemma 1, it follows that
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|R |<nmaX{wln01 wgol}maxﬂpn—l_Pn||Pn—l_Pn||Pn—l_Pn—1|}
u = a)n ! wn 10 00 I 00 00 Iv 00 10 1
00 00

where Py, P, PA™ are all included in the convex hull of the control net, therefore
| Plg%l - POTJ |'| POr(‘)71 - PO?) |’| POT{I - Plrt])il |S I:’M '
Hence from Property 1, we have
|Ry|<nmax{A;,C1}Pu<nViPy (12)
O
Similarly, from the last parts of Eq.(8), Eq.(9) and Lemma 1, we have:
Theorem 2. For the second derivative of any rational triangular Bézier surface of degree n in Eq.(1), we have
IRuu[<[N(N—1)(Az+2E+Cy)+2n%(A;+Cr)max{A;,C1}Pw,
IRuI<[N(N-1)(Go+F+Eo+Cy)+n*(A+Cr)max{A;,Ci}+n?(B1+Cy)max{B;,C:}Py.
These results can also be simplified as
IRuls [Rw|<4n[(n=1)Vo+n V;* Py (13)

5 Comparison

In this section, we compare the results proposed in previous section and the ones obtained in Ref.[7]. The
upper bounds of the magnitudes of the first and second derivative proposed in Ref.[7] are showed as follows

|R,[<nM?Py, (14)
R oM ? imgan)wai,j — Wiy |
IR, [<2nM?| (2n-1)M e P, (15)

n

max | @, — o, |
IR, [<2nM 2| (2n—-1)M +n% Py (16)

It is obvious that bound (12) is an improvement on bound (14).
When M>2, we have

4n[(n-1)V, +nV/’] LAM-D+nM]
2nM 2l (2n =DM i+?3ka:)§_1| B jk1 ~ Disajk | M 2(2n -1)
n n—-1)M +n
(2n-1) =

n

Therefore, we conclude that when M>2, Eq.(13) gives a stronger bound than Eq.(15). Similarly, when M>2,
Eq.(13) also gives a stronger bound than Eq.(16). We denote the right parts of inequalities Eq.(13), Eq.(15), Eq.(16)
as M,, M,, Mj respectively. All together, by using the control net’s convex hull diameter to estimate the size of the
rational triangular Bézier surfaces’ lower derivatives, we obtain the upper bounds as follows

|Ry|€nmax{A;,C1}PusnV Py,

>
IRy e M2
max{M,,M,} M <2

R M M >2
YT max{M M3 M <2

6 Bound Estimation by Using Local Distance

In this section, we establish another type of upper bounds, which only depend on the largest distance between
the adjacent control points.
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Theorem 3. For the first derivative of any rational triangular Bézier surface of degree n, we have
IR, [<nV,"LS.
Proof: Let r=n in Eq.(2), we get two identities corresponding to X representing e; and P w; respectively.
Inserting them into Eq.(7), we have
_ Nvag (el (P —Poy ") + @5 (Poy = P ) + A=V) iy 0" (Pig " ~Pig ™)) -

u
@ Dgo

R

Hence
[R, [<NV2LYE.
By repeatedly using Property 4, we complete the proof. (I
Theorem 4. For the second derivative of every rational triangular Bézier surface of degree n, we have
IR LR, I< {Zn((n—l)vzr"*i+2nV1"*12)L§J 0 n=2m :
2n((n-)V,"* +2nV,""V,L; n=2m+1

Proof: From Eq.(8), we have

Ru = (Puy@gp =Wy, Po@go) — 2W 5 (7

W0 D50 Wy

Expanding @y, and Pyayp, according to Eq.(3) and substituting them into Eq.(17), then we have
R,, = n(n-1)(au® +bv® +cw? + 2duv + 2euw + 2 fuw) — 2W Ry
@y
where a,b,c,d.ef are linear combinations of @), *wf*(Py? — Py ?) with p+q<2,s+t<2, for example,
1 n n n n n n n n—
a:ﬁ(w ( (on 2 —Py H-o (Plo 2 —Py 2))+0) (g (Poo 2 —Py ) -o (P1o 2 =Py ).
00 @00
By using Lemma 1, Property 2 and Property 5, we have
lal<VyiLy 2.
Similarly, we obtain
Iblfclldllell VL.
Therefore, we have
IR, [<n(n=D)maxfal,|bllclld]|el] f[}+4n?V,"?L] <n(n—DV2L)? +4n?V,""2L0 .
Note that
L, <20 <2v,l), L) <20,

Hence, from Property 5, when n=2m, we have

|R,, < 2n[(n —)V," + 20V, 2110 .
Otherwise, when n=2m+1, we have

| Ruu |S Zn[(n _:I-)VZer:l + valnﬂ]vll‘(l] "
The proof of the bound of R, can be similarly completed. O

7 An Application

In previous sections, we obtained two kinds of upper bounds, both of which could be computed. In
applications, for each partial derivative, we can choose the lesser kind as the ultimate derivative bound estimation.
As mentioned, derivative bounds of rational Bézier surfaces are useful in many areas. Here, we take the application
in surface rendering as an example.

Triangular Bézier patches are commonly used to represent models for computer graphics, geometric modeling
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and animation. Large scale models, which are composed of tens of thousands of such surfaces, are commonly used
to represent shapes of automobiles, building architectures, sculptured models and so on. They are also used in the
applications involving surface fitting over scattered data or surface reconstruction. Many applications like
interactive walkthroughs and design validation need to interactively visualize these surface models™*®!. Hence, it is
required to render these surfaces quickly and precisely. To this end, the choice of the global rendering step size
becomes a crucial work, since unduly step size may result in excessive segments and defect further computations.
However, step size is sometimes determined by the derivatives bounds. For example, suppose the step size
inu and v directions are the same, we can compute the step size as follows by using Eq.(1) in Ref.[14]

225 |
VIR Lo TR L TR L
where ¢ is the tolerance, | is the set of the triangular patches and i is one patch with second derivative bounds
L
up the rendering process.

S=min iel},

o - It is obvious that the adoption of tighter bounds estimated in this paper can speed

i
max ! | va |m

being | Ry, |

max !

8 Conclusion

In this paper, we obtain two kinds of new upper bounds on triangular patches’ lower derivatives by using the
properties of the intermediate weights and intermediate points of the de Casteljau scheme as well as some existing
identities and elementary inequalities. We get the first kind of bounds by using of the diameter of the convex hull of
the control net. They are always stronger than the bounds obtained in Ref.[7] in the case of first derivative. In the
case of second derivative, when the ratio of maximum weight to minimum weight is greater than 2, the first kind of
bounds are more precise than the results in Ref.[7]; we compute the second kind of bounds by using the control
net’s local distance, i.e., the largest distance between arbitrary two adjacent points. In practical application, we can
compute both kinds of upper bounds for each partial derivative, and choose the smaller one as the estimation of the
derivative magnitudes. Example shows that the bounds estimated in this paper are useful in the practical
applications.
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