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Abstract:  In this paper, utilizing maps between cyclic groups contained in a finite field, two efficient methods for 
compressing a Tate pairing defined on a supersingular elliptic curve with prime characteristic p and MOV degree 3 
are presented. They compress a pairing value from a string of length of 6logp bits to ones of 3logp and 2logp bits, 
respectively, and an implementation for both the compressed pairings makes use of the codes for the optimized 
algorithm of the original pairing and no new code is needed. Both the compressed pairings achieve the speed of the 
original implementation. 
Key words:  Tate pairing; elliptic curve; compressed Tate pairing; algebraic torus; identity based cryptosystem 

摘  要: 利用有限域包含的循环群之间的映射,给出了特征为素数 p,MOV 次数为 3 的超奇异椭圆曲线上的一类
Tate对的两种有效压缩方法,它们分别将 Tate对的值从 6logp比特长的串压缩到 3logp和 2logp比特长.两种压缩方
法的实现均使用原有 Tate 对的优化算法的代码,不需要针对压缩对编写新的实现代码,而且两种压缩对的实现均保
持原有 Tate对的实现速度. 
关键词: Tate对;椭圆曲线;压缩 Tate对;代数环面;基于身份的密码系统 
中图法分类号: TP309   文献标识码: A 

1   Introduction 

Recently, Tate pairings over elliptic curves become a hotspot in the field of cryptographic research. Tate 
pairing is an efficiently computable bilinear map associated with elliptic curves, based on a pairing related, 
reasonably presumed computationally hard problem, namely the bilinear Diffie-Hellman problem, many identity 
based cryptographic schemes were proposed (see Refs.[1−7] and references therein). 

Let E be an elliptic curve defined over a finite field GF(q), l be a prime factor of #E(GF(q)). Let k be the 
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minimal integer such that all l-torsion points of ))(( qGFE  are contained in E(GF(qk)), where )(qGF  is the 
algebraic closure of GF(q). Originally, a Tate paring is defined over the group of all l-torsion points of E(GF(qk)) 
and the values of the pairing are elements of the quotient group GF(qk)*/(GF(qk)*)l. Let E(GF(qk))[l] and 
E(GF(q))[l] denote the group of all l-torsion points of E(GF(qk)) and E(GF(q)), respectively. By using a distortion 
map defined on E, one can define a modified Tate pairing on E(GF(q))[l] instead of on E(GF(qk))[l], and this 
improves the efficiency of the setup of cryptosystems established over the pairing. To eliminate the ambiquity 
caused by the non-uniqueness of coset representative of elements of GF(qk)*/(GF(qk)*)l, a (qk−1)/l-powering to the 

pairing values is usually operated, and the pairing values are then defined as elements of . In lqk k
qGF /)1(* ))(( −

general, there needs a string of length of klogq bits to represent one element in GF(qk)* and in its subset 
lqk k

qGF /)1(* ))(( − . Strings of the same length are needed for GF(qk)*/(GF(qk)*)l. 
However, the pairing values form a subgroup of GF(qk)* of order l. Information-theoretically speaking, the 

values should be represented in strings of length of logl bits, or in strings of at most logq+1 bits, since 
l≤#E(GF(q))≤2q. The problem is how to find an efficient method which computes a lossless representation for each 
pairing value. 

Any method of representation in less than klogq bits is meaning. This problem is data compression and it is 
useful in many cryptographic applications. For example, in some pairing based cryptosystems (see Refs.[1−7]), the 
values of the Tate pairing are part of the system parameter (f.g., the public key of a user, the ciphertext, or the 
transposed message, etc.) a data compression of pairing values gives a saving of storage or communication 
bandwidth. 

In this paper, we propose two lossless data compression methods for the Tate pairing whose efficient 
implementation was studied in Ref.[8]. The implementation of the pairing in Ref.[8] is primarily designed to re-use 
low-level codes developed in usual implementation of elliptic curve cryptosystems over GF(p). It is a first study of 
implementation of Tate pairings defined over supersingular elliptic curves of MOV degree 3 and has very fast 
implementation speed. See Ref.[8] for its details and see also Section 2. The first compression method we proposed 
here compresses the pairing values from strings of length of 6logp bits to ones of 3logp bits, whilst it completely 
preserves the implementation speed of the optimized algorithm studied in Ref.[8]. The second compresses the 
pairing values to strings of length of 2logp bits and is an optimized compression theoretically (see Section 4), but its 
implementation needs very few extra computation in addition to the optimized algorithm in Ref.[8]. No new code is 
needed for the implementation of both new pairings. Similar results on compression of pairing value are given in 
Refs.[9,10]. However, these compression methods are primarily designed for Tate pairings defined over 
supersingular elliptic curves of characteristic 3 and MOV degree 6, and are associated with the specific pairing 
evaluation algorithm of Duursma and Lee[11]. They are not applicable to our case and are very different with our 
analysis. 

