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Abstract: Optimal fault-tolerant routing is imperative for large hypercube systems in the existence of large
number of faulty links or nodes. This paper first defines hypercube network with a large number of faulty nodes
and/or links to be generalized hypercube and illustrates that many non-hypercube systems can be transformed to
Generalized Hypercube systems. It then proposes node path vector (NPV) to capture the complete optimal and
sub-optimal routing information for a generalized hypercube system. To reduce the computation iterationsin solving
NPV, it also introduces the concept of relay node technique. Based on NPV and relay node technique, this paper
further proposes optimal fault-tolerant routing scheme (OFTRS) to derive shortest path for any communication pair
in a generalized hypercube system. With an example of large number of faulty nodes or faulty links, it isillustrated
that the previous algorithm could omit up to 60% routing paths, while this approach achieves all optimal and
sub-optimal routing paths. Compared to previous work, OFTRS has a significant improvement in obtaining routing
information for optimal and sub-optimal, i.e. no matter how many faulty nodes or links exist, it is guaranteed to
route through the optimal or sub-optimal path as long as a path between the source-destination pair exists. In
addition, the proposed scheme is distributed and relying only on non-faulty neighboring nodes since it only requires
the information of non-faulty neighbor nodes in computing NPV, thus it has high applicability, especially when
some non-hypercube systems can be transformed into Generalized Hypercube systems.
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1 Introduction

Hypercube topology for distributed-memory system has received phenomenal attention in the past decade due
to its simple and regular structure, easy and efficient routing, and built-in robustness. An n-dimensional hypercube
system comprises 2" nodes or processors that can be addressed in n-bit binary numbers. As the size of dimension
increases, the number of nodes and/or links also grows drastically. Accordingly, the likelihood of faults resulting
from these nodes or links also increases. Therefore, it is very important to design an efficient optimal routing
scheme when faults occur so that a source node can still route via a shortest path to the destination node.

However, due to the rigorousness of hypercube topology, truly hypercube systems have found limited
applications. Thus in this paper, we investigate a Generalized Hypercube, which is a standard hypercube or
transformed hypercube that possesses faulty nodes or links. There have been considerable researches on providing
efficient paths for message passing in a faulty hypercube system. However, these extant schemes fail to provide
complete routing information. As illustrated in Section 7, 60% routing paths are omitted in the existing schemes. To
address this deficiency, we propose Node Path Vector (NPV) that maintains all routing information for the shortest
routing paths. We also propose relay node technique and define ways to reduce the computation complexity in
solving NPV. Furthermore, we propose Optimal Fault-Tolerant Routing Scheme (OFTRS) based on NPV. As
illustrated by examples, our scheme contains much more routing information and can find more optimal
fault-tolerant routing paths than the existing schemes. In a hypercube system with a large number of faulty nodes
and/or links, OFTRS scheme possesses the merits of both strong fault-tolerance found in the depth search first
(DSF) algorithm!® and short distance in the non-backtracking routing algorithms. As long as a path of the shortest
distance exists between a pair of nodes in a generalized hypercube, OFTRS guarantees to find a shortest path for the
node pair.

The rest of paper is organized as follows. Section 2 reviews the related work. Section 3 defines the concept of
the Generalized Hypercube and notations used in this paper. Section 4 introduces our proposed NPV (node path
vector) and defines an iteration algorithm to generate NPV. In Section 5, we present relay node technique to reduce
the iteration times for computing NPV and illustrate the technique through examples. In Section 6, we propose
Optimal Fault-Tolerant Routing Scheme (OFTRS) based on the computed NPV in a Generalized Hypercube System.
We evaluate the proposed scheme in Section 7. Finally we conclude this paper in Section 8.
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2 Related Work

Two types of fault-tolerant routing algorithms exist in a hypercube system: backtracking and non-backtracking.
In general, backtracking algorithms have stronger fault-tolerant capability: it normally finds a valid path provided
that a path exists. A typical example is the DFS algorithm!®. However, these algorithms cannot guarantee to find a
shortest path in most cases. As a result, non-backtracking algorithms have received more attention.

Non-backtracking algorithms attempt to find a shortest path for a node-pair by retaining the fault information
of neighboring nodes. However, this type of algorithm has limited fault-tolerance. Reference [1] shows that when
the number of faulty nodes is less than n/2 in an n-dimension hypercube, a message can be routed through
non-faulty nodes with a path length less than the Hamming distance between the two nodes plus 2. Reference [2]
relaxes the number of faulty nodes to n—1, but the path length between two non-faulty nodes can reach to their
Hamming distance plus 4.

