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Abstract: In this paper, utilizing maps between cyclic groups contained in a finite field, two efficient methods for
compressing a Tate pairing defined on a supersingular elliptic curve with prime characteristic p and MOV degree 3
are presented. They compress a pairing value from a string of length of 6logp bits to ones of 3logp and 2logp bits,
respectively, and an implementation for both the compressed pairings makes use of the codes for the optimized
algorithm of the original pairing and no new code is needed. Both the compressed pairings achieve the speed of the
original implementation.
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1 Introduction

Recently, Tate pairings over elliptic curves become a hotspot in the field of cryptographic research. Tate
pairing is an efficiently computable bilinear map associated with elliptic curves, based on a pairing related,
reasonably presumed computationally hard problem, namely the bilinear Diffie-Hellman problem, many identity
based cryptographic schemes were proposed (see Refs.[1-7] and references therein).

Let E be an elliptic curve defined over a finite field GF(q), | be a prime factor of #£(GF(q)). Let k be the
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minimal integer such that all I-torsion points of E(GF_(q)) are contained in E(GF(q")), where GF_(q) is the
algebraic closure of GF(q). Originally, a Tate paring is defined over the group of all I-torsion points of E(GF(q"))
and the values of the pairing are elements of the quotient group GF(q")/(GF(q)")'. Let E(GF(q)[I] and
E(GF(q))[!] denote the group of all I-torsion points of E(GF(q*)) and E(GF(q)), respectively. By using a distortion
map defined on E, one can define a modified Tate pairing on E(GF(q))[] instead of on E(GF(q")[l]. and this
improves the efficiency of the setup of cryptosystems established over the pairing. To eliminate the ambiquity
caused by the non-uniqueness of coset representative of elements of GF(q)"/(GF(q¥))', a (q~1)/I-powering to the

K_1)/1

pairing values is usually operated, and the pairing values are then defined as elements of (GF(g*)")“ . In

general, there needs a string of length of klogg bits to represent one element in GF(q)" and in its subset
(GF(q)") @', Strings of the same length are needed for GF(a)' /(GF(q))".

However, the pairing values form a subgroup of GF(q¥)" of order |. Information-theoretically speaking, the
values should be represented in strings of length of logl bits, or in strings of at most logg+1 bits, since
I<#E(GF(q))<2g. The problem is how to find an efficient method which computes a lossless representation for each
pairing value.

Any method of representation in less than klogq bits is meaning. This problem is data compression and it is
useful in many cryptographic applications. For example, in some pairing based cryptosystems (see Refs.[1-7]), the
values of the Tate pairing are part of the system parameter (f.g., the public key of a user, the ciphertext, or the
transposed message, etc.) a data compression of pairing values gives a saving of storage or communication
bandwidth.

In this paper, we propose two lossless data compression methods for the Tate pairing whose efficient
implementation was studied in Ref.[8]. The implementation of the pairing in Ref.[8] is primarily designed to re-use
low-level codes developed in usual implementation of elliptic curve cryptosystems over GF(p). It is afirst study of
implementation of Tate pairings defined over supersingular elliptic curves of MOV degree 3 and has very fast
implementation speed. See Ref.[8] for its details and see also Section 2. The first compression method we proposed
here compresses the pairing values from strings of length of 6logp bits to ones of 3logp bits, whilst it completely
preserves the implementation speed of the optimized algorithm studied in Ref.[8]. The second compresses the
pairing values to strings of length of 2logp bits and is an optimized compression theoretically (see Section 4), but its
implementation needs very few extra computation in addition to the optimized algorithm in Ref.[8]. No new code is
needed for the implementation of both new pairings. Similar results on compression of pairing value are given in
Refs.[9,10]. However, these compression methods are primarily designed for Tate pairings defined over
supersingular elliptic curves of characteristic 3 and MOV degree 6, and are associated with the specific pairing
evaluation algorithm of Duursma and Lee!™. They are not applicable to our case and are very different with our
analysis.