2   Elliptic Curve and Original Tate Pairing 

Let p be a prime congruent to 11 modulo 12. We assume p is large, for instance, p is of length of 192 bits as in 
the implementation studied in Ref.[8]. In Ref.[8], a method is presented to find a small integer u such that (x3−u)2+1 
is an irreducible polynomial over GF(p). Let β be a root of (x3−u)2+1 in GF(p6). Then ρ=β3 belongs to the subfield 
GF(p2) and it is not a cube in the subfield[8]. The fields GF(p6) and GF(p2) are respectively represented as 

GF(p6)={a0+a1β+…+a5β5:a0,…,a5∈GF(p)} 
and 

GF(p2)={a0+a3β3:a0,a3∈GF(p)}. 
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The arithmetic of GF(p6) and GF(p2) are analyzed in Ref.[8]. 
Let E be an elliptic curve defined over GF(p2) by the equation 

y2=x3+ρ2. 
E is supersingular, and the order of E(GF(p2)) is p2−p+1. 
Let l be a prime factor of p2−p+1 not dividing p2−1. Assume l is sufficiently large, e.g., the length of l is more 

than 160 bits as specified in Ref.[8]. The MOV degree of E associated with l is 3, i.e., ))((])[)(( 62 pGFElpGFE ⊂  

but ))((])[)(( 22 ipGFElpGFE ⊄  for i=1 or 2. Define a distortion map on E/GF(p2) as follows: 



 →

),(),(
)(/)(/: 62

pp byxayx
pGFEpGFE

β
Φ

, 

where a=ρ−(2p−1)/3∈GF(p2) and b=ρ−(p−1)∈GF(p2). Then the Tate pairing of order l, el, is defined to map a pair (P,Q) 
of points of E(GF(p2))[l] to 

)())((),( 6/)1( 6
pGFQfQPe lp

Pl ∈= −Φ , 

where fP is a rational function defined on E with divisor (fP)=l(P)−l(O). 
Miller’s algorithm evaluates fp(Φ(Q)) iteratively. For the details of the algorithm, see the pseudo-code given in 

Ref.[8] or the appendix in Ref.[12]. Set f=fp(Φ(Q)). 
Using the linearity property of the p-powering over a field of characteristic p, an algorithmic technique 

is presented in Ref.[8] to speed up the calculation of , which is a time-consuming powering over the lpf /)1( 6−

extension field GF(p6). The technique will be also used for the first compressed Tate pairing proposed in the next 
section, and we present it here as Fig.1. Here k1 and k0 are defined by 
(p2−p+1)/l=k1p+k0 and 0≤k0,k1<p. 

It is shown that a p-powering calculation needs at most eight 
GF(p)-multiplications and it can be regarded as free comparing to a full 
powering[8]. In a concrete implementation in Ref.[8], l is chosen to be of near 
size as p, and so, k1 is usually small (may be zero) and the calculation of 

is the dominant step in the algorithm. The technique has an efficiency improvement of four to five times 
comparing to a direct method. 

0kf

1. Compute  and  1kfg ← 0kff ←
2. Compute g←gp and f←gf 
3. Compute g←fp and f←gf 
4. Compute g←((fp)p)p and f←f−1 
5. Compute f←gf and return (f) 

Fig.1  Fast (p6−1)/l-powering 

3   A Compressed Tate Pairing 

Let G be a cyclic group of order n, and m be a factor of n. Set Gm={am:a∈G}. Then Gm is a cyclic subgroup of 
order n/m. Let l be a factor of m. Define a map π between two quotient groups G/Gl and Gm/l/Gm by mapping 
aGl∈G/Gl to am/lGm∈Gm/l/Gm. 

Lemma 1. The map is well-defined and is an isomorphism of groups. 
Fix G=GF(p6)*, n=p6−1, and l, and denote π by πm. The Tate pairing mentioned in the previous section is 

)(),(
16

l
pl fGQPe
−

= π . We below fix m=p3+1 and consider to define a new Tate pairing relative to πm(fGl). 

Obviously, we have Gm=GF(p3)*, because both sides are cyclic subgroups of GF(p6)* of order p3−1. Let {γ1,γ2} 
be a basis of GF(p6) over GF(p3). Define a map Γ from G/Gm to GF(p3)∪{∞} as follows: for 

c=c1γ1+c2γ2,c1,c2∈GF(p3), 
define Γ(cGm)=c1/c2, where ∞ is a special notation and we assume that c1/0=∞. 