Other non-backtracking algorithms include Wu's Safety Vectors (SVs) and fault-tolerant routing algorithm
based on SVs. SVs have a good property whose element can reflect whether an optimal path exists between source
and destination nodes within a Hamming distance of k. However, Safety Vectors lack sufficient information for
optimal routing. Gao et al. extends the definition of Safety Vectors®'”). They propose the Extended Safety Vectors
(ESVs) and a corresponding routing algorithm. ESV's has revised the definition of routing distance of 2 and thus
extended the definition of SVs. Asaresult, ESVs and the corresponding routing scheme can find more routing paths
than the routing scheme based on SVs.

Gao, et al.l” further proposes Optimal Path Matrices (OPMs) by using matrices to record link status between
adjacent nodes. Reference [12] further extends OPMs and proposes Extended Optimal Path Matrices (EOPMS).
EOPMs have more routing information for faulty hypercube system. EOPMs are further improved in Ref.[13],
where Optimal Path Set and Optimal-Path-Set Based Optimal Path Matrices (OPSBOPMSs) routing algorithm are
proposed. Other work**7 further extend the previous schemes. For example, Ref.[15] proposes Maximum Safety
Path Matrices that extends OPMs and EOPMs. Even though there are considerable improvements in these newer
schemes, as illustrated in Section 7, alot of communication paths are still omitted in these algorithms, especially for
hypercube with alarge number of faulty links.

The aforementioned schemes use either local or global link information of node faults and/or link faults to
compute deterministic path vector for each node. The deterministic path information is then used to derive an
optimal or sub-optimal routing. Other schemed®' adopt a different approach. Instead of calculating a
deterministic path vector, they create a probability path vectors that represent the likelihood whether an optimal
path exists for a destination node within a Hamming distance of K. Recent researches have also studied the
application of hypercube routing into peer-to-peer (P2P) networks!*®'% where the P2P network is converted to a
hypercube topology. Broadcasting or multicasting is used to provide proper routing.

From the review of the previous work, we observe that:

(1) Previous schemes all tried to store as much routing information as possible, but failed to record all of them.
As the number of the faulty nodes and faulty links in the Hypercube system increases, more routing information is
omitted. Consequently, it is more likely that optimal paths are missed in the actual routing.

(2) Due to the rigorousness of the hypercube structure, the applicability of most of the research results into
practical application is pretty limited. In fact, many network structures in practical use can be converted into a
hypercube network with alarge number of faulty nodes and faulty links.

Our approach differs from the previous work in that our proposed Node Path Vector (NPV) can capture all
routing information. Consequently, the proposed routing algorithm based on NPV can derive all optima or

© DEEREBAAAIFUN bt/ www. jos. org. cn



NPV 1821

sub-optimal paths for any communication pair in a generalized hypercube system.

3 Preliminariesand Notations

Definition 1. A hypercube system with a large number of faulty nodes and faulty links, or a connected
hypercube graph with nodes and/or links removed is called a Generalized Hypercube System.

Figure 1 shows a network topology that excludes node D and link AB with 2 faulty links. After adding the
missed node D and link AB, the network is transformed into a 3-dimension Generalized Hypercube Network with 6
faulty links asillustrated in Fig.2. In the transformed network topology, node D and link AB are deemed to be faulty.

-

X 'h_: Ty
3\ X P Ch ._,__l D
l'!l-——f'r = L.-' ' ¥ E

C G A | *B

Fig.1 Network with missing nodesand links Fig.2 Transformed into Generalized Hypercube

Notations: The following are the notations in this paper.

Qn: Denote an n-dimension Generalized Hypercube

REL(A,B): Denote the relative address between nodes A and B

Dist(A,B): The Hamming distance between node A and node B

nei(A,C)=1: Node C is the non-faulty neighbor node of node A;

nei(A,C)=0: Node C is the faulty neighbor node of node A;

Src, Dest, Cur: Denote a source node, destination node, and current node respectively.
Max-P: Denote the maximum distance between any two nodes in hypercube Q..

