
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn 
Journal of Software, Vol.18, No.7, July 2007, pp.1818−1830 http://www.jos.org.cn 
DOI: 10.1360/jos181818  Tel/Fax: +86-10-62562563 
© 2007 by Journal of Software. All rights reserved. 

 

基于 NPV广义超立方体最佳容错路由算法
∗
 

田绍槐 1+,  陆应平 2,  张大方 1 

1(湖南大学 软件学院,湖南 长沙  410082) 
2(Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA) 

An NPV-Based Optimal Fault-Tolerant Routing Algorithm for Generalized Hypercube 

TIAN Shao-Huai1+,  LU Ying-Ping2,  ZHANG Da-Fang1 

1(Software School, Hunan University, Changsha 410082, China) 
2(Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA) 

+ Corresponding author: Phn: +86-731-8823264, E-mail: tianshaohuai163@tom.com  

Tian SH, Lu YP, Zhang DF. An NPV-based optimal fault-tolerant routing algorithm for generalized 
hypercube. Journal of Software, 2007,18(7):1818−1830. http://www.jos.org.cn/1000-9825/18/1818.htm 

Abstract:  Optimal fault-tolerant routing is imperative for large hypercube systems in the existence of large 
number of faulty links or nodes. This paper first defines hypercube network with a large number of faulty nodes 
and/or links to be generalized hypercube and illustrates that many non-hypercube systems can be transformed to 
Generalized Hypercube systems. It then proposes node path vector (NPV) to capture the complete optimal and 
sub-optimal routing information for a generalized hypercube system. To reduce the computation iterations in solving 
NPV, it also introduces the concept of relay node technique. Based on NPV and relay node technique, this paper 
further proposes optimal fault-tolerant routing scheme (OFTRS) to derive shortest path for any communication pair 
in a generalized hypercube system. With an example of large number of faulty nodes or faulty links, it is illustrated 
that the previous algorithm could omit up to 60% routing paths, while this approach achieves all optimal and 
sub-optimal routing paths. Compared to previous work, OFTRS has a significant improvement in obtaining routing 
information for optimal and sub-optimal, i.e. no matter how many faulty nodes or links exist, it is guaranteed to 
route through the optimal or sub-optimal path as long as a path between the source-destination pair exists. In 
addition, the proposed scheme is distributed and relying only on non-faulty neighboring nodes since it only requires 
the information of non-faulty neighbor nodes in computing NPV, thus it has high applicability, especially when 
some non-hypercube systems can be transformed into Generalized Hypercube systems. 
Key words:  fault-tolerant routing; generalized hypercube; node path vector; relay node technique 

摘  要: 在网络可靠性研究中,设计较好的容错路由策略、尽可能多地记录系统中最优通路信息,一直是一项重要
的研究工作.超立方体系统的容错路由算法分为可回溯算法和无回溯算法.一般说来,可回溯算法的优点是容错能力
强:只要消息的源节点和目的节点有通路,该算法就能够找到把消息传递到目的地的路径;其缺点是在很多情况下传

                                                             
∗ Supported by the National Natural Science Foundation of China under Grant No.60473031 (国家自然科学基金); the Scientific 

Research Foundation of Education Department of Hunan Province under Grant No.03C036 (湖南省教育厅科研基金项目) 
Received 2006-03-14; Accepted 2006-05-18 

 



 田绍槐 等:基于 NPV广义超立方体最佳容错路由算法 1819 

 
递路径不能按实际存在的最短路径传递.其代表是深度优先搜索(DFS)算法.无回溯算法是近几年人们比较关注的
算法.该算法通过记录各邻接节点的故障信息,给路由算法以启发信息,使消息尽可能按实际存在的最短路径传递.
这些算法的共同缺点是只能计算出 Hamming距离不超过 n的路由.在 n维超立方体系统连通图中,如果系统存在大
量的故障,不少节点对之间的最短路径大于 n,因此,这些算法的容错能力差.提出了一个实例说明采用上述算法将遗
失 60%的路由信息.另外,由于超立方体的结构严格,实际中的真正超立方体系统不多.事实上,不少的网络系统可转
换为具有大量错误节点和错误边的超立方体系统.因此,研究能适应具有大量错误节点和错误边的超立方体系统的
容错路由算法是一个很有实际价值的工作.研究探讨了:(1) 定义广义超立方体系统;(2) 在超立方体系统中提出了
节点通路向量(NPV)概念及其计算规则;(3) 提出了中转点技术,使得求 NPV 的计算复杂度降低到 O(n);(4) 提出了
基于 NPV的广义超立方体系统最佳容错路由算法(OFTRS),该算法是一种分布式的和基于相邻节点信息的算法.由
于NPV记录了超立方体系统全部最优通路和次最优通路的信息,在具有大量故障的情况下,它不会遗漏任何一条最
优通路和次最优通路信息,从而实现了高效的容错路由.在这一点上,它优于其他算法. 
关键词: 容错路由;广义超立方体;节点通路向量;中转点技术 
中图法分类号: TP393   文献标识码: A 

1   Introduction 

Hypercube topology for distributed-memory system has received phenomenal attention in the past decade due 
to its simple and regular structure, easy and efficient routing, and built-in robustness. An n-dimensional hypercube 
system comprises 2n nodes or processors that can be addressed in n-bit binary numbers. As the size of dimension 
increases, the number of nodes and/or links also grows drastically. Accordingly, the likelihood of faults resulting 
from these nodes or links also increases. Therefore, it is very important to design an efficient optimal routing 
scheme when faults occur so that a source node can still route via a shortest path to the destination node. 