Lemma 2. The map Γ is well-defined and is a bijection. 
Let {δ1,δ2} be the dual basis of {γ1,γ2}, i.e., Tr(δiγi)=1 and Tr(δiγj)=0 for 1≤i≠j≤2, where Tr is the trace map of 

GF(p6) over GF(p3). Then 
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)()(Tr p
iiii cccc δδδ +== . 

Take δ1=1 and δ2=β. Then 

3

3

)(
)(

p

p
m

cc
cccG
ββ

Γ
+

+
=  

and its calculation needs six p-powerings and one GF(p6)-inversion (regarding a multiplication by β as free). 
Write each element of GF(p6) as a six-dimensional vector over GF(p), whose components are the six 

coefficients of the polynomial expression in β of the element. Since GF(p3) is a three-dimensional GF(p)-linear 
subspace of GF(p6), there exist three fixed component positions such that different elements of GF(p3) have 
different three-dimensional sub-vectors at these positions. 

Now we define the final pairing value of a compressed Tate pairing, ),( QPel , as the three-dimensional 

sub-vector of 

)())(( /)1( 3 mlpl
m GffG += ΓπΓ

33

. 

It is the special notation ∞ if , and is a three-dimensional vector over GF(p) 0)(
3 /)1(/)1( =+ ++ plplp ff ββ

otherwise. 1. Compute  and 1kfg ← 0kff ←
2. Compute g←gp and f←gf 
3. Compute g←fp, f←gf and return (f)

By Lemma 1 and Lemma 2, we have 

Proposition 1. le  is a lossless compression of the pairing el, i.e., if 
),(),( 2211 QPeQPe ll =  for P1,Q1,P2,Q2∈E(GF(p2))[l], then el(P1,Q1)=el(P2,Q2). Fig.2  Fast (p3+1)/l-powering

The calculation of  includes the calculation of the 
(p

)( /)1( 3 mlp Gf +Γ
)(/()

3 pp ccc ββ +3+1)/l-powering, namely c , and that of ( . The former is similar to the 
(p

lpf /)1( 3+= )
3

c +
6−1)/l-powering and is shown in Fig.2. Comparing it with the (p6−1)/l-powering calculation shown in Fig.1, it is 

easy to know that el(P,Q) and ),( QPel
pf ( 3

 have almost the same computational complexity. All calculations for 
, including that for  and that for , can be operated according to 

arithmetic of elements of GF(p
)( /)1( 3 mlp Gf +Γ l/)1+ ))(

3p(/()
3p cccc ββ ++

6). So, no code for arithmetic of GF(p3) is needed, although this subfield is involved 
in the definition of the compressed Tate pairing. The implementation of both (compressed and non-compressed) Tate 
pairings can make use of the same implementation codes. 

4   Another Optimal Compressed Tate Pairing 

In this section we give another compression method. It directly compresses the original pairing value defined 

in Section 2 from , does not compresses the pairing value from . The compressed pairing value lpf /)1( 6− lpf /)1( 3+

composes of two GF(p)-elements. 

Let . Since l divides plpfh /)1( 6−= 3+1 and p4+p2+1, we have 

1    ,1 11 243
== +++ ppp hh . 

Very recently, a new concept, algebraic torus, is introduced into cryptography to generalize public key schemes 
with short keys such as XTR and GH cryptosystems[13] and to study compression of pairing[10]. We utilize the idea 
of this concept and the result in Ref.[10] to develop a new pairing in this section. 

Let α=β3−u. Then α is an element in GF(p2) and satisfies α2=−1 and αp=−α. Let 

α
α

−
+

=
a
ah . 

From , i.e., 113
=+ph

13

3

=
−
+

⋅
+

−
α
α

α

α
a
a

a
a

p

p

, 
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we have  and a∈GF(paa p =
3 3). When a ranges over GF(p3), 

α
α

−
+

a
a  ranges over all elements h in GF(p6)\{1} 

that satisfy . Thus we have 113
=+ph

Lemma 3. The map ∆ that maps 1 to ∞ and maps non-identity element h to 
1
1

−
+

=
h
ha α  is a bijection from 

 (the subgroup of GF(p13−pG 6)* of order p3+1) to GF(p3)∪{∞}. 