4 Node Path Vectors (NPV)

4.1 Definition of node path vectors

Definition 2. In Q,, each node uses a 1-dimension array with 2" elements to store the information of the
optimal paths to every other node, where its k-th element records the length of the optimal or sub-optimal paths to
node k. We refer this array to Node Path Vector (NPV). NPV} (k) isused to denote the value of the k-th element in
node A’'s NPV at thei-th iterative calculation.

Definition 3. In Q,, let the node B correspond to the k-th element, the calculation rule of NPV,(k) is as
Follows:

When i=1,

0, if Dist(A,B)=0
NPV, (k) =11, if nei(AB)=1 ;
NULL, if nei(AB)=0| Dist(AB)>1
When 1<i<Max-P && NPV, (k) =NULL,
i, if thereexists node C satisfying nei (A, C) =1& & NPV ™ (k) isNOT NULL

NPV, (k) =
At {NULL, else
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4.2 Example of NPV calculation

Example 1. Calculate NPV, (k) of nodes (0000) (1000) in the 4-dimension Generalized Hypercube in Fig.3.

1110 1111

1100

1101
= 0110! (juhL

000§ J- 0101

0011

0010 0001
1010

1000 1001
Fig.3 A 4-dimension generalized hypercube with 8 faulty links

Solution:
When i=1, the NPV, (k) of nodes (0000) and (1000) is as follows:

Node 0000 0001 00100011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0000 O 1 1
1000 0 1 1

When i=2, the calculation of NPV?(k), @ isthe new value generated in this iteration.

Node 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 O 1 @ 1 © )] @

0010 1 0o 1 1

0100 1 0 1 1

Node 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
1000 @ 0o 1 @ 1 © o

1001 1 0 1 1

1100 1 1 0 1 1

When i=5, the calculation of NPV (k) of nodes (1000), ® is the value in this calculation.

Node 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
000 3 4 4 3 2 3 ® 4 0 1 3 2 1 2 2 3
002€ 4 3 3 2 3 2 4 3 1 o0 2 1 2 1 3 2
1100 2 3 4 1 2 4 3 1 2 2 3 0 1 1 2

After 4 rounds of synchronous information exchanges, the NPV of two nodes are as follows:

Node 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
oo o 3 1 2 1 2 4 3 3 4 2 3 2 3 3 4
000 3 4 4 3 2 3 5 4 0 1 3 2 1 2 2 3

4.3 Properties of NPV

Theorem 1. NPV for a node maintains all the routing information of the optimal paths and the sub-optimal
paths.

Proof: we prove this theorem by induction.

We first show that the value of k-th element of NPV NPV, (k) is the length of the optimal or sub-optimal
paths from node A to node B.

When i=1, by the calculation rule of Definition 3, if nei(A,B)=1, then NPVi(k)=1. The conclusion is
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obviously established.

When i=2, if and only if there exists a non-faulty neighboring node C, and its NPVZ(k)=1 and NPV,(k) =
NULL, then NPV (k) =2. Clearly, the conclusion holds.

Suppose when i=m>2, it holds. If there is a non-faulty neighbor node C of node A, NPVZ'(k) records the
length of the optimal path and the sub-optimal path from node C to the k-th node, and at the same time, NPV,"(k)
is null. Obviously, NPVZ'(k) +1 is the length of optimal or sub-optimal path from node A to the k-th node. By the
calculation rule in Definition 3, NPV™ (k) = NPV{"(k) +1=m+1. Thus when i=m+1 the conclusion also holds. O

We then show that NPV} (k) does not leave out any path of the optimal path or sub-optimal path from node A
to node B which corresponds to the k-th node.

When i=1, by the calculation rule in Definition 3, if nei(A,B)=1, then NPV (k) =1. Obviously, it does not omit
the optimal path from node A to its non-faulty neighbor node B.

When i=2, if and only if there exists a non-faulty neighboring node C, and its NPV{ (k) =1 is mistaken to be
NPVZ (k) =NULL, then the optimal path from node A to node B (the node corresponding to the k-th element of NPV
or the k-th node) can be omitted. Clearly, thisis not true.

Suppose when i=m>2, the conclusion holds. That is, for al nodes in Q,, it does not omit any optimal path or
sub-optimal path from this node to all other nodes at the m-th iteration calculation. If there exists any path omission
in NPV™(k) (the number of optimal or sub-optimal paths from node A to the k-th node) at the m+1-th
calculation, by the calculation rules in Definition 3, then at least there exists a non-faulty neighboring node C of
node A that has omitted the k-th node at the m-th calculation. Clearly, this contradicts the assumption. So the
conclusion is established.