However, due to the rigorousness of hypercube topology, truly hypercube systems have found limited 
applications. Thus in this paper, we investigate a Generalized Hypercube, which is a standard hypercube or 
transformed hypercube that possesses faulty nodes or links. There have been considerable researches on providing 
efficient paths for message passing in a faulty hypercube system. However, these extant schemes fail to provide 
complete routing information. As illustrated in Section 7, 60% routing paths are omitted in the existing schemes. To 
address this deficiency, we propose Node Path Vector (NPV) that maintains all routing information for the shortest 
routing paths. We also propose relay node technique and define ways to reduce the computation complexity in 
solving NPV. Furthermore, we propose Optimal Fault-Tolerant Routing Scheme (OFTRS) based on NPV. As 
illustrated by examples, our scheme contains much more routing information and can find more optimal 
fault-tolerant routing paths than the existing schemes. In a hypercube system with a large number of faulty nodes 
and/or links, OFTRS scheme possesses the merits of both strong fault-tolerance found in the depth search first 
(DSF) algorithm[3] and short distance in the non-backtracking routing algorithms. As long as a path of the shortest 
distance exists between a pair of nodes in a generalized hypercube, OFTRS guarantees to find a shortest path for the 
node pair. 

The rest of paper is organized as follows. Section 2 reviews the related work. Section 3 defines the concept of 
the Generalized Hypercube and notations used in this paper. Section 4 introduces our proposed NPV (node path 
vector) and defines an iteration algorithm to generate NPV. In Section 5, we present relay node technique to reduce 
the iteration times for computing NPV and illustrate the technique through examples. In Section 6, we propose 
Optimal Fault-Tolerant Routing Scheme (OFTRS) based on the computed NPV in a Generalized Hypercube System. 
We evaluate the proposed scheme in Section 7. Finally we conclude this paper in Section 8. 

  



 1820 Journal of Software 软件学报 Vol.18, No.7, July 2007   

 
2   Related Work 

Two types of fault-tolerant routing algorithms exist in a hypercube system: backtracking and non-backtracking. 
In general, backtracking algorithms have stronger fault-tolerant capability: it normally finds a valid path provided 
that a path exists. A typical example is the DFS algorithm[3]. However, these algorithms cannot guarantee to find a 
shortest path in most cases. As a result, non-backtracking algorithms have received more attention. 

Non-backtracking algorithms attempt to find a shortest path for a node-pair by retaining the fault information 
of neighboring nodes. However, this type of algorithm has limited fault-tolerance. Reference [1] shows that when 
the number of faulty nodes is less than n/2 in an n-dimension hypercube, a message can be routed through 
non-faulty nodes with a path length less than the Hamming distance between the two nodes plus 2. Reference [2] 
relaxes the number of faulty nodes to n−1, but the path length between two non-faulty nodes can reach to their 
Hamming distance plus 4. 

Other non-backtracking algorithms include Wu’s Safety Vectors (SVs) and fault-tolerant routing algorithm 
based on SVs[7]. SVs have a good property whose element can reflect whether an optimal path exists between source 
and destination nodes within a Hamming distance of k. However, Safety Vectors lack sufficient information for 
optimal routing. Gao et al. extends the definition of Safety Vectors[8,17]. They propose the Extended Safety Vectors 
(ESVs) and a corresponding routing algorithm. ESVs has revised the definition of routing distance of 2 and thus 
extended the definition of SVs. As a result, ESVs and the corresponding routing scheme can find more routing paths 
than the routing scheme based on SVs. 

Gao, et al.[9] further proposes Optimal Path Matrices (OPMs) by using matrices to record link status between 
adjacent nodes. Reference [12] further extends OPMs and proposes Extended Optimal Path Matrices (EOPMs). 
EOPMs have more routing information for faulty hypercube system. EOPMs are further improved in Ref.[13], 
where Optimal Path Set and Optimal-Path-Set Based Optimal Path Matrices (OPSBOPMs) routing algorithm are 
proposed. Other work[14−17] further extend the previous schemes. For example, Ref.[15] proposes Maximum Safety 
Path Matrices that extends OPMs and EOPMs. Even though there are considerable improvements in these newer 
schemes, as illustrated in Section 7, a lot of communication paths are still omitted in these algorithms, especially for 
hypercube with a large number of faulty links. 

The aforementioned schemes use either local or global link information of node faults and/or link faults to 
compute deterministic path vector for each node. The deterministic path information is then used to derive an 
optimal or sub-optimal routing. Other schemes[10,11] adopt a different approach. Instead of calculating a 
deterministic path vector, they create a probability path vectors that represent the likelihood whether an optimal 
path exists for a destination node within a Hamming distance of K. Recent researches have also studied the 
application of hypercube routing into peer-to-peer (P2P) networks[18,19] where the P2P network is converted to a 
hypercube topology. Broadcasting or multicasting is used to provide proper routing. 

From the review of the previous work, we observe that: 
(1) Previous schemes all tried to store as much routing information as possible, but failed to record all of them. 

As the number of the faulty nodes and faulty links in the Hypercube system increases, more routing information is 
omitted. Consequently, it is more likely that optimal paths are missed in the actual routing. 

(2) Due to the rigorousness of the hypercube structure, the applicability of most of the research results into 
practical application is pretty limited. In fact, many network structures in practical use can be converted into a 
hypercube network with a large number of faulty nodes and faulty links. 