Further, from  and , we have 1 124
=++ pph aa p =

3

12

2

=
−
+

⋅
−

+
⋅

−
+

α
α

α

α
α
α

a
a

a
a

a
a

p

p

p

p

, 

and hence have 

1
22 11 =++ +++ pppp aaa , 

and tr(ap+1)=1, where tr is the trace map of GF(p3) over GF(p). 
The above analysis is discussed in Ref.[10] for compression of a Tate pairing defined over a class of elliptic 

curves of characteristic 3 and of MOV degree 6. Due to the property of characteristic 3, there always exists a special 
irreducible polynomial over GF(32n) which defines GF(36n), and this deduces a direct compression for the values of 
a (∈GF(32n) in Ref.[10]). However, it is not the case for our study here and we need a new compression for 
a∈GF(p3). 

By a well known result on normal base of finite field (see Theorem 1.4.4 cited in Page 10 in Ref.[14]), there 
exists a self-dual normal base of GF(p3) over GF(p). By applying Theorem 5.4.4 of Ref.[14], a self-dual normal 
base can be constructed and it composes of the three roots of the irreducible polynomial of the form 
x3−x2+(τ+1)2/(27τ), where τ is an element of GF(p2) of order p+1 (it must satisfy (τ+1)2/τ∈GF(p)). These three 
roots can be computed according to the Berlekamp algorithm for any finite field (here for GF(p6)) (see Page 133 in 
Ref.[15]). 

Let γ be a root in GF(p3) of x3−x2+(τ+1)2/(27τ). Let 

)(,,  , 321321
3

pGFaaaaaaa pp ∈++= γγγ . 

Since tr(ap+1)=1, we have 
(a1a2+a1a3+a2a3)tr(γ2)=1. 

So a3 is uniquely determined by a1 and a2. a1 and a2 can be computed by 
a1=tr(aγ),a2=tr(aγp). 

By the bilinearity and non-degeneracy of the Tate pairing, and since el is defined over a group of prime order, 

we know that el(P,Q)=1 if and only if P or Q is the point at infinite O. Define ∞=′=′ ),(),( QOeOPe ll  and 

]))),(([tr],)),(([tr(),( p
lll QPeQPeQPe γ∆γ∆=′  

for P,Q≠O, where ∆ is defined in Lemma 3. By Lemma 3 and the above discussion, we have 
Proposition 2. le′  is a lossless compression of the pairing el. 

Remark 1. Any compressed representation of el must have a length of logl bits since el(P,Q) may take each of 
the l values. Since l divides p2−p+1, we know that for some p, l may be of size of near p2, and for such p and l, a 
compressed representation of el must have a length of 2logp bits. In this sense, le′  is an optimal compression of el. 

In the implementation of le′ , a=∆(el(P,Q)), γ, and γp are represented as polynomials in β, and aγ and aγp are 

calculated according to GF(p6)-multiplication. 

Let wi be the constant term of  as a polynomial in β of degree less than 6, 1≤i≤5. (Here we note 

that in general  is not an element of GF(p) since β∉GF(p

2ipipi βββ ++
2ipipi βββ ++ 3).) Let 
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aγ=b0+b1β+…+b5β 5,aγ p=c0+c1β+…+c5β 5, 

where bi,ci∈GF(p). Then 
a1=3b0+b1w1+…+b5w5,a2=3c0+c1w1+…+c5w5. 

Remark 2. γ,γ6∈GF(p6) and w1,…,w5∈GF(p) can be calculated as part of the system parameter. 
The algorithm to compute ),( QPel′  for P,Q≠O is listed in Fig.3. From this figure, we conclude that the 

computation of ),( QPel′  needs, in addition to that for , one GF(p),( QPel
6)-inversion, two GF(p6)-multiplications 

and ten GF(p)-multiplications (neglecting a multiplication by α). As for le , the implementation of le′  makes use 

of the same implementation codes for el. 
 
 
 
 

1. Compute h←el(P,Q) and a←α(h+1)/(h−1) 
2. Compute b0,b1,…,b5∈GF(p) with aγ=b0+b1β+…+b5β5 
3. Compute c0,c1,…,c5∈GF(p) with aγp=c0+c1β+…+c5β5 
4. Compute a1=3b0+b1w1+…+b5w5,a2=3c0+c1w1+…+c5w5

5. Return (a1,a2) 

Fig.3  Computing ),( QPel′  for P,Q≠O 

5   Conclusions 

Compression of values of Tate pairings is useful for the application of identity based cryptography. We present 
two methods to efficiently compress values of the Tate pairing that is defined on the supersingular elliptic curves 
with general prime characteristic p and MOV degree 3 and is first studied in Ref.[8], one has compression rate of 
1/2 and the other is theoretically optimal and has compression rate of 1/3. The proposed methods also achieve the 
original design goal of the study in Ref.[8] that re-uses low-level codes developed in usual elliptic curve 
cryptosystem implementation over GF(p), and need no extra new code for their implementation. In addition, their 
implementation speed is fast as that for the original pairing. 
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