Corollary 1. If NPV,(B)=Dist(A,B), then there exists an optimal path between nodes A and B.

Corallary 2. If NPVA(B)>Dist(A,B), then there exists a sub-optimal path between node A and node B.

Theorem 2. The value of every element in NPV,(B) is continuous in integer within the range [0,Max-P], where
Max-P is the maximum length of optimal and sub-optimal path from node A to all other nodes.

Proof: Let x be an integer, 0<x<Max-P. If NPV,(B)=x, clearly there exists an adjacent node C such that
nei(B,C)=1 and NPV,(C)=x-1. i.e. al element’s values in NPV, are continuous in integer within the range
[0,Max-P].

5 Reducing NPV's Calculation Complexity

According to Definition 3, we observe that it takes Max-P rounds of synchronous message exchanges to
compute every node A's NPV,() for a n-dimension hypercube Q. This computation complexity increases radically
as the number of dimension and the number of faulty links grows. Therefore, it is very important to reduce the
computation complexity in computing NPV. We propose to use Relay Node Technique to alleviate the computation
time.

Definition 4. Node A’s Path Bit Vector PBV, is defined as:

1, if NPVA(K) =1

. , O<k<2"-1.
0, otherwise

PBV, (K) :{

Example 2. Figure 4 is a 4-dimension hypercube system with 15 faulty links. Derive the PBV for nodes
(0110), (0011), (1000) and (1110).
Solution:
PBV;,10=(0000000100000000),
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PBV01:=(0110000100010000),
PBV1000=(0000000001001000),
PBV1110=(0000000000100001).
Clearly, before the first round of synchronous message exchange occurs, every node A's PBV, in Q, can be

Vol.18, No.7, July 2007

computed directly from NPV;(). This value will be attached to node A’s message and sent out to its non-faulty

adjacent nodes. Following this way, after n rounds of synchronous exchanges, we know that for any node A, if
NPV, (k) #NULL, then PBV, has been sent to NPV, (k) . Table 1 shows the results for each node in Fig.4.

1110 1111
1100 -
o 1101
0110
01001 F o701
0011
0010
OSBI“‘
101 0000 L
1000 1001

Fig.4 A hypercube with 15 faulty links

Table1l Resultsof NPV after four rounds of synchronous exchangesin Fig.4

Node

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0

0
2
1

2
0
1

4
2
3

1
1
0
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2

1
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3

P OBMUOIwWNOG
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3
1
2

N

0
1

5
1
2

2
2
1

2

(&3]

OCWHAURNNWEMWAD

5

4
2
3

[&)]

3
3
2

IN

Definition 5. Let SBV, denote node A’s State Bit Vector after calculating NPV™(), i.e.

BV, (K) ={

1, if NPV (k) = NULL
0, else

, O<k<2"-1.

Example 3. Based on Table 1, solve the SBV of nodes (0110), (0011), (1000), (1110) in Fig.4.

Solution:

SBV110=(1000100000001000),
SBV1000=(0110000000110011),
SBV1:=(1000100000001000),
SBV1110=(1000100011001100).
In summary, for a hypercube Q, of n-dimension, if we stop the calculation after n rounds of synchronous
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message exchanges, we have the following five observations:

(1) By Theorem 1, we know that every node's optimal paths and sub-optimal paths with length less than n+2
have all been solved. By Definition 4, al nodes’ PBV, have been solved. Only when NPVQ*l(k) #NULL, can the
PBV, besentto NPV.™(K) . Let's assume:

Y={y| NPV (y) =NULL}, X={x| NPV (x) =n+1},

PS=PBV, & BV, (PS;isthe result of bit-wise AND between PBV, and SBV,),

Y, ={yl NPV,"™(y) =NULL, yeY, xeX}, Y, ={y|NPV,*(y) =1, yeY, xeX},

Y2 ={y| NPV (y) >1, yeY, xeX}.

After n rounds of synchronous message exchanges, athough the path length between node A and node y has
not been solved, by Theorem 2, it can be determined that they have a sub-optimal path with length greater than n+1.

(2) After n rounds of synchronous message exchanges, every node A's SBV, can be solved.

(3) For every node A, PBV,, SBV, are calculated only once, i.e. before the first round of message exchange and
after the n-th round of message exchange respectively.

(4) According to Definition 3 and Theorem 2, unless al elements of NPV,() have been solved, there exists at
least one node xeX and NPV (x) =n+1.