2 Elliptic Curve and Original Tate Pairing

Let p be a prime congruent to 11 modulo 12. We assume p is large, for instance, p is of length of 192 bitsasin
the implementation studied in Ref.[8]. In Ref.[8], a method is presented to find a small integer u such that (x*-u)?+1
is an irreducible polynomial over GF(p). Let 8 be aroot of (x*~u)*+1 in GF(p). Then p=/ belongs to the subfield
GF(p?) and it is not a cube in the subfield®. The fields GF(p®) and GF(p?) are respectively represented as

GF(p)={agtayp+... +asf:ay, .. asc GF(p)}
and
GF(p*)={ ag+as/’:a0,85 GF(p)} .
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The arithmetic of GF(p®) and GF(p?) are analyzed in Ref.[8].
Let E be an elliptic curve defined over GF(p?) by the equation
YR

E is supersingular, and the order of E(GF(p?) is p*—p+1.

Let | be a prime factor of p>~p+1 not dividing p>~1. Assume | is sufficiently large, e.g., the length of | is more
than 160 bits as specified in Ref.[8]. The MOV degree of E associated with | is 3, i.e., E(GF(p?)[l] < E(GF(p®))
but E(GF(p®))[l] « E(GF(p?)) fori=1 or 2. Define a distortion map on E/GF(p?) as follows:

{q) ' E/GF(p?) » E/GF(p°)

(xy) > (ax”,by®)
where a=p @8 GF(p?) and b=p P YeGF(p?). Then the Tate pairing of order |, g, is defined to map a pair (P,Q)
of points of E(GF(p?)[I] to

&(P.Q) = fo(@(Q)* " e GF(p%),
where fp is arational function defined on E with divisor (fp)=I(P)—I(O).

Miller’s algorithm evaluates f,(@(Q)) iteratively. For the details of the algorithm, see the pseudo-code given in
Ref.[8] or the appendix in Ref.[12]. Set f=f(2(Q)).

Using the linearity property of the p-powering over a field of characteristic p, an algorithmic technique
is presented in Ref.[8] to speed up the calculation of f® /' which is a time-consuming powering over the
extension field GF(p®). The technique will be also used for the first compressed Tate pairing proposed in the next
section, and we present it here as Fig.1. Here k; and k, are defined by Compute g« f*% and f « f'
(PP—p+1)/1=kyp+ko and O<ko,ky<p. 2. Compute g«gP and f«gf
3. Compute g« f° and f«—gf
4. Compute g« ((°)")P and ff*

5. Compute f«—gf and return (f)

It is shown that a p-powering calculation needs at most eight
GF(p)-multiplications and it can be regarded as free comparing to a full
powering®. In a concrete implementation in Ref.[8], | is chosen to be of near
size as p, and so, k; is usually small (may be zero) and the calculation of Fig1 Fest (p*-1)/l-powering
f%is the dominant step in the algorithm. The technique has an efficiency improvement of four to five times

comparing to a direct method.
3 A Compressed Tate Pairing

Let G be acyclic group of order n, and m be a factor of n. Set G™={a™aeG}. Then G™is a cyclic subgroup of
order n/m. Let | be a factor of m. Define a map = between two quotient groups G/G' and G™/G™ by mapping
aG'eG/G' to a™'G"eG™/G™.

Lemma 1. The map is well-defined and is an isomorphism of groups.

Fix G=GF(p®)’, n=p°-1, and |, and denote r by 7, The Tate pairing mentioned in the previous section is
g (P,Q)= ’Tpu( fG') . We below fix m=p®+1 and consider to define a new Tate pairing relative to z(fG").

Obviously, we have G"=GF(p®)", because both sides are cyclic subgroups of GF(p®)" of order p*~1. Let { 11,75}
be abasis of GF(p®) over GF(p°®). Define amap 7" from G/G™ to GF(p®)U{«} as follows: for
C=C1)1+C272,C1,C2€ GF(pY),
define 7{cG™)=c,/c,, Where « is a special notation and we assume that ¢,/0=c0.

Lemma 2. The map 7"is well-defined and is a bijection.