Our approach differs from the previous work in that our proposed Node Path Vector (NPV) can capture all 
routing information. Consequently, the proposed routing algorithm based on NPV can derive all optimal or 

  



 田绍槐 等:基于 NPV广义超立方体最佳容错路由算法 1821 

 
sub-optimal paths for any communication pair in a generalized hypercube system. 

3   Preliminaries and Notations 

Definition 1. A hypercube system with a large number of faulty nodes and faulty links, or a connected 
hypercube graph with nodes and/or links removed is called a Generalized Hypercube System. 

Figure 1 shows a network topology that excludes node D and link AB with 2 faulty links. After adding the 
missed node D and link AB, the network is transformed into a 3-dimension Generalized Hypercube Network with 6 
faulty links as illustrated in Fig.2. In the transformed network topology, node D and link AB are deemed to be faulty. 

 
 
 
 
 
 
 

G

F

H 

E

D C

BA

H E

GC

FB

A 

Fig.1  Network with missing nodes and links  Fig.2  Transformed into Generalized Hypercube 

Notations: The following are the notations in this paper. 
Qn: Denote an n-dimension Generalized Hypercube 
REL(A,B): Denote the relative address between nodes A and B 
Dist(A,B): The Hamming distance between node A and node B 
nei(A,C)=1: Node C is the non-faulty neighbor node of node A;  
nei(A,C)=0: Node C is the faulty neighbor node of node A; 
Src, Dest, Cur: Denote a source node, destination node, and current node respectively. 
Max-P: Denote the maximum distance between any two nodes in hypercube Qn. 

4   Node Path Vectors (NPV) 

4.1   Definition of node path vectors 

Definition 2. In Qn, each node uses a 1-dimension array with 2n elements to store the information of the 
optimal paths to every other node, where its k-th element records the length of the optimal or sub-optimal paths to 

node k. We refer this array to Node Path Vector (NPV).  is used to denote the value of the k-th element in )(kNPV i
A

node A’s NPV at the i-th iterative calculation. 

Definition 3. In Qn, let the node B correspond to the k-th element, the calculation rule of  is as )(kNPV i
A

Follows: 
When i=1, 









>=
=
=

=
1),(||0),( if    ,

1),( if             ,1
0),( if            ,0

)(
BADistBAneiNULL

BAnei
BADist

kNPV i
A ; 

When 1<i≤Max-P && =NULL, )(1 kNPV i
A
−



 =

=
−

else   ,
NULL NOT is )( && 1),( satisfying  node exists  thereif           , 

)(
1

NULL
kNPVCAneiCikNPV

i
Ci

A . 

  



 1822 Journal of Software 软件学报 Vol.18, No.7, July 2007   

 
4.2   Example of NPV calculation 

Example 1. Calculate  of nodes (0000) (1000) in the 4-dimension Generalized Hypercube in Fig.3. )(kNPV i
A

 
 
 
 
 
 
 
 
 

 

0001

11010111

0011
0101

0010

0110 

1111

1011

10011000

1010 

1100

1110

0000

0100 

Fig.3  A 4-dimension generalized hypercube with 8 faulty links 

Solution: 

When i=1, the  of nodes (0000) and (1000) is as follows: )(1 kNPVA

Node 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 
0000 0  1  1            
1000         0 1   1    

When i=2, the calculation of , 2 is the new value generated in this iteration. )(2 kNPVA

Node 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 
0000 0  1 2 1 2     2  2    
0010 1  0 1       1      
0100 1    0 1       1    

 
Node 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 
1000     2    0 1  2 1 2 2  
1001         1 0  1  1   
1100     1    1    0 1 1  

… 

When i=5, the calculation of  of nodes (1000), 5 is the value in this calculation. )(5 kNPVA

Node 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 
1000 3 4 4 3 2 3 5 4 0 1 3 2 1 2 2 3 
1001 4 3 3 2 3 2 4 3 1 0 2 1 2 1 3 2 
1100 2  3 4 1 2 4 3 1 2 2 3 0 1 1 2 

After 4 rounds of synchronous information exchanges, the NPV of two nodes are as follows: 

Node 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 
0000 0 3 1 2 1 2 4 3 3 4 2 3 2 3 3 4 
1000 3 4 4 3 2 3 5 4 0 1 3 2 1 2 2 3 

 

4.3   Properties of NPV 

Theorem 1. NPV for a node maintains all the routing information of the optimal paths and the sub-optimal 
paths. 

Proof:  we prove this theorem by induction. 

We first show that the value of k-th element of NPV  is the length of the optimal or sub-optimal )(kNPV i
A

paths from node A to node B. 

When i=1, by the calculation rule of Definition 3, if nei(A,B)=1, then =1. The conclusion is )(1 kNPVA

  



 田绍槐 等:基于 NPV广义超立方体最佳容错路由算法 1823 

 
obviously established. 

When i=2, if and only if there exists a non-faulty neighboring node C, and its =1 and = 

NULL, then =2. Clearly, the conclusion holds. 

)(1 kNPVC )(1 kNPVA

)(2 kNPVA

Suppose when i=m≥2, it holds. If there is a non-faulty neighbor node C of node A,  records the 

length of the optimal path and the sub-optimal path from node C to the k-th node, and at the same time,  

is null. Obviously, +1 is the length of optimal or sub-optimal path from node A to the k-th node. By the 

calculation rule in Definition 3, = ) +1=m+1. Thus when i=m+1 the conclusion also holds. □ 

)(kNPV m
C

)(kNPV m
A

)(kNPV m
C

)(1 kNPV m
A
+ (kNPV m

C

We then show that  does not leave out any path of the optimal path or sub-optimal path from node A )(kNPV i
A

to node B which corresponds to the k-th node. 