(5) According to Theorem 2, if Y=, then Y!#@. i.e. there exists at least one pair of nodes (x,y), yeY, xeX
and NPV/™(x)=n+1, NPV,"'(y)=1. Otherwise, NPV*?*() has no element having the value of n+2, which
contradicts the conclusion in Theorem 2.

Definition 6. In an n-dimension generalized hypercube Q,, anode x is called node A’'s Relay Node if node xe X
and there existsyeY and NPV, (y) =1 after n rounds of synchronous message exchanges.

Clearly, from observation (5), node A certainly has arelay node, but it may have more than one relay node.

If thereis only one element x (xeX), and NPV, (x) =n+1, clearly x is the only relay node of node A. Based on
Definition 3 and Theorem 2, since the shortest distance from A to any nodey in set Y is greater than n+1, as a result,
the shortest path from A to y must traverse node x. According to Theorem 1, clearly, NPV (y) = NPV (x) +
NPV, (y) =n+1+ NPV,"*(y) , which is the shortest path between A and y.

Suppose there exists an element x (xeX) and NPV, (x) =n+1. From Definitions 4 and Definitions 5, if the
result of bit-wise AND between PBV, and SBV, (PBVy & SBV,) contains no element of value of ‘1’, that is, thereis
no yeY such that NPV,"(y) =1. In that case, x is not the relay node of A. If it is assumed to be the relay node, then
at least the value of n+2 is missing from all elements of NPV, (), which contradicts Theorem 2.

If there exists more than one element x (xeX) such that NPV *(x)=n+1, and the result of bit-wise AND
between PBV, and SBV, contains ‘1’ element(s), from Definition 6, these nodes are all relay nodes. If al the ‘1’
elements in the result of a node x1's PBV,; & SBV, are overlapped in position with the ‘1" elements in the result of
another node x2's PBV,, & SBV,, then we refer x1 to be absorbable by node x2. As the connectivity between nodes
set Y and a relay node x1 absorbed by other node x2 is already contained by other nodes, thus node x1 can be
removed from the relay node set. A master relay node can be selected from the remaining relay nodes whose PBV,
& SBV, has the largest number of ‘1’ elements. Thereby, we obtain the following relay node selection criteria.

Relay Node Selection Criteria. The following criteria are used to select arelay node:

(1) If there is only one node x satisfying NPV (x) =n+1, then x is the relay node of A. For all yeY, the path
for a message from A to y is A—»>x—>y. In particular, if ye Y, then the path for a message from Ato y is A>x—X's
relay node—y.
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(2) If there are more than one node x satisfying NPV, (x) =n+1, first, nodes having PS,=0 are removed from
consideration. Then those absorbed by other nodes are removed. If there is only one node left, thisis the relay node
we are looking for. Otherwise, among the remaining nodes, the node whose PBVy & SBV, has the largest counts of
‘1’ elements is selected to be the master relay node for node A. And if ye Y?, then the node x with PS(y)=1 is
selected as the relay node for node A. Otherwise, if ye Y2, then the master relay node is selected as the relay node
for node A. Following (1), the message routing path can also be found.

Example 4. From table 1 and Relay Node Selection Criteria, decide the relay nodes of all nodesin Fig.4.

Solution: Clearly, from table 1 and selection Criteria (1), nodes (1101), (1001), (1001), (1000), (0101), (1100),
(1101), (1001), (0111), (1101) are the sole relay nodes for nodes (0000), (0001), (0010), (0011), (0100), (0111),
(1010), (1101), (1100), (1111) respectively.

From Table 1 and selection Criteria (2):

Since NPV, (0011)= NPV,5, (0110)=5, PBVpi10 & SBV1905=(0000000000000000), PBVoo11 & SBVigoo=
(0110000000010000), So node (0011) becomes the only relay node of node (1000).

Similarly, node (1000) is the only relay node of node (0110); node (1011) is the only relay node of node
(1001); node (0101) is the only relay node of node (1110); node (0100) is the only relay node of node (0101).

Since NPV,3,, (0000)= NPV, (1010)= NPV, (1111)=5, PBVq00 & SBV110,=(0000000000000000),

PBVio10 & SBVi30,;=(0000000000000010), PBV113; & SBV110;=(0000000000000010), either node (1010) or
node (1111) can be a relay node. Each node can absorb the other one. Either one is selected to be the relay node.