Let {61,0,} bethe dual basis of { 1,55}, i.e., Tr(dx)=1 and Tr(dx)=0 for 1<i#j<2, where Tr is the trace map of
GF(p®) over GF(p®). Then
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¢ =Tr(cs,)=cs, +(c5i)p3 .
Take 6,=1 and 5,=p. Then
c+c?
cB+(cB)”

and its calculation needs six p-powerings and one GF(p%)-inversion (regarding a multiplication by 3 as free).

(cGM) =

Write each element of GF(p®) as a six-dimensional vector over GF(p), whose components are the six
coefficients of the polynomial expression in g of the element. Since GF(p?) is a three-dimensional GF(p)-linear
subspace of GF(p®), there exist three fixed component positions such that different elements of GF(p®) have
different three-dimensional sub-vectors at these positions.

Now we define the final pairing value of a compressed Tate pairing, E(P,Q) , as the three-dimensional
sub-vector of

Iz, (G = (f"V'G™)

It is the special notation co if N84 (fP*D13)P° _ 0 and is a three-dimensiona vector over GF(p)

1. Compute g« f and f e f otherwise.
2. Compute g«g° and f«gf By Lemma 1 and Lemma 2, we have
> oompeac LT Proposition 1. g is a lossless compression of the pairing e, i.e, if

Fig.2 Fast (p*+1)/I-powering & (P, Q)=§(P.Q,) for PL,QLP2QcE(GF(p))[I], then &(P1,Q1)=6(P2.Q2).

The calculation of 7°(f®*?'G™ includes the calculation of the
(p*+1)/l-powering, namely c=f® D"  and that of (c+c”)/(ch+(cB)”) . The former is similar to the
(p®-1)/1-powering and is shown in Fig.2. Comparing it with the (p°-1)/I-powering calculation shown in Fig.1, it is
easy to know that g(P,Q) and E(P,Q) have almost the same computational complexity. All calculations for
L(F®PYG™ | including that for " and that for (c+c”)/(cA+(cB)”), can be operated according to
arithmetic of elements of GF(p®). So, no code for arithmetic of GF(p°®) is needed, although this subfield is involved
in the definition of the compressed Tate pairing. The implementation of both (compressed and non-compressed) Tate
pairings can make use of the same implementation codes.

4 Another Optimal Compressed Tate Pairing

In this section we give another compression method. It directly compresses the original pairing value defined

in Section 2 from """ does not compresses the pairing value from f %' The compressed pairing value
composes of two GF(p)-elements.

Let h=f® D" Sincel divides p+1 and p*+p’+1, we have

hp3+1 -1 hp4+p2+1 -1,

Very recently, a new concept, algebraic torus, is introduced into cryptography to generalize public key schemes
with short keys such as XTR and GH cryptosystems™® and to study compression of pairing!'?. We utilize the idea
of this concept and the result in Ref.[10] to develop a new pairing in this section.

Let o=/°-u. Then o is an element in GF(p?®) and satisfies o°=—1 and o’=—a. Let

a+a

h= .
a—-oa

From h"*=1,i.e,

3
a” —a a+a _

3 17
akP +a a-«
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at+a

we have a” =a and ac GF(p%). When a ranges over GF(p), ranges over al elements h in GF(p®)\{ 1}

that satisfy h”** =1. Thus we have

Lemma 3. The map A that maps 1 to «o and maps non-identity element h to a:a% is a bijection from
GP* (the subgroup of GF(p®)" of order p*+1) to GF(p%)_{ =} .

Further, from h*" "% =1 and a” =a, we have

P p?
a’+a a” +a ata _
a’-a g” _4 a-a

1,

and hence have
aPtra” el o1,
and tr(a”*%)=1, where tr is the trace map of GF(p®) over GF(p).

The above analysis is discussed in Ref.[10] for compression of a Tate pairing defined over a class of elliptic
curves of characteristic 3 and of MOV degree 6. Due to the property of characteristic 3, there always exists a special
irreducible polynomial over GF(3?") which defines GF(3®"), and this deduces a direct compression for the values of
a (eGF(3%") in Ref.[10]). However, it is not the case for our study here and we need a new compression for
acGF(p%).