When i=1, by the calculation rule in Definition 3, if nei(A,B)=1, then =1. Obviously, it does not omit )(1 kNPVA

the optimal path from node A to its non-faulty neighbor node B. 

When i=2, if and only if there exists a non-faulty neighboring node C, and its =1 is mistaken to be 

=NULL, then the optimal path from node A to node B (the node corresponding to the k-th element of NPV 

)(1 kNPVC

)(1 kNPVC

or the k-th node) can be omitted. Clearly, this is not true. 
Suppose when i=m≥2, the conclusion holds. That is, for all nodes in Qn, it does not omit any optimal path or 

sub-optimal path from this node to all other nodes at the m-th iteration calculation. If there exists any path omission 

in  (the number of optimal or sub-optimal paths from node A to the k-th node) at the m+1-th )(1 kNPV m
A
+

calculation, by the calculation rules in Definition 3, then at least there exists a non-faulty neighboring node C of 
node A that has omitted the k-th node at the m-th calculation. Clearly, this contradicts the assumption. So the 
conclusion is established. 

Corollary 1. If NPVA(B)=Dist(A,B), then there exists an optimal path between nodes A and B. 
Corollary 2. If NPVA(B)>Dist(A,B), then there exists a sub-optimal path between node A and node B. 
Theorem 2. The value of every element in NPVA(B) is continuous in integer within the range [0,Max-P], where 

Max-P is the maximum length of optimal and sub-optimal path from node A to all other nodes. 
Proof:  Let x be an integer, 0<x≤Max-P. If NPVA(B)=x, clearly there exists an adjacent node C such that 

nei(B,C)=1 and NPVA(C)=x−1. i.e. all element’s values in NPVA are continuous in integer within the range 
[0,Max-P]. 

5   Reducing NPV’s Calculation Complexity 

According to Definition 3, we observe that it takes Max-P rounds of synchronous message exchanges to 
compute every node A’s NPVA() for a n-dimension hypercube Qn. This computation complexity increases radically 
as the number of dimension and the number of faulty links grows. Therefore, it is very important to reduce the 
computation complexity in computing NPV. We propose to use Relay Node Technique to alleviate the computation 
time. 

Definition 4. Node A’s Path Bit Vector PBVA is defined as: 



 =

=
otherwise   ,0

1)( if    ,1
)(

1 kNPVkPBV A
A , 0≤k≤2n−1. 

Example 2. Figure 4 is a 4-dimension hypercube system with 15 faulty links. Derive the PBV for nodes 
(0110), (0011), (1000) and (1110). 

Solution:   
PBV0110=(0000000100000000), 

  



 1824 Journal of Software 软件学报 Vol.18, No.7, July 2007   

 
PBV0011=(0110000100010000), 
PBV1000=(0000000001001000), 
PBV1110=(0000000000100001). 

Clearly, before the first round of synchronous message exchange occurs, every node A’s PBVA in Qn can be 

computed directly from . This value will be attached to node A’s message and sent out to its non-faulty ()1
ANPV

adjacent nodes. Following this way, after n rounds of synchronous exchanges, we know that for any node A, if 

)(1 kNPV n
A
+ ≠NULL, then PBVk has been sent to . Table 1 shows the results for each node in Fig.4. )(1 kNPV n

A
+

 
 
 
 
 
 
 
 
 
 

0001

11010111

0011
0101

0010

0110 

1111

1011

10011000

1010 

1100

1110

0000

0100 

Fig.4  A hypercube with 15 faulty links 

Table 1  Results of NPV after four rounds of synchronous exchanges in Fig.4 

Node 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 
0000 0    1    3 4   2 5   
0001  0 2 1  3 3 2  5 3 2  4 4 3 
0010  2 0 1  3 3 2  5 1 2  4 2 3 
0011  1 1 0  2 2 1 5 4 2 1  3 3 2 
0100 1    0 5   2 3   1 4   
0101  3 3 2 5 0 2 1 3 2 4 3 4 1 5 4 
0110  3 3 2  2 0 1 5 4 4 3  3 5 4 
0111  2 2 1  1 1 0 4 3 3 2 5 2 4 3 
1000 3   5 2 3 5 4 0 1   1 2   
1001 4 5 5 4 3 2 4 3 1 0  5 2 1   
1010  3 1 2  4 4 3   0 1  5 1 2 
1011  2 2 1  3 3 2  5 1 0  4 2 1 
1100 2    1 4  5 1 2   0 3   
1101 5 4 4 3 4 1 3 2 2 1 5 4 3 0  5 
1110  4 2 3  5 5 4   1 2   0 1 
1111  3 3 2  4 4 3   2 1  5 1 0 

Definition 5. Let SBVA denote node A’s State Bit Vector after calculating , i.e. ()1+n
ANPV



 =

=
+

else   ,0
)( if    ,1

)(
1 NULLkNPVkSBV

n
A

A , 0≤k≤2n−1. 

Example 3. Based on Table 1, solve the SBV of nodes (0110), (0011), (1000), (1110) in Fig.4. 
Solution:  

SBV0110=(1000100000001000), 
SBV1000=(0110000000110011), 
SBV0011=(1000100000001000), 
SBV1110=(1000100011001100). 