6 Optimal Fault-Tolerant Routing Scheme (OFTRYS)

6.1 Algorithm for generating NPV

According to the Definitions 3~6, we compute NPV,() of every node A through a distributed information
exchange. Here is the algorithm to compute NPV of a node.
Algorithm create_NPV/()

{ Determine NPV and collect link fault information to calculate PBV, and construct NPV() ;
Send NPV:() and PBV, vianon-faulty link;
Receiveall NPV}() and PBV. from the non-faulty neighbor node C;
for (i=2; i<n; i++)
{Calculate NPV,() withal NPV.'() && nei(A,C)=1 based on Definition 3;
Send it out via non-faulty link;
Receiveall NPV.() from the non-faulty neighbor node C;}
According to Definition 5 calculate SBV;
Determine the relay node x from the relay node selection criteria.}

6.2 Optimal fault-tolerant routing scheme based on NPV

We further present our Optimal Fault-Tolerant Routing Scheme (OFTRS) based on NPV.
Algorithm OFTRS_Route
int main()
{char cl=cur;
char c2=dest;
if (NPVg(dest)<>NULL)
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route(cl,c2)
else
{c3=relay node; route(cl,c3); route(c3,c2) }
}
int route(cur, dest)
{if (NPV,,(dest)=1) send to this node and return (SUCCESS);
k=count(nei(cur,C)=1);
for (j=1; j<k; j++)
if (NPV;(dest)=NPV,,(dest)-1)
{'send message to this neighboring node j;
return(SUCCESS);}
}
Example 5. Based on OFTRS, illustrate the message routing path from node (0000) to node (1110) in Fig.3.
Solution: In Fig.3, suppose a message needs to be sent from node (0000) to node (1110). Since
NPVgooo(1110)=3, node (0000) has 2 non-faulty adjacent nodes (0010) and (0100), and NPVgp10(1110)=2,
NPVp100(1110)=2, so node (0000) can send the message to either node (0100) or (0010). If the message is sent to
node (0100), since node (0100) has 3 non-faulty adjacent nodes (0000), (0101), (1100), and NPVgpo(1110)=3,
NPV101(1110)=3, NPV;100(1110)=1, from the routing algorithm, the message can be only delivered to node (1100).
After the message reaches to node (1100), since NPV;;109(1110)=1, eventually the node (1100) will send the message
to node (1110). Similarly, if a message is sent to node (0010), the routing path is (0000)—(0010)—(1010)—(1110).
Example 6. Based on Relay Node Technique and OFTRS, please draw the message path from node (0000) to
node (1110) in Fig.4.
Solution: According to Table 2, (0000)—(0100)—(1100)—(1000)—(1001)—[(0000)’s relay node (1101)]—
(0101)—(0111)—(0011)—(0010)—[(1101)’s relay node (1010)]—(1110). The path length is 11.

Table2 NPV valuesfor al nodesin Fig.4
Node 000000010010 001101000101 01100111 10001001 10101011 1100 1101 1110 1111

0000 0 [9] [9 [81 1 (6] [8 [71 3 4 [10] [9] 2 © [11] [10]
0001 [99 O 2 1 [8 3 3 2 [6] ® 3 2 [71 4 4 3
0010 [99 2 0 1 [8 3 3 2 [6] ® 1 2 [71 4 2 3
o011 [8f 1 1 O [7 2 2 1 ® 4 2 1 [6 3 3 2
0100 1 [8 [8] [71 O ® [71 [6] 2 3 [9 [8 1 4 [10 [9
0101 [ 3 3 2 ® 0 2 1 3 2 4 3 4 1 5 4
0110 [8] 3 3 2 [7] 2 0 1 ® 4 4 3 [6] 3 5 4
0111 [7] 2 2 1 [ 1 1 0 4 3 3 2 © 2 4 3
1000 3 [6] [6] ® 2 3 5 4 0 1 [71[6] 1 2 [8 [7]
000 4 5 5 4 3 2 4 3 1 0 [6] © 2 1 [7 [§
1010 [100 3 1 2 [9 4 4 3 [77[6] 0 1 [8 ® 1 2
011 [9] 2 2 1 [8 3 3 2 [6 ©® 1 0 [71 4 2 1
1100 (77 [71 161 1 4 [6/ ® 1 2 [8 [7] 0 3 [9 [8§
1100 5 4 4 3 4 1 3 2 2 1 ® 4 3 0 [6 5
1110 [11] 4 2 3 [100 ® 5 4 [8 [7] 1 2 [9 [6] 0 1
1111 {100 3 3 2 [9 4 4 3 [71[6] 2 1 [8 ® 1 0O

7 Evaluation

To illustrate the effectiveness of computing all optimal and sub-optimal paths of the proposed Node Path
Vector (NPV) and its routing scheme, we use Fig.4 as an example and compare the computed path information using
different existing schemes. Figure 4 is a 4-dimensional hypercube system with 15 faulty links.