By a well known result on normal base of finite field (see Theorem 1.4.4 cited in Page 10 in Ref.[14]), there
exists a self-dual normal base of GF(p®) over GF(p). By applying Theorem 5.4.4 of Ref.[14], a self-dual normal
base can be constructed and it composes of the three roots of the irreducible polynomial of the form
X*—x?+(r+1)%/(277), where 7 is an element of GF(p?) of order p+1 (it must satisfy (z+1)%/re GF(p)). These three
roots can be computed according to the Berlekamp algorithm for any finite field (here for GF(p®)) (see Page 133 in
Ref.[15]).

Let ¥ be aroot in GF(p®) of x*~x*+(z+1)%(277). Let

a=ay+a,y"+ay", a,8,a,<GF(p).
Since tr(a”*h)=1, we have
(a1@y+ayagtayas)tr(/7)=1.
So a3 is uniquely determined by a; and a,. a; and a, can be computed by
ar=tr(ay),a=tr(ay”).

By the bilinearity and non-degeneracy of the Tate pairing, and since g is defined over a group of prime order,

we know that g(P,Q)=1 if and only if P or Q isthe point at infinite O. Define E(P,O) = a(O,Q) =00 and
d(P.Q) = (tr[4(e (P, Q)71 [ 4(e (P.Q))» "))
for P,Q=0, where 4 is defined in Lemma 3. By Lemma 3 and the above discussion, we have

Proposition 2. E is alossless compression of the pairing g.

Remark 1. Any compressed representation of g must have a length of logl bits since g(P,Q) may take each of
the | values. Since | divides p>~p+1, we know that for some p, | may be of size of near p? and for such pand |, a
compressed representation of g must have alength of 2logp bits. In this sense, E is an optimal compression of g.

In the implementation of € , a=A(a(P,Q)), 7 and » are represented as polynomials in 3, and ay and a;” are
calculated according to GF(p®)-multiplication.

Let w; be the constant term of ' + 4 + 4 asa polynomial in /3 of degree less than 6, 1<i<5. (Here we note
thatin general B+ A" + B isnot an element of GF(p) since Bz GF(p°).) Let
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ay=bgtby f+...+bs 8% ay P=cotc Bt ... +cs 82,
where b;,¢c;e GF(p). Then
a;=3bp+b,wi+... +bsWs,8,=3Co+C Wy +... +CsWs.
Remark 2. ,/#eGF(p®) and wy,...,wse GF(p) can be calculated as part of the system parameter.
The algorithm to compute Q(P,Q) for P,Q=0 is listed in Fig.3. From this figure, we conclude that the

computation of E(P,Q) needs, in addition to that for ¢ (P,Q) , one GF(p®)-inversion, two GF(p®)-multiplications

and ten GF(p)-multiplications (neglecting a multiplication by «). As for E , the implementation of E makes use

of the same implementation codes for g.

1. Compute h«e&(P,Q) and a<—a(h+1)/(h-1)

2. Compute bg,by,...,bse GF(p) with ay=bg+by B+...+bs
3. Compute €o,Cy, ...,Cs€ GF(p) with a;P=c0+c1ﬁ+...+csﬂ6
4. Compute a;=3bg+b;wi+... +bsws,a,=3Co+CiWi +... +CsWis
5. Return (ay,a2)

Fig.3 Computing E(P,Q) for P,Q=0
5 Conclusions

Compression of values of Tate pairings is useful for the application of identity based cryptography. We present
two methods to efficiently compress values of the Tate pairing that is defined on the supersingular elliptic curves
with general prime characteristic p and MOV degree 3 and is first studied in Ref.[8], one has compression rate of
1/2 and the other is theoretically optimal and has compression rate of 1/3. The proposed methods also achieve the
original design goa of the study in Ref.[8] that re-uses low-level codes developed in usua elliptic curve
cryptosystem implementation over GF(p), and need no extra new code for their implementation. In addition, their
implementation speed is fast as that for the original pairing.
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