In summary, for a hypercube Qn of n-dimension, if we stop the calculation after n rounds of synchronous 

  



 田绍槐 等:基于 NPV广义超立方体最佳容错路由算法 1825 

 

)

)

message exchanges, we have the following five observations: 
(1) By Theorem 1, we know that every node’s optimal paths and sub-optimal paths with length less than n+2 

have all been solved. By Definition 4, all nodes’ PBVk have been solved. Only when ≠NULL, can the 

PBV

)(1 kNPV n
A
+

k be sent to . Let’s assume: )(1 kNPV n
A
+

Y={y| ) =NULL}, X={x| =n+1}, (1 yNPV n
A
+ (1 xNPV n

A
+

PSx=PBVx & SBVA (PSx is the result of bit-wise AND between PBVx and SBVA), 
0

xY ={y| ) =NULL, y∈Y, x∈X}, ={y| ) =1, y∈Y, x∈X}, (1 yNPV n
x
+ 1

xY (1 yNPV n
x
+

2
xY ={y| ) >1, y∈Y, x∈X}. (1 yNPV n

x
+

After n rounds of synchronous message exchanges, although the path length between node A and node y has 
not been solved, by Theorem 2, it can be determined that they have a sub-optimal path with length greater than n+1. 

(2) After n rounds of synchronous message exchanges, every node A’s SBVA can be solved. 
(3) For every node A, PBVA, SBVA are calculated only once, i.e. before the first round of message exchange and 

after the n-th round of message exchange respectively. 
(4) According to Definition 3 and Theorem 2, unless all elements of NPVA() have been solved, there exists at 

least one node x∈X and =n+1. )(1 xNPV n
A
+

(5) According to Theorem 2, if Y≠Φ, then ≠Φ. i.e. there exists at least one pair of nodes (x,y), y∈Y, x∈X 

and =n+1, =1. Otherwise,  has no element having the value of n+2, which 

1
xY

)(1 xNPV n
A
+ )(1 yNPV n

x
+ ()2+n

ANPV

contradicts the conclusion in Theorem 2. 
Definition 6. In an n-dimension generalized hypercube Qn, a node x is called node A’s Relay Node if node x∈X 

and there exists y∈Y and =1 after n rounds of synchronous message exchanges. )(1 yNPV n
x
+

Clearly, from observation (5), node A certainly has a relay node, but it may have more than one relay node. 

If there is only one element x (x∈X), and =n+1, clearly x is the only relay node of node A. Based on )(1 xNPV n
A
+

Definition 3 and Theorem 2, since the shortest distance from A to any node y in set Y is greater than n+1, as a result, 

the shortest path from A to y must traverse node x. According to Theorem 1, clearly, = + 

=n+1+ , which is the shortest path between A and y. 

)(1 yNPV n
A
+ (1 xNPV n

A
+

)(1 yNPV n
x
+ )(1 yNPV n

x
+

Suppose there exists an element x (x∈X) and =n+1. From Definitions 4 and Definitions 5, if the )(1 xNPV n
A
+

result of bit-wise AND between PBVx and SBVA (PBVx & SBVA) contains no element of value of ‘1’, that is, there is 

no y∈Y such that =1. In that case, x is not the relay node of A. If it is assumed to be the relay node, then 

at least the value of n+2 is missing from all elements of , which contradicts Theorem 2. 

)(1 yNPV n
x
+

()1+n
xNPV

If there exists more than one element x (x∈X) such that =n+1, and the result of bit-wise AND )(1 xNPV n
A
+

between PBVx and SBVA contains ‘1’ element(s), from Definition 6, these nodes are all relay nodes. If all the ‘1’ 
elements in the result of a node x1’s PBVx1 & SBVA are overlapped in position with the ‘1’ elements in the result of 
another node x2’s PBVx2 & SBVA, then we refer x1 to be absorbable by node x2. As the connectivity between nodes 
set Y and a relay node x1 absorbed by other node x2 is already contained by other nodes, thus node x1 can be 
removed from the relay node set. A master relay node can be selected from the remaining relay nodes whose PBVx 
& SBVA has the largest number of ‘1’ elements. Thereby, we obtain the following relay node selection criteria. 

Relay Node Selection Criteria. The following criteria are used to select a relay node: 

(1) If there is only one node x satisfying =n+1, then x is the relay node of A. For all y∈Y, the path 

for a message from A to y is A→x→y. In particular, if y∈ Y , then the path for a message from A to y is A→x→x’s 

)(1 xNPV n
A
+

0
x

relay node→y. 

  



 1826 Journal of Software 软件学报 Vol.18, No.7, July 2007   

 
(2) If there are more than one node x satisfying =n+1, first, nodes having PS)(1 xNPV n

A
+

x=0 are removed from 

consideration. Then those absorbed by other nodes are removed. If there is only one node left, this is the relay node 
we are looking for. Otherwise, among the remaining nodes, the node whose PBVX & SBVA has the largest counts of 

‘1’ elements is selected to be the master relay node for node A. And if y∈ , then the node x with PS1
xY x(y)=1 is 

selected as the relay node for node A. Otherwise, if y∈ , then the master relay node is selected as the relay node 2
xY

for node A. Following (1), the message routing path can also be found. 
Example 4. From table 1 and Relay Node Selection Criteria, decide the relay nodes of all nodes in Fig.4. 
Solution: Clearly, from table 1 and selection Criteria (1), nodes (1101), (1001), (1001), (1000), (0101), (1100), 

(1101), (1001), (0111), (1101) are the sole relay nodes for nodes (0000), (0001), (0010), (0011), (0100), (0111), 
(1010), (1101), (1100), (1111) respectively. 