Table 3 shows the lengths of optimal and sub-optimal paths for Fig.4 based on ESVs and EOPMs routing
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algorithms'. Finally, Table 2 shows all nodes’ NPV in Fig.4 after 4 rounds of synchronous message exchanges and
adopting relay node technique. In this table, the column node corresponding to value ® is the relay node for the
corresponding row node. The length values without bracket are the lengths of directly computed optimal or
sub-optimal paths. Those values with bracket are the lengths of the indirectly obtained shortest paths considering
relay node. It can be shown that these values reflect the entire optimal or sub-optimal paths actually existing.

Table 3 Path information based on ESV's and EOPM S routing algorithms for Fig.4
Node 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 O 1 2

0001 0 2 1 3 3 2 2 3
0010 2 0 1 3 3 2 1 2 2 3
0011 1 1 0 2 2 1 2 1 2
0100 1 0 2 1

0101 3 3 2 0 2 1 2 3 il

0110 3 3 2 2 0 1 3

0111 2 2 1 1 1 0 2 2 3
1000 2 0 1 1 2

1001 2 1 0 2 1

1010 3 1 2 3 0 1 1 2
1011 2 2 ik 3 3 2 1 0 2 1
1100 2 1 1 2 0

1101 1 2 2 1 0

1110 2 1 2 0 1
1111 3 3 2 3 2 1 1 0

It can be easily found that ESV's and EOPMs essentially omit alarge number of optimal and sub-optimal paths.
Table 4 shows the comparison results. Among these three schemes, OFTRS computes all optimal or sub-optimal
paths. While ESVs computes 31% paths, paths equal to or longer than 3 have all been omitted (almost 70%
omission rate). EOPMs can compute 40% paths (60% omission rate). The omission rate for paths being 3 is 47%.
Paths longer than 3 are all omitted. This means that the system may not find a path even there are obvious paths.

Table4 Comparison between Table 2 and Table 3

Path length 1 2 3 4 5 6 7 8 9 10 11
Actual path number 34 40 38 30 24 20 18 16 12 6 2
Path number by OFTRS 34 40 38 30 24 20 18 16 12 6 2
Path number by ESVs 34 40 O 0 0 0 0 0 0 0 0
Pathnumberby EOPMs 34 40 20 O O O O O O O O

From the perspective of memory space cost, for each node, ESV's needs to retain n-bits information, EOPMs
needs to retain n*bits information, and NPV require to stores information of 2" entries. With the continuous
improvement of computing and memory technology, this overhead can be accepted. For example, when n=20, there
can be one million nodes, the memory space requirement is a few mega bytes. As current machines are configured
with memory of gigabytes, the memory requirement for NPV can be easily satisfied.

8 Conclusions

We have introduced the Generalized Hypercube System Q, and proposed Node Path Vectors (NPVS) in a
Generalized Hypercube Network and its calculation rules. By using Relay Node technique, we are able to
significantly reduce the computation complexity of computing NPV. We further present an Optimal Fault-Tolerant
Routing Scheme (OFTRS) based on NPV. Since NPV has captured the information of all the optimal and

» Since ESVs and EOPMS improve on SVs and OPMs respectively, we only show the path information based on ESVs and EOPMs
in table 3. Those values with an underline are for EOPMs only. Others are for both ESV's and EOPMs.
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sub-optimal path of a Hypercube System with a large number of faulty links, it will not omit any optimal and
sub-optimal routing path. It can ensure that a message traverses through the shortest path as long as one such path
exists, thus achieving a highly efficient fault-tolerant routing. As exemplified, it can find more than 60% more
optimal and sub-optimal routing paths in alarge number of faulty Generalized Hypercube than the existing schemes.
Meanwhile, this is a distributed scheme based only on non-faulty neighbor node information, thus it possesses high
reliability and practical applicability.
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