From Table 1 and selection Criteria (2): 

Since (0011)= (0110)=5, PBV5
1000NPV 5

1000NPV 0110 & SBV1000=(0000000000000000), PBV0011 & SBV1000= 

(0110000000010000), So node (0011) becomes the only relay node of node (1000). 
Similarly, node (1000) is the only relay node of node (0110); node (1011) is the only relay node of node 

(1001); node (0101) is the only relay node of node (1110); node (0100) is the only relay node of node (0101). 

Since (0000)= (1010)= (1111)=5, PBV5
1101NPV 5

1101NPV 5
1101NPV 0000 & SBV1101=(0000000000000000), 

PBV1010 & SBV1101=(0000000000000010), PBV1111 & SBV1101=(0000000000000010), either node (1010) or 
node (1111) can be a relay node. Each node can absorb the other one. Either one is selected to be the relay node. 

6   Optimal Fault-Tolerant Routing Scheme (OFTRS) 

6.1   Algorithm for generating NPV 

According to the Definitions 3~6, we compute  of every node A through a distributed information 
exchange. Here is the algorithm to compute NPV of a node. 

()i
ANPV

Algorithm create_NPV() 

{Determine NPV and collect link fault information to calculate PBVA and construct ; ()1
ANPV

Send  and PBV()1
ANPV A via non-faulty link; 

Receive all  and PBV()1
CNPV C from the non-faulty neighbor node C; 

for (i=2; i≤n; i++) 
{Calculate  with all  && nei(A,C)=1 based on Definition 3; ()i

ANPV ()1−i
CNPV

Send it out via non-faulty link; 

Receive all  from the non-faulty neighbor node C;} ()i
CNPV

According to Definition 5 calculate SBVA; 
Determine the relay node x from the relay node selection criteria.} 

6.2   Optimal fault-tolerant routing scheme based on NPV 

We further present our Optimal Fault-Tolerant Routing Scheme (OFTRS) based on NPV. 
Algorithm OFTRS_Route 
int main() 

{char c1=cur; 
char c2=dest; 
if (NPVcur(dest)<>NULL) 

  



 田绍槐 等:基于 NPV广义超立方体最佳容错路由算法 1827 

 
route(c1,c2) 

else 
{c3=relay node; route(c1,c3); route(c3,c2) } 

} 
int route(cur, dest) 

{if (NPVcur(dest)=1) send to this node and return (SUCCESS); 
k=count(nei(cur,C)=1); 
for (j=1; j≤k; j++) 

if (NPVj(dest)=NPVcur(dest)−1) 
{send message to this neighboring node j; 

return(SUCCESS);} 
} 

Example 5. Based on OFTRS, illustrate the message routing path from node (0000) to node (1110) in Fig.3. 
Solution: In Fig.3, suppose a message needs to be sent from node (0000) to node (1110). Since 

NPV0000(1110)=3, node (0000) has 2 non-faulty adjacent nodes (0010) and (0100), and NPV0010(1110)=2, 
NPV0100(1110)=2, so node (0000) can send the message to either node (0100) or (0010). If the message is sent to 
node (0100), since node (0100) has 3 non-faulty adjacent nodes (0000), (0101), (1100), and NPV0000(1110)=3, 
NPV0101(1110)=3, NPV1100(1110)=1, from the routing algorithm, the message can be only delivered to node (1100). 
After the message reaches to node (1100), since NPV1100(1110)=1, eventually the node (1100) will send the message 
to node (1110). Similarly, if a message is sent to node (0010), the routing path is (0000)→(0010)→(1010)→(1110). 

Example 6. Based on Relay Node Technique and OFTRS, please draw the message path from node (0000) to 
node (1110) in Fig.4. 

Solution: According to Table 2, (0000)→(0100)→(1100)→(1000)→(1001)→[(0000)’s relay node (1101)]→ 
(0101)→(0111)→(0011)→(0010)→[(1101)’s relay node (1010)]→(1110). The path length is 11. 

Table 2  NPV values for all nodes in Fig.4 
Node 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 
0000 0 [9] [9] [8] 1 [6] [8] [7] 3 4 [10] [9] 2 5 [11] [10] 
0001 [9] 0 2 1 [8] 3 3 2 [6] 5 3 2 [7] 4 4 3 
0010 [9] 2 0 1 [8] 3 3 2 [6] 5 1 2 [7] 4 2 3 
0011 [8] 1 1 0 [7] 2 2 1 5 4 2 1 [6] 3 3 2 
0100 1 [8] [8] [7] 0 5 [7] [6] 2 3 [9] [8] 1 4 [10] [9] 
0101 [6] 3 3 2 5 0 2 1 3 2 4 3 4 1 5 4 
0110 [8] 3 3 2 [7] 2 0 1 5 4 4 3 [6] 3 5 4 
0111 [7] 2 2 1 [6] 1 1 0 4 3 3 2 5 2 4 3 
1000 3 [6] [6] 5 2 3 5 4 0 1 [7] [6] 1 2 [8] [7] 
1001 4 5 5 4 3 2 4 3 1 0 [6] 5 2 1 [7] [6] 
1010 [10] 3 1 2 [9] 4 4 3 [7] [6] 0 1 [8] 5 1 2 
1011 [9] 2 2 1 [8] 3 3 2 [6] 5 1 0 [7] 4 2 1 
1100 2 [7] [7] [6] 1 4 [6] 5 1 2 [8] [7] 0 3 [9] [8] 
1101 5 4 4 3 4 1 3 2 2 1 5 4 3 0 [6] 5 
1110 [11] 4 2 3 [10] 5 5 4 [8] [7] 1 2 [9] [6] 0 1 
1111 [10] 3 3 2 [9] 4 4 3 [7] [6] 2 1 [8] 5 1 0 

7   Evaluation 

To illustrate the effectiveness of computing all optimal and sub-optimal paths of the proposed Node Path 
Vector (NPV) and its routing scheme, we use Fig.4 as an example and compare the computed path information using 
different existing schemes. Figure 4 is a 4-dimensional hypercube system with 15 faulty links. 

Table 3 shows the lengths of optimal and sub-optimal paths for Fig.4 based on ESVs and EOPMs routing 

  



 1828 Journal of Software 软件学报 Vol.18, No.7, July 2007   

 
algorithms∗. Finally, Table 2 shows all nodes’ NPV in Fig.4 after 4 rounds of synchronous message exchanges and 
adopting relay node technique. In this table, the column node corresponding to value 5 is the relay node for the 
corresponding row node. The length values without bracket are the lengths of directly computed optimal or 
sub-optimal paths. Those values with bracket are the lengths of the indirectly obtained shortest paths considering 
relay node. It can be shown that these values reflect the entire optimal or sub-optimal paths actually existing. 

Table 3  Path information based on ESVs and EOPMS routing algorithms for Fig.4 

Node 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 
0000 0    1        2    
0001  0 2 1  3 3 2    2    3 
0010  2 0 1  3 3 2   1 2   2 3 
0011  1 1 0  2 2 1   2 1    2 
0100 1    0    2    1    
0101  3 3 2  0 2 1  2  3  1   
0110  3 3 2  2 0 1    3     
0111  2 2 1  1 1 0    2  2  3 
1000     2    0 1   1 2   
1001      2   1 0   2 1   
1010  3 1 2    3   0 1   1 2 
1011  2 2 1  3 3 2   1 0   2 1 
1100 2    1    1 2   0    
1101      1  2 2 1    0   
1110   2        1 2   0 1 
1111  3 3 2    3   2 1   1 0 

It can be easily found that ESVs and EOPMs essentially omit a large number of optimal and sub-optimal paths. 
Table 4 shows the comparison results. Among these three schemes, OFTRS computes all optimal or sub-optimal 
paths. While ESVs computes 31% paths, paths equal to or longer than 3 have all been omitted (almost 70% 
omission rate). EOPMs can compute 40% paths (60% omission rate). The omission rate for paths being 3 is 47%. 
Paths longer than 3 are all omitted. This means that the system may not find a path even there are obvious paths. 

Table 4  Comparison between Table 2 and Table 3 
Path length 1 2 3 4 5 6 7 8 9 10 11 

Actual path number 34 40 38 30 24 20 18 16 12 6 2 
Path number by OFTRS 34 40 38 30 24 20 18 16 12 6 2 
Path number by ESVs 34 40 0 0 0 0 0 0 0 0 0 
Path number by EOPMs 34 40 20 0 0 0 0 0 0 0 0 

From the perspective of memory space cost, for each node, ESVs needs to retain n-bits information, EOPMs 
needs to retain n2-bits information, and NPV require to stores information of 2n entries. With the continuous 
improvement of computing and memory technology, this overhead can be accepted. For example, when n=20, there 
can be one million nodes, the memory space requirement is a few mega bytes. As current machines are configured 
with memory of gigabytes, the memory requirement for NPV can be easily satisfied. 

8   Conclusions 

We have introduced the Generalized Hypercube System Qn and proposed Node Path Vectors (NPVs) in a 
Generalized Hypercube Network and its calculation rules. By using Relay Node technique, we are able to 
significantly reduce the computation complexity of computing NPV. We further present an Optimal Fault-Tolerant 
Routing Scheme (OFTRS) based on NPV. Since NPV has captured the information of all the optimal and 

                                                             
∗ Since ESVs and EOPMS improve on SVs and OPMs respectively, we only show the path information based on ESVs and EOPMs 

in table 3. Those values with an underline are for EOPMs only. Others are for both ESVs and EOPMs. 

  



 田绍槐 等:基于 NPV广义超立方体最佳容错路由算法 1829 

 
sub-optimal path of a Hypercube System with a large number of faulty links, it will not omit any optimal and 
sub-optimal routing path. It can ensure that a message traverses through the shortest path as long as one such path 
exists, thus achieving a highly efficient fault-tolerant routing. As exemplified, it can find more than 60% more 
optimal and sub-optimal routing paths in a large number of faulty Generalized Hypercube than the existing schemes. 
Meanwhile, this is a distributed scheme based only on non-faulty neighbor node information, thus it possesses high 
reliability and practical applicability. 

References: 
[1]   Lee TC, Hayes JP. A fault-tolerant communication scheme for hypercube computers. IEEE Trans. on Computers, 1992,41(10): 

1242−1256. 
[2]   Chiu GM, Wu SP. A fault-tolerant routing strategy in hypercube multicomputers. IEEE Trans. on Computers, 1996,45(2):143−155. 

[3]   Chen MS, Shin KG. Depth-First approach for fault-tolerant routing in hypercube multicomputers. IEEE Trans. on Parallel and 

Distributed Systems, 1990,1(2):152−159. 

[4]   Jong K, Shin KG. Deadlock-Free fault-tolerant routing in injured hypercubes. IEEE Trans. on Computers, 1993,42(9):1078−1088. 

[5]   Chen MS, Shin KG. Adaptive fault-tolerant routing in hypercubes multicomputers. IEEE Trans. on Computers, 1990,39(12): 

1406−1416. 

[6]   Wu J. Reliable unicasting in faulty hypercubes using safety levels. IEEE on Computers, 1997,46(2):241−247. 

[7]   Wu J. Adaptive fault-tolerant routing in cube-based multicomputers using safety vectors. IEEE Trans. on Parallel and Distributed 

Systems, 1998,9(4):321−334. 

[8]   Gao F, Li ZC, Min YH, Wu J. A fault-tolerant routing strategy based on extended safety vectors in hypercube multicomputers. 

Chinese Journal of Computers, 2000,23(3):248−254 (in Chinese with English abstract). 

[9]   Gao F, Li ZC. Fault-Tolerant routing in hypercube multicomputers using optimal path matrices. Chinese Journal of Computers, 

2000, 23(3):242−247 (in Chinese with English abstract). 

[10]   Al-Sadi J, Day K, Ould-Khaoua M. A new fault-tolerant routing for k-ary n-cubes. Microprocessors and Microsystems, 2001,25(5): 

239−246. 

[11]   Al-Sadi J, Day K, Ould-Khaoua M. Probability vectors: A new fault-tolerant routing algorithm for k-ary n-cubes. In: Proc. of the 

17th ACM Symp. on Applied Computing (SAC 2002). Madrid: IEEE Society, 2002. 830−834. 

[12]   Tian SH. A fault-tolerant routing strategy based on extended optimal path matrices in hypercube multi-computers. Chinese Journal 

of Computers, 2002,25(1):87−92 (in Chinese with English abstract). 

[13]   Tian SH, Cai ZX, Tian Z, Tian M. Utilizing OPSBOPMs to realize a fault-tolerant routing strategy in hypercube system. Journal of 

Central South University of Technology (Natural Science Edition), 2002,33(6):637−642 (in Chinese with English abstract). 

[14]   Wang GJ, Chen JE, Chen SQ. Designing efficient routing algorithms on hypercube networks with a large number of faulty nodes. 

Chinese Journal of Computers, 2001,24(9):909−916 (in Chinese with English abstract). 

[15]   Wang L, Lin YP, Chen ZP, Wen X. Fault-Tolerant routing for hypercube multi-computers based on maximum safety-path matrices. 

Journal of Software, 2004,15(7):994−1003 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/15/994.htm 

[16]   Wang L, Lin YP, Chen ZP, Wen X. Fault-Tolerant routing based on safety path vectors in hypercube system. Journal of Software, 

2004,15(5):783−790 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/15/783.htm 

[17]   Wu J, Gao F, Li ZC, Min YH. Optimal, and reliable communication in hypercubes using extended safety vectors. IEEE Trans. on 

Reliability, 2005,54(3):402−411. 

[18]   Schlosser M, Sintek M, Decker S, Nejdl W. HyperCuP—Hypercubes, ontologies and efficient search on P2P networks. In: 

Koubarakis M, ed. Proc. of the Int’l Workshop on Agents and Peer-to-Peer Computing (AP2PC). Bologna: Springer-Verlag, 2002. 

112−124. 

[19]   Castro M, et al. An evaluation of scalable application-level multicast built using peer-to-peer overlay networks. In: Proc. of the 

IEEE INFOCOM. San Francisco: IEEE Society, 2003. 1510−1520. 

  



 1830 Journal of Software 软件学报 Vol.18, No.7, July 2007   

 
附中文参考文献: 
 [8] 高峰,李忠诚,闵应骅,吴杰.超立方体多处理机系统中基于扩展安全向量的容错路由.计算机学报,2000,23(3):248−254. 

 [9] 高峰,李忠诚.用最优通路矩阵实现超立方体多处理机系统的容错路由.计算机学报,2000,23(3):242−247. 

[12] 田绍槐.超立方体多处理机系统中基于扩展最优通路矩阵的容错路由.计算机学报,2002,25(1):87−92. 

[13] 田绍槐,蔡朝曦,田争,田敏.用 OPSBOPMs实现超立方体系统的容错路由.中南工业大学学报(自然科学版),2002,33(6): 637−642. 

[14] 王国军,陈建二,陈松乔.具有大量错误节点的超立方体网络中的高效路由算法的设计与讨论.计算机学报,2001,24(9):909−916. 

[15] 王雷,林亚平,陈治平,文学.超立方体中基于极大安全通路矩阵的容错路由.软件学报,2004,15(7):994−1003. http://www.jos.org. 

cn/1000-9825/15/994.htm 

[16] 王雷,林亚平,陈治平,文学.超立方体系统中基于安全通路向量的容错路由.软件学报,2004,15(5):783−790. http://www.jos.org.cn/ 

1000-9825/15/783.htm 

 

 

 

TIAN Shao-Huai was born in 1948. He is 
a professor at the Hunan Taxation College 
and Hunan University. His research areas 
are fault-tolerant computing, fault 
diagnosis and management information 
system, etc. 

 ZHANG Da-Fang was born in 1959. He is 
a professor at the Hunan University and a 
CCF senior member. His research areas are 
dependable systems and networks, network 
measure, software fault-tolerant, etc. 

 

LU Ying-Ping was born in 1966. He was 
an associate professor at the Hunan 
University. Presently he works as a 
postdoctoral at the University of Minnesota 
and SGI. His research areas are high 
performance computing, storage network 
and object storage, quality of service, etc. 

 

 

 

 

  


	Introduction
	Related Work
	Preliminaries and Notations
	Node Path Vectors (NPV)
	Definition of node path vectors
	Example of NPV calculation
	Properties of NPV

	Reducing NPV’s Calculation Complexity
	Optimal Fault-Tolerant Routing Scheme (OFTRS)
	Algorithm for generating NPV
	Optimal fault-tolerant routing scheme based on NPV

	Evaluation
	Conclusions

